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Driven two-level atom
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The two-level atom in an external field of arbitrary time dependence is solved formally using projec-
tion techniques. As a particular result of the general solution, an exact expression is presented for the
density matrix of a two-level atom in a sinusoidal field.

PACS number(s): 42.50.Ct, 42.50.Hz

I. INTRODUCTION

Traditionally, the two-level atom has been used to
model laser dynamics [1], search for quantum chaos [2],
and, in general, test new forms of the interaction Hamil-
tonian [3]. Despite such efforts, the quantum Liouville
equation for a two-level system driven by periodic exter-
nal fields has escaped an exact solution. In this paper, we
present a general method that could be used to solve the
problem for arbitrary time dependence, including the
hitherto unsolved two-level atom in a sinusoidal field.

There is yet another reason for attacking the problem
anew. Pulse-shape effects are now in use to investigate
molecular dynamics. Pulse-shape technology has
achieved 50-fs resolution, to the point that quantum con-
trol of molecules is now possible. While the two-level
atom is quite simple compared to real molecules, describ-
ing the dynamics of two-level atoms under the inhuence
of pulsed fields allows us to develop some physical intui-
tion about molecular processes, as observed by Warren
[4]. A review of the possibilities in this new field of
chemistry with photons is discussed by Brumer and
Shapiro [5] and serves as motivation for this work.

Our goal in this paper is to develop formulas which
will allow the exact solution, or systematic approxima-
tion, of the density matrix for two-level atoms under the
inhuence of pulses of arbitrary shape. We will provide
formulas which can be simplified for specific pulse shapes
using symbolic or numeric computation routines, assum-
ing that analytic efforts cannot be continued any further.

En Sec. EI we review a proposed general solution using
projection techniques. In Sec. III we focus on the two-
level atom driven by an external field of arbitrary shape,

I

pD(t) =F(t,O}pD(0}

arriving at the solution for the sinusoidal external field as
a particular example. This result could describe a spin--,'

system in an external field, as formulated by Bloch [6],
except that we have used the density-matrix formalism
just like Kubo and Tomita [7,8]. However, this work
does not include Hamiltonian terms responsible for
describing magnetic resonance and relaxation phenome-
na, but has the advantage that the results are exact, in
closed form, versus the more realistic, but approximate
results.

Once we have arrived at the formal solution, which can
be checked by substitution into the quantum Liouville
equation, it might not matter anymore what methodology
we use to arrive at the solution. So, in Sec. IV, in addi-
tion to the stated goal of this paper —which is to provide
practical recipes for describing the dynamics of the two-
level system —we put the mathematical approach within
the context of related research in many-body physics.

II.SUMMARY OF METHOD

Let p be the density matrix of a quantum system sub-
jected to a time-dependent Hamiltonian H. Then the
quantum Liouville equation is given by

i A =Lp= [H,p],Bp
Bt

where fi is Planck's constant and [, ] is the usual commu-
tator. Let D be a projection operator that picks the diag-
onal components of the density matrix, Dp=pn. (1 D)—
picks the off-diagonal part of the same matrix,
(1 D)p=p, D. —The formal solution [9] of Eq. (1) is
given by

dd 1l t

g ( —i)"f dt, f dt, f dt„J(t, t, , t, )J(t„t„t,). . .J(t„„t„„t„,)DL(t„)G(t„,O)p, D(0)
n=1 0 0 0

eveIl

+ g ( I)-f dt, f dt2 . . f dt J(t, t„t2)J(t2, t3, t4) . J(t z, t „t )F(t,O}po(0},
m =2 0 0 0

where

J(t2, t3, t4)=F(t2, t3)DL(t3)G(t3, t4)(1 D)L(t4), —(3)

3F (t2, t3 ) =exp — D f ds L (s)—
'2

3
G(tz, t3)=exp ——(1 D)f ds L (s)—

All operators have time-ordered product interpretation.
Notice that the main mathematical difhculty is the
three-point function J of Eq. (3).
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III. THE TWO-LEVEL ATOM

H =Ho+H;,
where

fuu1 0
Ho=

(6)

(7)

Let us now focus on a system of two-level atoms in the
presence of an external field, denoted by the Hamiltonian

0 1
H =. p—Eh (s)

E 1 0 (8)

The form of h (t) is determined by the nature of the ex-
periment being performed.

Let us also denote A~ as a diagonal matrix with ele-
ments a11, a22, and A

& z as an off-diagonal matrix with
elements a12, a21. A is not assumed Hermitian yet.

For 2 X 2 matrices, we have the following properties:

(A} Le A~=[HO, An]=0; the commutator of two diagonal matrices is zero .

(B} L, AD=[H;, AD]=B, ~. the commutator of an off-diagonal matrix and a diagonal matrix is off diagonal .

(C) L, AD=[H;, A, n]=C~. the commutator of two off-diagonal matrices is diagonal.

The above simple statements allow us to simplify Eq. (2)
for the two-level atom. We will also define several two-
by-two matrices and their commutation relations as we
need them. The commutation properties of these ma-
trices are summarized in Eq. (42).

where
L 0=[H 0],
L, (t)={ pE/A)h —(t)[o„],

0 1

(13)

A. The diagonal part

Let us simplify some expressions from Eq. (2). First,

F(t,0)pD

1 0

We evaluate Eq. (11) term by term by commuting all
operators to get the pattern of simplification. Thus

G(t3, t4)(1 D)L;(t4)—AD

= g {—i/A'p[D(tLO+L;)] [D(tLO+L;]pD,
n =1.

(9)
= ( 2pE/A)—11 22

cos[t0(t3 t4)]o z, (14)

where the quantity in the brackets appears n times. Start
from the right. Observe that L;pz is off diagonal, by rule
B. Letting D operate on this product, the result is zero.
In this way, by successive operations from the left, the
contribution of L; disappears completely. Only Lo
remains, but it commutes with pz so F is a unit operator.
The three-point function J(tz, t3, t4) becomes a two-point
function J(t3, t4). One diScult coupling in Eq. (3) drops
out:

J(tt, t3yt4)=DL (t3)G(t3, t4)(1 D)L (tq) =J(t3—it4) .

(10)

Second, Eq. (10) simplifies further.

J(t3, t4)D =D (Lo+L; )G(t3, t4)(1 —D)(LO+L; )D

=DL; G(t3, t4)(1 D}(LO+L,)D . —

where we have used

[+I AD ]=(& ii —
&22 )~2

and

0 —1

CO=N1 602 .

Next we evaluate

11 22

2
2pE

fi

where
Xcos[co(t3 —t~}]h (t3)h (t4)oo,

1 0

D(Le+L;(t3))G(t3, t4)L;(t4) AD

(16)

(17)

OO

G(t3 ~ t4)L((t4)A~ —g( t /R)[[(t3 t4)LO] IJf

XL;(t4)An, (12)

To progress line by line in Eqs. (11), we successively
use the following comments: (1)J always acts on a diago-
nal matrix, hence the reason for appending D from the
right. (2}D and Lo commute.

Next we evaluate

0 —1
(19)

Finally from Eq. {10)we have
'4

a 11 22 2PEJ(t„t~)J(t3 t4) Ag) =
2

Xcos[co(t, tz}]—
4

Xcos[co(t, t4)] gh(t, )oo, (20)—
j=1
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which is exact. It is diagonal.
Let us now consider

G(t, O)A, = g ( —i/iii)'[(1 —D)(tL, )]JA,
j=1

(21)

DL (t)G(t, O) A i ~ =D(Lo+L;(t))G (t, O) A,

=DL;(t)G (t, O) A,

=L;(t)G(t, O) A,
where again the contribution of I.; disappears.

A term-by-term expansion gives

G(t, O) A, D =cos(cot )g, +i sin(cot)$2,

which gives

(22) DL; (t)G (t, O) A,

where

0 a12

() 02=
0 a12

—a, 0

—2pE a 12 21o.oh (t)
2

(24)

Evaluating next The odd integrands are of the form

( —2pE/A') ooh(t&)h(t2)h(t&)cos[to(ti tz)][a&—2e
' —

aisle ']
J(t„t2)DL, (t3)G(t3pO)A] D— (25)

since

[&1 [&1 stol]=2 oo

The even integrands are of the form

4

~(tl t2)J(ti t4)pD(O) =~ol (a» —
a&2 )/2](2pE/A') g h (t, )

(26)

(27)

We can now put Eq. (2) together again using the simplifications we have obtained from Eqs. (9)—(27),

oo, odd oo, even

pD(t)=pD(0)+(2ipE/fi)oofy(t)+no g (2ipE/fi)"f„(t)+[(a&& —a&2)/2]ao g (2ipE/fi) g (t), (28)

where

a 12e
f&(t)= f ds&

0

t COS
I

f Q)s)
a 21e

n=1 m =2

s& s„& n

f„(t)= ds, dsz . ds„g h(s~ )cos[to(s, —s2)]cos[to(s& —s4)] cos[co(s„2—s„,)]
0 0 0

i COS 1 Los

a12e
"—a21e

X

s& s
&

m

g (t) = ds, dsz . ds ff h (sj )cos[to(s, —sz) ]cos[to(s3 s4) ] . cos[to(s, —s )] .
0 0 0

B. The oN'-diagonal yart

The o6'-diagonal density matrix can be found by simply exchanging the following operators and matrices:

D (1 D), —

(1 D) D, —

F~g
G~F,
J(t, „t, „t,)—K(t, „t, „t,)

=G(t, 2,t, )(1 D)L(t ~)F(t, )—, t, )DL(t, ).
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Equation (2}can be rewritten as

pi z(t) =6(t,0)p, z(0)

+ g ( i—)"f dt, f dt2 f dt„K (t, t), tz )K (t2, t3, t~ ) K (t„3,t„2,t„,)(1—D)L (t„)F(t„,O)p&(0)
n=1 0 0 0

+ g ( i)—f dt, f dt, f™(dt K(t, t„t,)K(t„t,,t, ) .K(t „t,, t )G(t,O)p, D(0), (31)
0 0 0

where

K(tj 2, t) „tj)=G(tj 2, tj i)(1 D)L—(tj i)F(tj i, tj)DL(tj) . (32)

The reduction of Eq. (31) follows all simplifications used in subsection A:

(1) G(t, O)p, t) is given by Eq. (23) .

(2} F is still a unit operator .

(3} (1 D)L(t—„)F(t„,O)pt3(0)=(1 D)(LO—+L;(t„)pti(0)=L;(t„)pD(0) .

(4) K(tj 2, t i, tj)=G(tj 2, t i)(1 D)L(t—i)DL(t )

=G(t, „t, , )L, (t, , )L, (t;)

(a) The operator K acts on off-diagonal matrices only.

(33)

(34)

(b) L,(tj, )L;(tj ) acting on an off-diagonal matrix results in an off-diagonal matrix, another L; renders the

result diagonal, and (1 D} nullifi—es the result. Hence

K(t~ 2, tj „t )= g (1/n!)[ i (t 2 t —))L—OI ()3]"L;(t ))L;(t ) .
n=0

(5) The first odd integrand is

L;(ti)pD(0)= —[(a» —au)/2](2pE/A)h(ti)o2 .

(6) The next odd integrands are

0 —e
K(t, t, , tz)L, (t3)pt)(0) = [(a„—azz)/2]( 2pEIR) h —(t, )h(t2)h (t, );„(, , )

e

—ice(t —t )
'

1

(35)

(36)

(37)

5 0 —e
K(t, ti, t2)K(t2, t3, t4)L;(t5 )pD(0) = [(a)i —a22)/2]( 2pE/()1) g h —(t )cos[to(t2 —t3)]

j=1 e

K(t, t„t2)K(t3, t3 t4}K(t4,t3, t6}L;(t7)PD(0}

—ia)(t —t )
'

1

(38)

7 —e=[(a„—a )/2]( —2pE/()3') gh(t )cos[to(t t )]cos[t0(t —t—)]
j=1 e

(7) The first even integrand is
—icy(t —t )

'

e

—iu(t —t ) .
1

(39)

K(t, t„t,)G(t, ,O)p, ~(0)=(2ipE/A') h (t, }h (t, )

and the second is

K(f ti t2)K(t2 t3 ~ t4)G(t4, 0)p) D(0)

iso(t —t )—e
(40)

l Alt4
a1&e —a21e

=(2ipEi)1) gh(t )

j—1 2

—iso(t —t )
'

e
cos[QP(t2 t3)] iM((

—()—
1

(41)
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For the sake of completeness, we list below all the commutation relations that we have used to simplify our expres-
sions:

12 a21 )o0

[o1 (2] +(a12+a21)oo

[(T 1,o 2 ]—20'()

[o„[o„g,]]=2(a,2 —a2, )o2,
[o1 [ol 42]]=2(a)2+a21 )o2

[o „[o„(T,]]=2'o, ,

L0o 2=( —A'ai)o,

L()o 2=( —1)ico) o.
2

L()g, = ( fi—co )(2

L0(,=( —irt01) g,
(42)

Putting all the simplifications together we rewrite Eq. (31) as

P1 D(t)=

where

a e21

a e12 oo, Odd

+[(a» —a22)/2] g (2ipE/R)"q„(t)+
n=1

a 11
—a 22

oo, even

(2ipE/A) p (t),
m=2

(43)

p (t)= f dt, f dt, f dt ice(t —t
&1)

e
—i co(t —t

Cos[&(f2 t3)] ' ' ' C O[sM(tm —2 t~ —1)]

l COt m
a12e —a21e n

gh(t, ),
- j=1

t) n —1

q„(t)=f dt, f dt2 f dt„; (, , )

4.

—iso(t —
t& j '

e
cos[N(t2 —t, )] cos[co(t„2—t„,)] ph(tJ ), (44)

Equations (2Q) and (43) constitute the practical solution of the most general time-dependent external field. Together
e equations represent the most important contribution of this work for the purpose of pulse-shape application. Could

they have been arrived at without the use of projection techniques'7 Probably, but our equations have the virtue of
rendering systematic integrations as the main tool. The integrals are far easier to evaluate or approximate than to find

the solutions of the corresponding differential equations derived from Eq. (1). In addition, as shown in the last section,
we find the opportunity to discuss the significance of some features of our solution in clarifying attempts to solve the
quantum Liouville equation (1) for more complex systems.

C. Illustration —the sinusoidal Seld

As an example of the utility of our solution, we present the exact solution, heretofore unsolved, for a two-level atom
subjected to a periodic external field of frequency v [10].Here, h (t) =cosvt. For simplicity, we assume that the off-

diagonal components of the initial d .nsity matrix are zero. Then

oo, even

pD(t)=pD(0)+[(a» —a22)/2]cr0 g (2ipE/A)
m =2

1 m —1

X f ds, f ds2 f ds cos[co(s, —s2)]
0 0 0

X cos[co($3 $4 ) ] cos[co($~ 1 s~ )]

X icos(vs ) . (45)

We have plotted, in Fig. 1, Eq. (45) containing all
terms up to m =8 using symbolic computation. The pa-
rameters used are p =1, E =1, 4=1 a11=0 a22=1,
a12 =a21=0. Many such physical examples and numeri-
cal investigations may be realized beginning with our an-
alytic solutions for possible comparison with experi-
ments, particularly those with intense driving fields. %e

I

hope to apply this work to such experimental investiga-
tions. In the meantime, we wish to comment on the
significance of the suggested solution and the observa-
tions that lead to our results. Two possibilities may be
mentioned.

First, for nonlinear optics. Unlike Eq. (45), the expres-
sion for the off-diagonal components of the density ma-
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IV. SOME REMAARKS ON THE SIGNIFICANCE
OF THE REDUCTION PROCEDURE

r main result has not been previously re-
h hd 1

d"-
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erent is the i enti ca ion"J and K. In fact, some very in er
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' f h Q Kcorn lex. But or eh', hRing Model [13]and the linear Ising c am, e
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tors simplify by losing their time dependence. F and 6 as
given by Eqs. (4) and (5) reduce to the identity operator.
The telescoping time integrals of Eqs. (2) and (31) become
trivial.

In this work, both J and E become two-point func-
tions. F is still the identity operator, but 6 is not, al-
though it could still be evaluated exactly. The common
time variable of adjacent operators in J and K drops out,
uncoupling the operators. They then connect only via in-
tegrations over time.

In attempting to solve problems more difficult than
what we have addressed here, such as the time evolution
of other classical and quantum systems, where J and E
cannot be so easily simplified, we have found it con-
venient to make a generalized weak-coupling approxima-
tion. Historically, the weak-coupling approximation is
taken only to second order in a coupling parameter, a di-
mensionless number that multiplies L;, for example. By
contrast, our generalized weak-coupling approximation
drops terms in an infinite number of places, but at the ex-
ponents, as in Eqs. (4} and (5}, leaving the efi'ects of high
powers (up to infinity) of the operators L, outside the ex-

ponential operators of Eqs. (2) and (31). We thus think
that our method —when approximated —yields results
intermediate between the traditional weak-coupling ap-
proach and the exact solution, whatever the exact solu™
tion may be. This approximation arbitrarily puts F and
6 as unity, a procedure that we have justified only on the
strength of physical reasoning.

In the present work, because of the fortunate use of
2X2 matrices whose commutation rules, as shown by
Eqs. (42), are very simple, we found that the rigorous
reduction of F to unity, and the exact evaluation of 6,
simplify our work tremendously. It is our hope that in
addition to possible practical applications to pulse-shape
control in photon chemistry, nonlinear optics, and in-
tense field NMR, the observations and simplifications
used here can be employed also as a guide for attacking
more difficult problems.
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