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Interference in climbing a quantum ladder system with frequency-chirped laser pulses
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Excitation of a quantum ladder system by frequency-swept (-chirped) laser pulses has been investigat-
ed by studying an atomic model system, the 5s-5p-5d ladder of rubidium. The population transfer is
significantly enhanced when the frequency is swept such that it follows the spacing of the ladder. At in-

termediate intensities we observe oscillations in the population transfer to the upper level (5d), which
can be attributed to interference between two routes of excitation: sequential transfer and direct two-
photon excitation via a virtual intermediate state. %'e determine simultaneously the population transfer
to the upper level (Sd) and the direct three-photon ionization, the latter corresponding to a three-step
ladder with the final state being in the continuum: Ss Sp Sd -epi-ef. -Experiments were performed, using
100 fs pulses at -780 nm from a self-mode-locked Ti:A1203 oscillator amplified at 10 Hz.

PACS number(s): 42.50.Hz, 32.80.Bx, 42.65.Re

I. INTRODUCTION

The quest of manipulating quantum systems on a de-
tailed level, thus controlling the exact quantum state of
the system, has been long ongoing. The advent of the
laser facilitated high selectivity in the interaction with
atomic and molecular systems, but it is only through re-
cent theoretical and experimental developments that the
goal is becoming realistic for more complicated systems
[1]. One important example of quantum manipulation is
the attempt to bring an ensemble of molecules into a
specific highly excited vibrational state. This facilitates
the selective breaking of chemical bonds, thus modifying
chemical reactions [2,3]. Direct single-photon excitation
to a highly excited vibrational state is not possible, due to
the small overlap between the initial and final states.
Thus a stepwise excitation is needed, introducing other
complications. The anharmonicity of the chemical bond
results in different transition frequencies between sequen-
tial vibrational states, demanding the use of several laser
frequencies. Furthermore, the time scales for redistribu-
tion of vibrational energy within a molecule are very
short (picosecond range). Ultrashort laser pulses can po-
tentially present a solution to both of these problems,
since the bandwidth of ultrashort pulses may be large
enough to contain all the frequency components needed
in the vibrational ladder, and picosecond time resolution
is readily obtained. At a first glance it may seem that
selectivity cannot be sustained with this approach, and
even if the purpose is simply multiphoton dissociation it
turns out that the intensities needed to dissociate an ap-
preciable fraction of the molecules are far beyond those
leading to ionization.

A possible solution to the problem was suggested by
Chelkowski, Bandrauk, and Corkum [4]. They proposed
to use chirped (or frequency-swept) ultrashort laser
pulses. If the laser pulse is blue to red chirped, the in-
stantaneous frequency will follow the spacing between
the vibrational levels of the anharmonic molecular poten-

tial. The process suggested is an example of chirped adia-
batic passage. Adiabatic passage is an attractive ap-
proach for obtaining eScient population transfer [1,5],
primarily because of the insensitivity to inhomogeneities
associated with the ensemble of molecules, as compared,
for example, to Rabi pumping. Adiabatic passage by
chirped pulses has been used to create inversion in a col-
lection of molecules, with more than half of the popula-
tion being transferred to an excited electronic and rovib-
ronic state [6]. A high degree of selectivity has been
proven to be compatible with the large bandwidth of a
short laser pulse [7]. Adiabatic passage in a molecular vi-
brational ladder system has yet to be demonstrated. In a
recent paper population transfer by chirped pulse adia-
batic passage has been investigated in an atomic model
system, the three-state ladder Ss —+5p~5d in the rubidi-
um atom [8].

In this paper we will show that in the three-level ladder
system of rubidium, the actual population transfer at
moderate intensities is oscillating as a function of the
chirp due to quantum interference. A simplified energy-
level diagram of Rb is depicted in Fig. 1(a). We label the
5s, Sp, and 5d states ~1), ~2), and ~3), respectively. In
the experiment Rb atoms interact with laser pulses of a
bandwidth large enough to contain the photon energies
corresponding to both transitions of the ladder system,
5s —+Sp (12817 cm ') and Sp~Sd (12885 cm '). The
dependence of the population transfer to the upper level

~
3) on the frequency chirp of the laser is investigated. It

is found that the population transfer is enhanced when
the applied pulse is red to blue chirped (positively
chirped). This is to be expected, since the

~
1 )~ ~2 ) tran-

sition is resonant in the beginning of the pulse, and the
~2) ~ ~

3 ) transition becotnes resonant at a later time dur-
ing the pulse.

The effect of chirping the optical pulses on the popula-
tion transfer can be visuahzed using the dressed-atom
picture. In Fig. 1(b) the dashed lines show the unper-
turbed dressed atom states of

~
1+%co ), ~

2 ), and
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FIG. 1. (a) A simplified energy-level diagram of rubidium.
The Ss~5p (or ~1)~~2)) and Sp~5d{~2)~~3)) couplings can
be driven by the same ultrashort laser pulse, due to the small
difference in the energy spacings. (b) Dressed-atom diagram of
the same levels, dressed as ~1+%co), ~2), and ~3

—%co). The
dashed lines show the unperturbed energies vs the photon ener-

gy of the dressing field. The full lines show the dressed-atom
energies, when the dipole coupling is included, and the laser has
an intensity of 1.9X10' W/cm'. The arrows indicate different
routes of excitation of the upper level (Sd), as described in the
text.

~3
—%co), and their energy dependence on the photon en-

ergy. Including the dipole coupling between states
(1)~(2) and ~2)~~3) the dressed-atom states split up
[full lines in Fig. 1(b)]. In a chirped pulse the instantane-
ous frequency changes during the pulse, which corre-
spond to a traversal of the dressed-atom diagram from
left to right (red to blue chirped) or right to left (blue to
red chirped}. Depending on the strength of the dipole
coupling (determined by intensity) and the rate of the fre-
quency sweep (determined by the chirp), the avoided
crossings of the dressed states are traversed more or less
adiabatically. If the frequency chirp is from red to blue
[left to right in Fig. 1(b)], population transfer from level 1

to level 3 occurs if an atom follows the full (adiabatic)
dressed-atom curve [route marked (i)]. This is the so-
called intuitive frequency chirp leading to efficient popu-
lation of the upper state. Note that once the intensity is
high enough to traverse the crossings fully adiabatically,
the population transfer will still be 100%%uo for all higher
intensities. This is in contrast to Rabi pumping, where
the upper-state population keeps oscillating as a function
of intensity. In a recent paper the 100% population
transfer was demonstrated experimentally [8]. That pa-
per also showed that at sufficiently high intensities, even
with a counter intuitive chirp (blue to red), 100% of the
population can be transferred [route (ii) in Fig. 1(b)]. The

previous experiment was performed using very intense
pulses with a square power spectrum. In the present ex-
periment only Gaussian pulses with a lower intensity are
involved. As to be expected, no complete population
transfer is found at the moderate intensities we used.

However, at these intermediate intensities a third, new,
route leading to population of level 3 becomes of impor-
tance. If an atom is dressed by a red to blue chirped light
field, it may follow ~i+fico) crossing ~2) diabatically,
then going adiabatically to ~3

—%co) and continuing in
this state crossing level ~2) a second time [route (iii) on
Fig. 1(b)]. The relative significance of routes (i) and (iii)
depends on the experimental parameters (Sec. IV}. In
general, a (quantum-mechanical) interference between the
two pathways is expected. This interference manifests it-
self as oscillations in the population transfer versus chirp,
and is a general feature in most of our measurements as
well as in the calculated results (see Sec. VI). The accu-
mulated phase difFerence between the two paths depends
on the difFerence in energy and the time spent to traverse
the paths. For a linearly chirped pulse this time is pro-
portional to the chirp, and the phase change is simply the
product of the area between the two paths [Fig. 1(b}]and
the chirp, giving regular oscillations as a function of the
chirp (Sec. III).

After the population transfer to level 3 another photon
can be absorbed to leave the atom ionized. This process
corresponds to a four-level ladder, with the last level be-
ing in the continuum. The situation is analogous to a
molecular ladder ending up in a dissociative state. The
three-photon ionization signal is primarily an image of
the population in the upper bound state (51), except at
small chirp (high intensity}, where a significant part of
the signal seems to originate from direct off-resonant
multiphoton ionization.

The paper is organized as follows: In Sec. II we will
describe the experimental setup, and our key experimen-
tal findings are discussed qualitatively in Sec. III. Before
the quantitative treatment of the results in Sec. VI, we
discuss the experimental realization of chirped pulses in
Sec. IV and a theory based on solving the Schrodinger
equation in Sec. V.

II. DESCRIPTION OF THE EXPERIMENT

Rubidium atoms are evaporated into the interaction re-
gion of a vacuum system [9]. Across the interaction re-
gion a small voltage can be applied to accelerate detached
electrons toward a channel electron multiplier. In the in-
teraction region the atomic beam is crossed perpendicu-
larly with the linearly polarized, collimated laser beam
(Fig. 2). The laser source is based on a homebuilt
Ti:A1203 oscillator. The self-mode-locked oscillator is
running at -780 nm with a bandwidth of 10 nm and a
pulse duration of 100 fs, i.e., approximately transform-
limited pulses. Following spatial filtering the infrared
(IR) laser pulses are amplified at 10 Hz in three Bethune
cells containing LDS 765 (2-mm-diameter cell), LDS 798
(3-mm-diameter cell), and LDS 765 (8-mm-diameter cell),
respectively. When pumped by the second harmonic of a
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Q-switched Nd:YA16 (yttrium aluminum garnet) laser
(pulse duration 8 ns), the overall average gain in the three
cells is —10, leading to amplified pulses of -50 pJ. The
amplified pulses are sent through a pulse shaper [10],
which is used to change continuously the chirp of the IR
pulses. A pulse shaper consists basically of two parallel
gratings of a variable separation [Fig. 3(a)]. In order to
be able to apply chirp in both directions, it is, however,
necessary to add a —1 X telescope between the two grat-
ings [Fig. 3(b)]. The shaper was in fact implemented by
using just one grating, an achromatic positive lens and a
mirror in the configuration shown in Fig. 3(c). The dis-
tance between the lens and the mirror is fixed at the focal
distance of the lens, while the grating can be displaced
out of the focus plane. When the grating is moved away
from the focus of the lens, the phase shift of a laser pulse
is dependent on the frequency, i.e., chirp is induced. In
the situation shown in Fig. 3, the distance between the
grating and the lens is larger than the focus length, and
the pulse shaper works like a normal grating compressor,
having a phase shift decreasing with frequency, so that an
initially unchirped pulse becomes blue to red (or nega-
tively) chirped. A thorough description of the actual

I

'oven~ MCP '

vacuum system

FIG. 2. A schematic of the experimental setup showing the
laser system, pulse shaper, and the multi channel plate (MCP)
detector in the vacuum chamber.

chirp as a function of the grating lens distance is given in

Sec. IV.
The IR laser beam, which is kept collimated through

the vacuum chamber, has a diameter of 3 mm. It is over-
lapped with a 2-mm-diameter green laser beam, being a
fraction of the second harmonic of the Nd: YAIG laser,
delayed approximately 30 ns. The probe laser postionizes
Rb atoms which are left in the Sd state after interaction
with the IR pulse. Since the probe laser has a smaller di-
ameter than the IR beam, it only probes the central re-
gion of the IR laser, having approximately constant in-

tensity. The relatively large delay of the postionizing
laser serves to separate in time the electron signal stem-
ming from direct three-photon ionization by the IR laser
and from postionization. Since the lifetime of level 3 is
230 ns [11],the decay out of the 51 state before the ar-
rival of the probe laser can be neglected. The fluence of
the probe laser is generally chosen fairly low (-3 J/m i

in order to keep the electron signal from the two difFerent

processes on the same order, to facilitate the simultane-
ous detection, and to avoid direct two-photon ionization
of atoms in the ground (5s) or intermediate state (5p).

For each IR laser pulse the time-of-flight spectrum of
the electron multiplier is recorded on a digital scope and
transferred to a computer, and both the direct three-
photon ionization and the post-ionization signals are col-
lected. Due to the unseeded nature of the Nd: YA16 laser,
the intensity and thus the gain in the Bethune cells at the
instant of the short pulse fluctuates from shot to shot,
leading to similar fluctuations in the pulse energy of the
amplified pulses. The pulse energy of each shot of the IR
laser is monitored on a photodiode„ to serve for binning
the two different ionization signals. For each value of the
chirp (i.e., for each position of the shaper) typically 500
time-of-flight traces are recorded. The energy of the IR
pulses after the shaper are typically a few tens of a micro-
joule, corresponding to fiuences of —100 pJ/cm .

Figure 4 shows an example of the signal measured by

all colors

all colors —f

f+ hx

in; all colors
out ~ +f

f+hx

FIG. 3. This figure shows the working prin-
ciple of the pulse shaper. In panel (a) a grating
compressor is shown. The lines symbolize
traces. Ax is the grating displacement. A
( —l X 3 telescope is added in (b). Focal planes
are indicated by —-.—"—lines. Now hx can
also be negative. In panel (c) the mirror im-

ages the second grating, thus reducing the set-
up.
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FIG. 4. The measured post-ionization signal vs the chirp of
the IR laser pulse at a fluence of 120 pJ/cm and a central wave-

length of 780.0 nm (fico=12821 cm '). This signal is propor-
tional to the population of the upper level (Sd) after the pulse.

postionization of the Rb atoms upon interaction with an
IR laser pulse of the indicated chirp. The chirp is calcu-
lated from the displacement of the grating, as described
in Sec. IV. Strong enhancement in the population transfer
is observed, when the IR pulse has a positive (red to blue)
chirp. This agrees with the intuitive picture of the
(1)~ ~2) transition being resonant before the ~2) ~ ~3 )
transition.

III. INTERFERENCE
IN THE UPPER-STATE POPULATION

In order to understand the quantitative behavior of the
interaction of the chirped pulses with the rubidium
atoms, in Sec. V we will compare with a detailed theoreti-
cal model, based on integration of the time-dependent
Schrodinger equation. The present section, however, is,
devoted to the explanation of an interesting feature, com-
mon to all our measurements. Figure 4 shows that there
is an oscillatory dependence of population transfer on the
chirp for positive chirp. This is due to interference be-
tween the two paths leading to population of the d level
[as shown in Fig. 1(b}].The interference is a result of the
intermediate intensity regime of this experiment: The
avoided crossings are traversed neither fully diabatically
nor fully adiabatically.

The intermediate intensity also results in less than the
100% population transfer reported earlier [8]. The cri-
terion for a passage to be fully adiabatic is (for a two-level
system [12]}that

where Q(t) is the Rabi frequency, b,(t) the time-
dependent detuning, and 8(t)=m/2+arctan(Q(t)/b(t))
is the polar angle of the Bloch vector. For a linear fre-
quency chirp, the time-dependent detuning has the form
5(t)=h(0)+(dao/dt}t, where dao/dt is constant and
5(0) is the difference between the central frequency of
the light pulse, coo, and the transition frequency between

the two levels under consideration. If the in6uence is
high enough to saturate the transition (Qr- 1 ), the adia-
batic criterion (1) can in principle always be met for a
two-level syste~, if the carrier frequency is close to the
transition and the chirp is large enough. In our ladder
system, however, the two steps have a slight difference in
transition frequencies, 5=(F03—co2) —(t02 —t0(), leading to
fairly large detunings for either transition (A5-63 cm ').
In this case the Rabi frequency has to be large, even for
nonzero chirp, in order for the adiabatic criterion to be
fulfilled, and that is not the case in this experiment.

The period of the interference wiggles can be explained
by simple phase arguments. The two different paths cor-
respond to different dressed-atom energies W, and since
the wave function contains a factor exp(iWt), the phase
of the upper-state wave function created by the two
different routes is different. The period of the interfer-
ence corresponds to phase changes of 2m. If we use W~;]
and W~;;;~ for the dressed-atom energies of the two paths
[corresponding to the notation of Fig. 1(b}],the accumu-
lated phase difference is

P= f [W(...)(t)—W(;)(t)]dt, (2)
1

where t, and t2 are the times of the diabatic crossings go-
ing to path (iii} For .a Gaussian pulse the instantaneous
frequency changes linearly with time, so changing the
variable of integration we obtain

(&& )f [W(;;;)(to)—W(;)(a))]dt0,
Co

(3)

This estimate can now be compared with our experimen-
tal results. Quite generally the first oscillation (including
the zero chirp region) has a period which is considerably
smaller than the estimate of (5), cf. Fig. 4. This is expect-
ed, since the derivation was based on a large chirp. Using
the same picture, however, the fact that the period drops
leads us to the conclusion that the enclosed area in-

where dto/dt is constant for a given pulse, but depends
on the chirp, called a (see Sec. IV). Formula (3) shows
that the phase difference is simply the ratio of the area
between the two paths of Fig. 1(b}and the rate of change
of the instantaneous frequency. The two instants of tran-
sition t, and t2 are not really well defined, but at low in-
tensity (e.g., at fairly large chirp}, the dressed-atom ener-
gies are approximately equal to the unperturbed ones
[dashed lines of Fig. 1(b)], and it is a good approximation
to assume diabatic crossings at the time of the level cross-
ings. In this case the area in formula (3) is that of a trian-
gle of height 5l2 and baseline 5, so that a phase change
of 2~ corresponds to

1 1

dco/dt 2 2

or, using the fact that for large chirp dto/dt = 1/(2a) (see
Sec. IV},

4m.
2~=

5

=7 6X1Q s
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creases, which can be understood as the dressed-atom
levels splitting up in the stronger field. This argument
depends, of course, critically on the instants of the dia-
batic crossings. When we disregard the first oscillation,
the remaining periods of oscillation agree exactly with
the estimate of (5), except that there is a tendency that at
high fluences the period decreases slightly, in agreement
with the above argument.

A more naive look at the interference is that it origi-
nates from two different two-photon transition schemes.
First, the atom can be excited sequentially by the chirped
pulse at the instants where the frequency is resonant with
the corresponding transition. Second, there is the possi-
bility of direct two-photon excitation via a virtual state.
This will take place when the photon energy is such that
two photons match the energy difference between levels
~3) and ~1). As in the dressed-atom picture, the phase
difference between the two transition schemes can be cal-
culated, resulting in the same period as given in (5).

IV. CHIRP
INTRODUCED BY THE PULSE SHAPER

sin(i)+sin(r) =m —, (6)

with d being the groove spacing of the grating and m the
order of diffraction (in the present case m is 1 and —1 on
the first and second gratings, respectively). The total
phase shift experienced by the light beam traveling
through the shaper is determined by both the
(wavelength-dependent) path length 1 as well as by the
phase shift which originates from the fact that there is a
phase difference 2am between consecutive grooves of the
grating. The number of grooves to be included depends
on wavelength, and is the ratio of the distance that the
beam travels along the second grating to the groove spac-
ing, i.e., cos(ro)2b, x tan(r)/d, with ro being the fixed an-
gle between the grating normal and the direction perpen-
dicular to the mirror of the shaper. Accordingly, the to-
tal phase shift is

The absolute value of the chirp, which is induced by
the pulse shaper, can be calculated directly from experi-
mental conditions. If we denote the displacement of the
grating from the focal plane by b,x (b,x being positive if
the distance is larger than the focal length, Fig. 3), then
the distance between the two virtual gratings in the re-
duced system is 2'. A light beam of wavelength A. ap-
proaching the grating under an incident angle i with
respect to the normal will be diffracted to the angle r ac-
cording to the well-known grating formula

centered around cop having a reasonably small bandwidth

[13], the total phase shift can be expanded around coo to
second order in ~:

$(co) =P(coo)+ — (co —coo)
1 c)

1! Bco,cc' ~o

+— '

(co —coo)
1 BP',

Bco

P(coo) is the phase shift of the carrier frequency within
the pulse, while c)P/c)co determines the group velocity of
the pulse envelope. The first nontrivial term of equation
(9) is the second-order term, which is responsible for
group-velocity dispersion. In fact

1 c)Pa=—
2

E;„(t)=exp —2 ln2
'To

exp(icoot ), (12)

which, when assumed to be bandwidth limited, has a
bandwidth b,co =4 ln2/ro, so that in the frequency
domain

2
N C00

E (co)=exp —2 ln2in Eco
(13)

If we include only the second-order phase change, the
outgoing pulse becomes

E,„,(co)=E;„exp[ia(co—coo) ]

(co coo)=E;„exp 4I
(14)

where I is given by

is the quantity describing the amount of chirp introduced
in the pulse shaper. If we take ((} from Eq. (8), with r and
i depending on co through the grating formula (6), we ob-
tain

4~2' 1 1a= — Ax .
d coo cos (ro)

It appears that a is fixed by the experimental parameters,
and for a given light pulse (fixed coo) the induced chirp is
linear in the displacement of the grating.

In the experiment the incoming pulse is a Gaussian of
pulse duration 'Tp.

2

P()L. ) =2m —+2m m cos(r )2bx tan(r)/d
I

0

or, using geometrical identities and the grating formula
(6),

8 ln2
+4&a

Aco
J

The time dependence of the outgoing pulse is

(15}

2 cos(ro )co
P(co) =- [cos(r)+cos(i)]Ax . (8) E,„,(t)=exp( —I t ) exp(icoot ) .

An incident light pulse of spectrum Eo(co) will leave the
shaper as Eo(co) exp(iP(co)). For a light pulse, which is

This pulse is also Gaussian, but with a pulse duration
which depends on the chirp:
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8 ln2a
0

7 0

2

i.e., for a&&ra the pulse is stretched approximately
linearly with the chirp. The instantaneous frequency
changes linearly in time during the pulse, with the rate of
change dco/dt being approximately inversely proportion-
al to the chirp a:

Holn&=ir „ln&,
a, le & =rico, le &,

(19}

Di&2 and Ds&2. While keeping the notation l1 & and l2&

for the included 5s and 5p states, for convenience we label
the Di&i and Ds/2 by l3& and l4&, and denote continu-
um states as le&. Figure 5(a) shows the states and cou-

plings included in the model.
The unperturbed atomic system is described by

co(t) =coo+

Eco

ln2
2t.

2
8+2a2

ln2

(18)

H=HO —D E (20)

while the full Hamiltonian in the dipole approximation
has the form (D =—er)

To summarize, the shaper introduces a chirp which is
quadratic in the frequency domain and hence for Gauss-
ian pulses linear in the time domain [14].

to be used in the Schrodinger equation.
The wave function can be expanded in the above basis

as

i' =Irq/, (21)

V. THEORETICAL MODEL %'=g exp( —ico„t)a„(t)ln&

The rubidium three-level ladder system is modeled by
solving the time-dependent Schrodinger equation in a
truncated basis. We include only states that are within
the bandwidth of our laser, i.e., the Ss S, the Sp P3/2,
and the two fine-structure components of the 5d state,

+g exp( —ico,t)a, ( t) l
e & . (22)

In our calculations below, the sum (integral) over contin-
uum states

l
e & will be eliminated. By substituting expres-

sion (22} for q/ into the Schrodinger equation (21) and
multiplying with ( n l

and (el, respectively, we obtain

&23 &24

i4& D,
[3& 'D

[2&

(a)

@jj 'j ~ Rb

V„ V„

iiil exp( i co„t )a„(t)—
=g exp( i co) a(—t)(nlE Dln'&

n'

++exp( ico;t)a, .(t)(n —lE Dls'&,

iiri exp( i co,t )a,(—t)

=g exp( ico„., )a„.(—t)(elE Dln'&
n'

+g exp( ico;t)a;(t)(elE —Dle'& . (23)

4 7/2

14 D ~ 45/2

2

5/2

~ 4,3/2

3,5/2V

D ~F33/2
3/2

3, 1/2

2
[E& f

[e& p

2

pin

In our model only levels l3 & and l4& couple to the con-
tinuum, and furthermore it is reasonable to assume that
continuum levels do not couple, since continuum-
continuum processes (ATI) only become relevant at much
higher intensities (e.g. , 10' W/cm ) [15]. For the electric
6eld of the laser pulse we take a Gaussian pulse, linearly
polarized in the z direction:

E(t)=Eoe, —,'[exp( —I't ) exp(icoot)

FIG. 5. (a) Energy-level diagram of rubidium, showing the
levels and the couplings included in the model described in the
text. (b) A detailed picture of the coupling of the two Sd states
to the continuum.

+exp( —I't }exp( —icoot)] . (24)

Since MO ~2 ~1 ~3 ~2 ~4 ~2 we may use the
rotating-wave approximation, and obtain
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eEO
a& = exp( —I t }exp[i(to& —co2+coo)t]a2( 1~z~2),

2)A

eEO
a2= [ exp( —I *t ) exp[i(ro2 —co, —coo)t]a, (2~z~ 1 )

+exp( I—t ) exp[i(co2 —ros+coo)t]as(2~z~3)+exp( —I t ) exp[i(coz co—„+coo)t]a4(2~z~4)],
eEO

exp( —I't ) exp[i(co, —
co2

—roo)t]a~(3(z~2)+exp( —I t )+exp[i(co, —co, +roo)t]a, . (3~z~s')
l

C

eEO
exp( —I *t }exp[i(to4 to2 —too)—t]a2(4~z~2)+exp( —I t )g exp[i(co4 co,—+coo)t]a;(4~z~e')

l

(25)

For the continuum states, we have

eEO
['"p( *t'}exp[i(. —~s —0}t]as&slzl3)+exp( I'—t') exp[i(co, to,—ro,—)t]a, &elzl4)] . (26)

This equation can be formally integrated and substituted into the equations for i 3 and a4. If we assume that the contin-
uum is flat (i.e., ( s ~z~ n ) is independent of e) and infinitely wide, then the continuum can be adiabatically eliminated sim-

ply to give ionization out of the states ~3) and ~4) in addition to a coupling of the two states through the continuum.
The situation is actually slightly more complicated, since there are in fact four different continua; f7/z fs/z p3/2,
and p&/2, with only two of these, fs/z and ps/z, being accessible from both ~3) and ~4) [Fig. 5(b)]. As it can be seen,
the four continua can be uniquely labeled by their j quantum number, so we introduce the notation

p,„„=e(n~z~n'),

p,„,=e(n~z~sj ), (27)

which leaves us with the equations

Eo
as = . exp( I"t ) ex—p[i(&os —

co2
—too)t]ps 2a2

+ I(t}[(Ips,&/zl + Ips, s/zl + Ips, s/21 ) s+(ps, snpf su+)Lts, snp4, s/z}a4]

a4= . exp( —I' t') exp[i(to& to& too)—t]p4 —
&a2

(28)

+ I(t)[(Ipe, s/2I + Ip4, s/2I + IJLt4, v/zl }a4+(lus, s/2@4, s/2+ps, supe, sn}as] r

where I(t) =
—,'ce+Qexp( I t }~ is —simply the time-dependent intensity of the Gaussian laser pulse, and the constant

K, given in the Appendix, converts the square of the dipole matrix elements to partial cross sections in units of inverse
fluence. If we assume pure LS coupling, the relative strengths of the diferent coupling matrix elements to the continu-
um can be determined using vector algebra [16] (see the Appendix). We then obtain the four coupled difFerential equa-
tions

a~ = 2.& exp( —I t ) exp[i(ro, ro2+too)t]p—, 2a2,
2iA'

a2 = . [exp( I't ) exp[i(to—q
—co, —coo)t]p~, a,

+exp( —I t ) exp[i (co2 cos+coo}t]p2—sas+exp( I t ) exp[i (—ro2 ro4+coo)—t]pz 4a4],

Eo
1 51 7exp( —I't ) exp[i(ios —

co&
—coo)t]ps 2a2+ ,'I(t) ( ,",,cr~+ ,', of )a3—+—(J—p+ cTf a4

2~% 20 6 15~6

(29)

3 1~ ET'+ ~—crf as
Eo

a4 = . exp( —I t ) exp[i (ro~ A@2 coo)t]p4 za2+—,'I(—t) ( —,
' cr + ',, ' of )a4+-—

2sfi t
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where o and rrf are the total (multiplet averaged) cross
sections for ionization of the 5d state to the p and f con-
tinua, respectively.

The dipole moments p„„betweenbound states needed
in the calculation can be derived from reported oscillator
strengths [11]under the assumption of LS coupling. The
values are given in Table I. In order to calculate the
values of the ionization cross sections, we perform an es-
timate based on a Yukawa potential [17]. The two poten-
tial parameters are adjusted to reproduce reasonably the
quantum defects of the p, d, and f series, as well as the
position of a few lower-lying states. Based on the wave
functions of this potential, we obtain approximate values
for ionization to the p and f continua (Table I}. Under
the conditions of this experiment the fluence of the IR
pulses are in all cases so low that saturation can be ig-
nored. Therefore only the ratio e /of is important. The
model potential estimate gives a ratio of —1/20, which is
in agreement with more advanced calculations performed
on sodium at similar photon energies [18].

The set of equations (29) is solved numerically by in-
tegration over the duration of the frequency-chirped laser
pulse, using Eq. (16). For a given chirp the population
distribution over the four levels at the end of the IR laser
pulse is determined. The three-photon ionization signal
by the pulse is given by the population of continuum
states, which can be calculated as the loss in the total
population of the bound states. In order to facilitate
comparison with the signal from the post-ionizing laser,
the populations in levels

~
3) and ~4) are weighted by the

cross section for ionizing the respective level with the
probe laser. In fact, since the cross sections predicted by
our model calculation at the wavelength of the probe
laser are the same within a few percent, we can compare
the post-ionization signal with the sum of the population
in the two upper levels.

VI. RESULTS AND DISCUSSION

Figure 6 shows a comparison of experimental and
theoretical results for the post-ionization signal (propor-
tional to the upper state population) at two diff'erent
fluences. The experimental chirp is determined from the
displacement of the pulse shaper, according to formula
(11). The solid curve shows the signal which is expected,
based on integration of the time-dependent Schrodinger
equation, as described in Sec. V. Only the vertical scale
of the experiment has been adjusted. The calculations
show the same features as have already been discussed for
the experimental results: The strong enhancement in the

Pi, 2

P2, 3

P2, a

CTp

CTy

2.03X10 Cm
6.45X10 3' Cm
4.74X 10 C m
3.8X10 m /J
8-.'3 X 10 m /J

TABLE I. List of atomic parameters. Dipole moments are
derived from oscillator strengths quoted in [11].Cross sections
are determined by model potential calculations as described in
the text.
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FIG. 6. A comparison of the population transfer to the upper
level (~3) and ~4)), as measured by post-ionization (points) and
predicted by the theoretical model (solid curves). Results are
shown at two difFerent fluences: 75 (lower curve) and 120
pJ/cm2 (upper curve, similar to Fig. 3).

population transfer at positive chirp and the interference
wiggles. Furthermore, the calculated results show that
the population transfer to the upper d level, level ~4) is
more than an order of magnitude larger than the transfer
to the level ~3). This is due to the much stronger dipole
coupling to this level, cf. Table I. It is a good approxi-
mation at the intermediate fluences of this experiment to
disregard level ~3), and this has been done in producing
the simplified dressed-atom energy-level diagram of Fig.
1(b).

It can be seen from Fig. 6 that the relative amplitude of
the interference wiggles to the total population transfer
depends on the pulse fluence: The higher the fluence the
smaller the relative amplitude of the wiggles. This can be
explained as an increase in the adiabaticity of the traver-
sal of the dressed-atom diagram at higher fluences.
Hence a larger fraction of atoms will go through the fully
adiabatic path [marked (i) on Fig. 1(b)]. So if this path is
already dominant (which appears to be the case}, the rela-
tive amplitude of the wiggles will decrease with increas-
ing fluence. This in fact lends us an internal check of the
experimental fluences. If the fluence is calibrated to give
agreement between measured and calculated ratios of
wiggle amplitude to peak height, we end up with a
fiuence, which deviates less than 15%%uo from the experi-
mentally estimated value.

A comparison of the measured three-photon ionization
signal and the calculated population loss is shown in Fig.
7, again for two di8'erent fluences. Both experiment and
calculation show oscillations versus chirp, reflecting the
interference in the upper-state population. This indicates
that (for the large chirp) the three-photon ionization by
the IR laser pulse is dominated by the stepwise process of
transfer to the d level, followed by ionization by the
remaining fluence of the pulse. At higher fluences the re-
gion of small chirp is apparently not well described by
our model. The discrepancy can probably be explained
by the limited number of states included in the model,
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a quadratic phase change corresponds to a linear chirp
and hence induces oscillations of a constant period.
Presumably the irregular oscillations observed in a previ-
ous experiment using square pulses were signatures of the
same interference [8]. In the case of Gaussian pulses the
interpretation is, however, much simpler, and it is possi-
ble to attribute oscillations of a certain period to an en-

closed area in the dressed-atom diagram, thus yielding
structural information about the ladder system.

I
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FIG. 7. A comparison of the three-photon ionization signal

by the IR pulse under the same conditions as in Fig. 5.

since at high intensities off-resonant contributions from,
for instance, the SP P«2 (in the fl }—+ f3 } transition) or
the 7s S,&2 (in the

f
2 }~ fe } transition) may become im-

portant. As it appears from the vertical scales of Figs. 6
and 7, only a small fraction of the atoms being
transferred to the upper state is actually ionized. This is
of course due to the small overlap between a bound atom-
ic state and the continuum. For a molecular ladder, how-
ever, it is much more probable to transfer a molecule
from a highly excited vibrational state to the dissociation
continuum.

The possibility of interfering routes is a quite general
property of a quantum ladder system. In the dressed-
atom picture it is easy to see that the number of enclosed
areas increases rapidly with the number of levels ¹
There are potentially 2 interfering routes. The im-
portance of the interfering routes depends, however, criti-
cally on the strength of the interaction between the cross-
ing levels. If the levels are only dipole coupled to nearby
neighbors (as is approximately the case for the molecular
ladder where the levels differ in vibrational quantum
number) then the indirect coupling through intermediate
levels drops rapidly when increasingly remote levels
cross. This reduces the possible number of interfering
routes. If we consider a quantum ladder having a mono-
tonic change in the level spacing (e.g., the vibrational
ladder of a molecule) and assume that a level only in-

teracts significantly with its nearest and next-nearest
neighbors, then the number of interferences is only X —2.
In the alternative picture of sequential versus direct non-
resonant population transfer (Sec. III), the different in-

terfering pathways correspond to different steps of the
ladder being direct (nonresonant) or sequential. The as-
sumption of only nearest- and next-nearest-neighbor in-
teraction corresponds to looking only at nonresonant
two-photon transitions, neglecting higher-order processes
that are not sequential.

It is important to notice that the interference
phenomenon is not limited to excitation with Gaussian
pulses. If the ladder system interacts with a chirped
pulse of arbitrary envelope, interference wiggles will still
be present. It is, however, only for a Gaussian pulse that

VII. CONCLUSION

We have investigated population transfer in a three-
level model system, identifying a general interference
mechanism, which gives oscillations in the population
transfer versus chirp, with the period of the oscillations
being related to structural properties of the ladder sys-
tem. The situation, where the final state of the ladder is in
the continuum, was examined by monitoring the direct
three-photon ionization of the system.
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APPENDIX:
RELATIVE COUPLING STRENGTH

TO CON HNUUM

The cross section for ionization by a linearly polarized
laser beam from state fy }of an atom to the el cont'inu-

um leaving an ion in state fy' }can be calculated as

where the constant E converts the square of the dipole
moment to a cross section and depends on the applied
normalization of the wave functions involved [with con-
tinuurn wave functions normalized to energy,
K =4m /(3A'c) ] and gr is the degeneracy of the state fy }.
Important in this context is the fact that under the as-
sumption of I.S coupling, the matrix element can be
decomposed into an angular part and a reduced matrix
element. Moreover, if we are dealing with one electron
outside a closed shell, calculations are simplified further.
For an atom interacting only with linearly polarized
light, the value of the m quantum number is conserved.
In our case, since the ground state is an s state, we thus
have m =0 at all times. Starting out with the (multiplet
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averaged) cross sections for ionization of the d state to
the p and f continua, the square of the corresponding re-
duced matrix elements of the dipole operator (i.e., the
line strengths} are easily calculated, since in this case the
Wigner-Eckart theorem yields

o(yl, sl')=Kl&ylm =Ole, .DI sl'm =0&l

1 l I'
=it

() () () l&yillDII«'&I', (A2)

where we leave out I y &, since the ion is simply left in its
closed-shell ground state. In order to obtain the reduced
matrix elements for each of the two fine-structure com-
ponents, we make use of the coupling coeScients and the
fact that the dipole matrix element is independent of spin.
Then [16]

& ysij I ID II
I~'I'J' &

' 1/2
(2j+1)(2j'+1}

(2s+1) J' l' 1

TABLE II. Relative couplings of upper levels to continuum,

Ptt js

J=p
J=g
J=p
J=2

n=3
—&5/12'
—I /(2v 30)pr
&7/15pf
0

n=4

—3/(2~5)pr
1/(3v 70)p/
&10/21pf

&ysljm =+—,'Ie, Dl ss'l'j'm =+—,
'

&

j l j
p 1 (} y l & y»j II& Iles'I'j' & (A4)

It is convenient to use the couplings related to the
multiplet-averaged cross sections of ionization of
Iy &

= I5d, m =0&, so by fixing the phase of these cou-
plings arbitrarily to zero, we let

l s=V'I &5d, 1=2,m =Ole. Dls, l'=I, m =0&I',

lsf=V'l&5d, l =2, m =(}le, Dls l =3 trt =0&l
(A3)

satisfying
where we have used the Racah 6j symbol. Using this for-
mula, the reduced matrix element corresponding to each
of the six couplings [Fig. 5(b)] can be calculated. The rel-
ative couplings to the continuum can now be obtained by
again using the Wigner-Eckart theorem, but now for the
fine-structure components (using m =2—,

' ):

o, =EIp, I',
+Ilsf I

(A6)

in which case the coupling p„j.as defined in Sec. V are as
listed in Table II.
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