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Physical realization of an environment with squeezed quantum fluctuations
via quantum-nondemolition-mediated feedback
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We show how a squeezed environment can be obtained by means of a suitable feedback of the output
signal corresponding to a quantum-nondemolition (QND} measurement of an observable. As an example
we show how the variance of a field quadrature of a cavity mode subject to QND-mediated feedback can
be squeezed below the standard quantum limit and that this actually means that applying feedback is
equivalent to coupling the mode to a squeezed environment.

PACS number(s): 42.50.Dv, 03.65.Bz

I. INTRODUCTION

The influence of dissipation on macroscopic coherence
has been discussed by several authors during the past de-
cade after the pioneering work of Caldeira and Leggett
[1]. We will only consider the quantum-optical domain
[2,3]. According to this formulation, the global system is
usually assumed to consist of a subsystem coupled to a
bath. The subsystem is then referred to as an open quan-
tum system, which dissipates its energy into the bath or
environment. The open system is then described by a re-
duced density operator p, which evolves according to a
master equation, obtained by contracting (or tracing
over) the environment variables. The contraction of envi-
ronment variables leads to the nonunitary evolution sub-
system. Moreover, which subsystem observable is mea-
sured is determined by the coupling between the environ-
ment and the subsystem. The destruction of quantum-
mechanical interference phenomena is usually related to
dissipation consequences induced by the measurement
apparatus. Zurek [4] showed how the large number of
degrees of freedom of a measurement apparatus could be
included in a quantum-mechanical formulation. Finally,
following Zurek, Walls, Collett, and Milburn [5] intro-
duced a model of a quantum limited measurement. They
considered the interaction of one subsystem observable
with a meter and the coupling between the meter and the
environment. They showed that the off-diagonal ele-
ments of the meter state, as a consequence of nonunitary
dissipative evolution, rapidly decay, determining a pre-
ferred or pointer basis. Kennedy and Walls [6] suggested
using a squeezed environment to model a measurement
apparatus able to preserve the interference fringes of a
macroscopic superposition, confirming previous predic-
tions based on a heuristic model [7]. They also observed
that, in the optical regime, squeezing the environmental
degrees of freedom enhances the diagonalization in the
pointer basis. To have a squeezed environment, means
considering a bath with nonstandard quantum fluctua-
tions.

II. THE HAMILTONIAN MODEL

Let us consider as a particular example an electromag-
netic field mode of frequency co within a resonant ring

(I't(r)I (r') ) =yN5(r r'), —

(I (r}I't(r'}}=y(N+1)5(r —r'),
(I'(r)I'(r') }=yMe ""'5(r—r'),
(r'(r)r'(r ) & =yM'e""'5(r —r'),

(2a)

(2b)

(2c)

(2d)

where y is the cavity linewidth and M= ~M ~e'& is the pa-
rameter characterizing the nonstandard quantum fluctua-
tion of the squeezed bath. The Heisenberg uncertainty
relation imposes the constraint ~M~ ~N(N+1). The
effect of these squeezed fluctuations can be seen by mak-
ing a contraction over the bath degrees of freedom and
deriving the Markovian master equation for the density
operator of the Seld mode [8]. In the interaction picture
this is given by

p= (N+1)(2apa —a ap —pa a)
2

++N(2a pa aa p paa )— —
2

—~M(2a pa —a a p —pa at)
2

M'(2apa —aap —paa ) .
2

(3)

The peculiar aspect of a squeezed bath is the presence
of the last two phase-sensitive terms in Eq. (3}; they can
have important effects on some properties of the cavity
mode. For example, in the stationary state, the variance
of a quadrature of the mode a can be squeezed below the
standard quantum limit, when the parameter M is such
that N(~M~ ~&N(N+1). Moreover, when the cavity
mode is in a macroscopic superposition of two coherent

cavity. The Hamiltonian of the system coupled to an
external radiation bath is

&=leva a+Pi( al'+«)+Hb„~ (1)

where a, a~ are the boson annihilation and creation
operators for the field mode, Hb„z is the bath Hamiltoni-
an, and I, I ~ are bath operators. A squeezed environ-
ment is that characterized by the following correlation
functions [8]:
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Feedback means applying to a system part of an output
signal obtained form a continuous measurement of one of
its observables. Here we shall essentially follow the spirit
of the Wiseman and Milburn approach to the continuous
measurement problem [10] and to the description of opti-
cal feedback [11,12]. Anyway, we shall elaborate and
slightly generalize their arguments.

These authors have developed a theory of optical feed-
back mediated by homodyne detection; an important re-
sult of their analysis is that homodyne-mediated feedback
or any other feedback scheme implying an extracauity
measurements (i.e., a measurement that does not change
the master equation) cannot produce nonclassical light
unless the cavity dynamics can do so without feedback
[12]. On the other hand, a cavity mode in a squeezed
bath can generally show squeezing of a Geld quadrature,
and therefore it is clear that if one wants to obtain a
squeezed environment, and all its peculiar properties, one
does not have to use any feedback relying on these "ex-
traeavity" measurements. A viable way to obtain a
squeezed bath through feedback is using a quantum-
nondemolition (QND) scheme for the continuous mea-
surement step of the feedback loop (this is in fact an "in-
tracavity measurement" in the VA'seman and Milburn
scheme, and is not subject to their "no-go" theorems
[12]).

Let us consider a radiation mode and a generic QND
measurement of one of its observables C; this is described
by the coupling with a pseudoclassical meter via an in-
teraction of the form

+int ~+ Pmeter

where g is the coupling constant and P „„is the conju-
gate momentum of a macroscopic "pointer observable"
of the meter. It is often assumed that the meter momen-
tum is strongly damped and therefore characterized by a
very short relaxation time; in this case, one can perform
an adiabatic elimination of the meter and obtain the fol-
lowing master equation for the mode of interest alone:

p =Xp gD [C, [C,p]],— (5)

where L is the unperturbed Liouvillian of the mode and

D= dt P „„tP„„0
0

= I d«, ~...,(0}~...,(r}&. (6)

Equation (5) is the equation of motion for the density ma-
trix describing the unconditioned state of the system of
interest. In the presence of the continuous QND mea-

states that ean be created in a Kerr medium, while they
are almost immediately destroyed by a standard bath [9),
they may be preserved for a signi6cant time if the two
last terms in Eq. (3) are present [6]. Despite these impor-
tant properties, it is not yet clear at all how it could be
possible to reproduce a squeezed environment in practice.
In this paper we show that a physical realization of a
squeezed environment can be obtained by applying to the
cavity mode an appropriate feedback loop.

III. FEEDBACK MECHANISM

surement process of Eq. (4), one can also consider the
state that is a condition of the result of the measurement,
which is described by the conditioned density matrix p, .
The outcome of a generic quantum measurement process
is a stochastic variable and, therefore, the time evolution
of the conditioned density matrix is generally driven by a
stochastic di6'erential equation. In the particular case of
a continuous position QND measurement, it has been
shown in Ref. [5] that the "pointer observable" Q „,„of
the meter (which is the coordinate conjugated to P „„)
can be described as a Gaussian continuous stochastic pro-
cess and that p, is driven by an Ito stochastic nonlinear
equation. If we apply the results of Ref. [5] to our gener-
ic continuous QND measurement of the observable C, we

get that the pointer observable Q „„evolves according
to the stochastic equation

Q „„=Ay (C),(r)+ g(t}
2y 2D

and that the Ito stochastic equation for the conditioned
density matrix is

p, =&p, X'D[C,—[C,p, l]
+g&2D g(t)(Cp, +p, C —2( C ),p, ), (8)

where g(t} is a Gaussian c-number white noise with
(g(r)g(t')) =5(t r') an—d ( . ), represents the trace
with respect to the conditioned density matrix p, . For
example, Q „„can represent the photocurrent obtained
from the QND measurement of a field quadrature, as in
the model proposed in Ref. [13]. The equation of motion
for the unconditioned density matrix p is obtained from
Eq. (8) by simply averaging over the results of measure-
ments, i.e., over the distribution of the white noise g(t).

Equations (7) and (8) are the two main ingredients
needed to derive a theory of feedback mediated by QND
measurement. In fact, applying feedback to a system
means taking part of the output signal Q „„associated
to the measured observable C and feeding it back to the
system. Following the suggestions of Wiseman and Mil-
burn, this means adding the following term, linear in

Q „„,to the equation of motion for p, (t) [11,12]:

[p, ( &) ]f,=Q „„(& rd )Wp, ( &), —

where 7d is the time delay in the feedback loop and A is a
superoperator describing the way in which the feedback
signal acts on the system of interest, and it usually has
[12] the Hamiltonian form %'p = (i /fi) [ A,p]. Th—e
presence of delay makes the evolution of the conditioned
state a non-Markovian process; this prevents the descrip-
tion of the dynamics of a system under the influence of a
QND-measurement-mediated feedback in terms of a sim-

ple master equation. Despite this, Wiseman and Milburn

[12], by showing that the feedback term (9) has to be in-

terpreted in the Stratonvich sense, transforming the re-

sulting equation for p, in the Ito form, averaging over the
white noise, and 6nally considering the limit of time de-

lay ~d much shorter than the characteristic time of the
system, i.e., y ', have been able to show that a linear
Markovian master equation for the unconditioned densi-
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ty matrix p of radiation mode subject to feedback can be
generally obtained. By applying their arguments to our
generic QND feedback, we get

p=&p —X D[C, [C,p]]+ R(Cp+pC)+ A'p .
2

p =Xip+X2p+Xip,

where

1+ +
2D G2

2y 32Dy
(2apa —a ap —pa a )

(14}

(10)
This master equation describes the time evolution of a ra-
diation mode, with unperturbed Liouvillian X, when one
of its observables C, is continuously monitored via a
QND measurement and part of the signal output ob-
tained from this measurement is sent back in a feedback
loop. The second term in Eq. (10) describes the efFect of
the QND measurement, the third term is the feedback
term itself, and the fourth term is a diffusionlike term,
inevitably induced by the noise introduced in the mea-
surement step of the feedback loop. An analogous equa-
tion describing QND-mediated feedback has been already
derived by Wiseman and Milburn in Ref. [12]. They have
considered a QND measurement of a field quadrature
performed via a bilinear coupling with the quadrature of
another strongly damped mode supported by the cavity,
playing the role of the pseudoclassical meter. In our
opinion the QND-mediated feedback scheme of Eq. (10)
is more general and it can be applied to a large class of
QND measurements, as, for example, the one considered
in Ref. [14].

IV. SQUEEZED ENVIRONMENT

Let us now apply the general equation (10) to show our
central argument: a squeezed environment acting on a
system of interest can be efFectively reproduced by an ap-
propriately chosen QND-mediated feedback mechanism.
We shall show this with a simple example: a QND mea-
surement of the quadrature Xof an electromagnetic mode
of frequency m in a cavity with linewidth y. We use the
interaction picture, so that, neglecting the mean number
of thermal photons, which is negligibly small at optical
frequencies, one has

and

Xp= (2apa —asap —pa a)
2

C~X=
2i (a+a t) . (12)

The output signal Q „„obtained from the continuous
monitoring of the quadrature X is then fed back to the
cavity involving another phase-dependent quadrature
operator X&, i.e.,

Wp= — [Xe,p]= [ae' +a e ',p], (13)

where G is the gain or "eKciency" of the feedback loop
and 8 is controlled by the experimenter. Equation (13)
describes a feedback mechanism which implies adding to
the Hamiltonian a driving term of the form
IIfb ( t )=GQ «„{t )Xe, where the output signal Q «„(t )
plays the role of the driving force and it can be seen as
feedback current. If we insert Eqs. (11)—(13) in the gen-
eral equation (10), we obtain the following master equa-
tion for the cavity mode, subject to QND-mediated feed-
back:

X'D + (2a pa —aa tp —paa t),

2D G2+ e '
(

2 2y 32Dy

(15a)

+ + e ' (2apa —aap —paa },

ivG [aae' +a a e ',p]8

e' (apa —a pa+aa p
—pa a)iyG;g

8

(15b)

e ' {a pa —apa +asap —paa } . (15c)
iyG —;g

8

The most interesting aspect of this master equation is
that it is very similar to Eq. (3},describing a cavity mode
in a squeezed environment; in fact, the first two terms
[(15a) and (15b)] exactly reproduce the dissipative terms
associated with a bath with squeezed quantum fluctua-
tions. This is due to the fact that the term associated
with the QND measurement and the feedback-induced
di{Fusionlike term in Eq. (10) produce nonstandard quan-
turn fluctuations, which add to the usual vacuum fluctua-
tions, thereby simulating a squeezed environment. Any-
way, the equivalence is not complete because of the pres-
ence of the extra term X& of Eq. (15c), which also results
from the presence of feedback. This means that the dy-
namics of the electromagnetic mode subject to the
QND-mediated feedback of Eq. (14}is generally diff'erent
from that induced by the presence of a squeezed bath, as
in Eq. (3); in spite of this, we are now able to show that at
least stationary properties of the cavity mode with QND
feedback can be interpreted in terms of a radiation mode
interacting with a squeezed vacuum.

Let us consider the equation of motion for (X ) and
(X ) generated by the master equation (14):

(16a)

XG . G2
(X2)=—y 1+ sin8 (X ) +++ sin & .

y 4 32D

(16b)

XG ()
y

(17}

Both (X) and (X ) asymptotically reach a stationary
value, for any value of the phase 0, only when the condi-
tion



4256 P. TOMBESI AND D. VITALI

is satisf1ed. This stability condition actually means that
the energy introduced by the feedback loop cannot over-
come a critical value if instabilities have to be avoided.
In the stationary state, the variance of the continuously
monitored quadrature (~ ) has the following asymp-
totic value:

Gz
1+ sin O

( 2) 1 8yD

1+ sinO
y

(18)

p =Z exp —na a ——a a — aa
m t y

m*
st 2 2

(20)

(with Z a normalization constant), and it is possible to
prove that this "nondiagonal" density matrix is also the
exact solution for the stationary state of the cavity mode

It is easy to see from this equation that this variance can
be squeezed below the standard quantum limit(~ ) (—,', if a suitable choice of the feedback parame-
ters 6 and His made:

0& -- sinO&1 .G

SyD

It is worth noting that the extra term X~ in Eq. (14) is

actually necessary to obtain quadrature squeezing. In
fact, if this term were absent, one would have a phase-
sensitive bath, as that of Eq. (3), but which is unable to
produce squeezing, because the parameters G, D,y, O are
such that the coefficients M and E satisfy ~M ~

~ E.
Therefore, the above QND feedback is necessary to ob-
tain quadrature squeezing; without feedback, one would
simply get Eq. (5), which is formally equivalent to the
master equation of the squeezed bath, Eq. (3), but with
%=M, and therefore unable to produce squeezing.

Equation (18) shows that a field quadrature can be arbi-
trarily squeezed by performing a QND measurement on
it and by feeding back part of the signal output obtained
from this measurement with an appropriate feedback
loop. The possibility of quadrature squeezing via QND
feedback has been already shown by Wiseman and Mil-
burn in Ref. [12],where they consider a feedback scheme
very similar to that proposed above; anyway, this
feedback-induced squeezing has a much deeper meaning
in our opinion. In fact, the stationary squeezed state
asymptotically reached by the cavity mode can be con-
sidered as ultimately due to the fact that the mode is sur-
rounded by a squeezed environment, as in Eq. (3). There-
fore, we can say that the QND-mediated feedback de-
scribed by Eq. (10) actually reproduces a squeezed envi-
ronment. To be more precise, even though the dynamical
properties of the mode are not exactly the same because
of the diff'erences between master equations (3) and (14),
its steady-state properties, when it is inside a cavity sub-
ject to the QND feedback, are actually the same as it
would have if it were interacting with a bath with
squeezed quantum fluctuations. In fact, the stationary
solution of master equation (3) is the generalized Gauss-
ian density matrix

subject to the QND feedback described by Eqs. (14) and
(15), provided that m and n are given by

v+ —,
'

V'(v+ -,' )'—
I p I'

Xln '
[Q(v+ —,

' )'—
I
pl'+ —,']'

v( v+ 1)—I p I'

m —— ",n,V+
2

where

G2

32D y

XG
4ysinO y D

1+KG .
O

2y

y

gGcos O 1

4y sin8 yG
slnO

2y

G 2

2;6) 32Dy
p — e

XG
4y s1nO

XG1+ sinO

X'D
2y

;6 gG cosO 1

4y sinO yG sin0
2y

(22b)

V. CONCLUSIONS

The main result of this paper is not only the possibility
of producing squeezed light with an appropriate feedback
loop, there are in fact practical sources of squeezed light
more reliable than the one proposed here, even if we have
to remark that QND measurements similar to those
adopted here are now beginning to be performed [15].
What we want to stress in this paper is that a suitable
feedback loop can be interpreted as a way of simulating
the presence of a bath with squeezed quantum Auctua-
tions. In our opinion, this fact has very interesting conse-
quences because of the physical properties of a squeezed

This equivalence between the application of a QND-
mediated feedback loop and a squeezed environment is
based on an indirect argument because we have only con-
sidered cavity mode properties. An exhaustive proof
would have shown that feedback actually means modify-
ing not only the cavity mode properties but also those of
the external environment (consisting of both the vacuum
and the whole measuring apparatus), in such a way as to
get squeezed quantum ffuctuations as those of Eqs. (2).
Anyway, this is impossible to achieve within the Wise-
man and Milburn approach, which from the beginning
focuses only on the effects of feedback on the system of
interest.
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bath. For example, we shall show in a forthcoming paper
[16] that it is possible to realize a QND-mediated feed-
back reproducing a squeezed environment, which is able
to preserve for a certain time the interference pattern as-
sociated with linear superpositions of macroscopically
distinguishable states, as those generated in Kerr media.

ACKNOWLEDGMENTS

This work has been partially supported by the Europe-
an Economic Community under the Uman Capital and
Mobility Programme.

[1]A. Caldeira and A. J. Leggett, Physica A 121, 587 (1983).
[2] D. F. Walls and G. J. Milburn, Phys. Rev. A 31, 2403

(1985).
[3] C. M. Savage and D. F. Walls, Phys. Rev. A 32, 2316

(1985).
[4] W. H. Zurek, Phys. Rev. D 24, 1516 (1981); 26, 1862

(1982); Phys. Today 44 (10), 36 (1991).
[5] D. F. Walls, M. J. Collett, and G. J. Milburn, Phys. Rev.

D 32, 3208 (1985).
[6] T. A. B. Kennedy and D. F. Walls, Phys. Rev. A 37, 152

(1988).
[7] A. Mecozzi and P. Tombesi, Phys. Lett. A 121, 101 (1987);

Phys. Rev. Lett. 58, 1055 (1987).
[8] C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin,

1991).

[9]B.Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).
[10]M. J. Gagen, H. M. Wiseman, and G. J. Milburn, Phys.

Rev. A 48, 132 (1993).
[11]H. M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70,

548 (1993).
[12] H. M. Wiseman and G. J. Milburn, Phys. Rev. A 49, 1350

(1994).
[13]H. M. Wiseman and G. J. Milburn, Phys. Rev. A 47, 642

(1993).
[14] K. Jacobs, P. Tombesi, M. J. Collett, and D. F. Walls,

Phys. Rev. A 49, 1961 (1994).
[15]P. Grangier, J.-Ph. Poizat, P. Grelu, F. Castelli, L. A. Lu-

giato, and A. Sinatra, J. Mod. Opt. (to be published).
[16]P. Tombesi and D. Vitali (unpublished).


