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Photon noise reduction by reflection from a movable mirror
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We study the statistics of photons reflected by a harmonically suspended mirror. The noise
modification can be interpreted in terms of temporal redistribution of the photon flux. Due to radiation
pressure, the mirror is displaced and a variable delay is applied to the photons. The statistical properties
of the reflected light are studied by Monte Carlo simulation with a corpuscular photon model and by an-

alytic derivation. In the latter derivation, the efFect of thermal fluctuations is included. The results indi-

cate that a movable mirror appears as a passive quantum-noise eater at frequencies about the mechanical
eigenfrequency of the mirror suspension.

PACS number(s): 42.50.Lc, 42.50.Vk, 03.65.Bz

I. INTRODUCTION

Squeezed states of light are usually generated by using
optical nonlinear media [1,2]. They can also be obtained
by optomechanical coupling between light and mirrors.
Mirrors may indeed move in response to radiation pres-
sure exerted by the light [3]. This leads to an intensity-
dependent phase shift for the light field equivalent to an
optical Kerr effect, with a dynamic response depending
on the mechanical susceptibility of the mirror. This cou-
pling has been studied in detail in connection with the
problem of quantum limits in interferometric measure-
ments [4,5].

It has recently been proposed to use this optomechani-
cal coupling in systems composed of an empty cavity
with a movable mirror to generate sub-Poissonian light
[6] or to realize QND measurements [7]. These systems
are similar to bistable devices composed of a cavity con-
taining an optical Kerr medium, which have been exten-
sively considered for squeezing generation [8—10] or
QND measurements [11,12]. The statistical properties of
these systems can be understood in a linear analysis of the
field and position fluctuations. Radiation pressure cou-
ples the phase and intensity fluctuations of the intracavity
field. The cavity couples back the intracavity phase fluc-
tuations to intensity fluctuations and thus plays an im-
portant role to generate sub-Poissonian light at the cavity
output.

In this paper, we propose a regulation mechanism of
the photon flux which appears conceptually simpler. It
consists in a single movable mirror irradiated by a mono-
chromatic laser beam (see Fig. 1). If the mirror is not al-
lowed to move, the intensity fluctuations of the reflected
beam are exactly the same as those of the incident beam.
For a mirror harmonically suspended, the radiation pres-
sure produces a mirror displacement and therefore a
modification of the optical path depending on the in-
cident intensity. This leads to a temporal redistribution
of the photons between the incident and reflected beams,
which may regulate the photon flux. In this case, the in-
tensity of the reflected beam is less noisy than the in-

cident one and the movable mirror appears as a passive
photon-noise eater. In this system the reflected intensity
is directly coupled to the mirror position and to the in-
cident intensity (see Fig. 1). The phase fluctuations are
not coupled back to the intensity fluctuations. The
intensity-noise reduction is thus based on a different
physical mechanism than the Kerr effect.

As a consequence the quantum-noise reduction can be
simply interpreted as a photon flux regulation. In accor-
dance with this interpretation, we will use a corpuscular
model in which the photon flux is regarded as a point
process [13—15]. A photon is treated as a discrete event
localized in time and the light intensity is defined as the
rate of such events. This model has been used to demon-
strate the possibility of photon-noise reduction by a con-
trol mechanism in which the photon flux is regulated
with a variable delay line [16]. The corpuscular approach
is reserved, of course, for systems in which only the inten-
sity of the light field plays a role, that is, if the phase fluc-
tuations are not coupled back to the intensity fluctua-
tions. This model is readily amenable to Monte Carlo
simulation. The results of these numerical simulations
are presented in Sec. II, where the basic statistical prop-
erties of the system are delineated.

Section III is devoted to an analytical derivation of the
statistical properties of this system. We make use of a
semiclassical analysis to determine an input-output trans-
formation of the intensities. A linearization procedure
leads to simple analytical expressions for the noise reduc-

ovable
mirror

FIG. 1. Optomechanical system studied in this paper: a
monochromatic laser beam is reflected on a harmonically
suspended mirror.
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tion of the reflected intensity. This treatment is valid for
high photon fluxes, whereas the numerical simulation is
limited to low photon fluxes. The semiclassical treatment
can also be used to determine other properties of the
reflected beam, such as the phase noise, which has to be
increased when the intensity noise is reduced. We use
this analysis to include the thermal fluctuations of the
mirror (Sec. IV).

II. MONTE CARLO SIMULATION

reflection time t~ k on the mirror is related to the posi-
tion of the mirror by

The evolution of the system after a reflection is deduced
from the conservation of energy and momentum. We
find that both the speed x(t) of the mirror and the pho-
ton energy Amp are modified by quantities Ax and A'hm,

respectively, according to the equations (valid at the first
order in x/c)

%e use a corpuscular model in which a light beam is
considered as a stream of photons. The instantaneous in-
tensity is given by

X(tM, k ) AX(tM, k ) X(tM, k )
+r

6)p c c

(6a)

(6b)

where tk is the event time of the photon labeled k. Inten-
sity is defined as a photon flux (number of photons per
second) and the mean intensity is equal to the inverse of
the average delay Fz between successive photons. The in-

tensity power spectrum St[Q] normalized to the shot
noise is related to the Fourier transform of the intensity
I[Q] by the equation

2mI5(Q+ Q')S [tQ] = (I[Q],I[Q']), (2)

where the mean intensity I and the variance
(I[Q],I[Q']) are obtained by a statistical average over
all possible realizations of photon streams.

The intensity statistics for the reflected beam is evalu-
ated through a Monte Carlo simulation of the path fol-
lowed by each photon from its generation to its detection.
To begin, we produce the generation times t„ in order to
mimic the intensity I;„ofthe incident beam. Assuming
that the photon statistics are Foissonian, the delays ~~
between successive photons are independent stochastic
variables characterized by an exponential probability dis-
tribution. Photon generation times are thus obtained
from the recurrence relation

tk ta —&+&a

~p = —Ft, ln(1 —u ),
(3a)

x(t)+yitx(t)+Q~x(t) =0, (4)

where yM is the damping rate of the mirror suspension
and Q~ its mechanical eigenfrequency. We have neglect-
ed all fluctuating force, in particular the thermal fluctua-
tions associated with the damping. Those additional
noise sources will be considered in Sec. IV.

For a photon arriving at time tk at position x =0, the

where u is a uniform deviate distributed between 0 and 1.
To determine the modification of the photon statistics

due to reflection on the mirror, we treat the reflection of
every photon as a collision between the photon (energy
irtt00 and momentum ficoolc) and the mirror [position
x (t), speed x(t), and mass M]. In the time interval be-
tween two photon reflections, the mirror obeys the free
equation of motion

where c„ is the ratio between the energies of the photon
and the mirror at rest

Equation (6a) expresses the recoil effect of the mirror as-
sociated with momentum conservation, taking into ac-
count the photon frequency shift b,co. Equation (6b) is
nothing but the Doppler effect experienced by the photon
on the moving mirror, taking into account the variation
hx of the mirror speed.

For each reflected photon, the event time tk, defined as
the time when the reflected photon is at position x =0, is
obtained by addition of a variable delay proportional to
the position of the mirror:

tk =tk+2x(tMk)/c . ,

In the simulation, the mirror motion is computed be-
tween two photon reflection times according to Eq. (4)
and the mirror speed is instantaneously modified at the
reflection time according to Eq. (6a). The intensity I,„, of
the reflected beam is given by the delayed event times tk

[Eq. (8)] and the output intensity-noise spectrum is com-
puted by applying the standard technique of periodo-
grams [17].

Figure 2 shows the simulation results for the time evo-
lution of the photon streams and of the mirror position
and speed. Time is divided in small intervals (equal to
rt, /5 ) and the number of incident photons in every time
interval is counted and plotted in curve (a), which repro-
duces the characteristic fluctuations of Poissonian statis-
tics. Curves (b) and (c) represent, respectively, the posi-
tion and speed of the mirror, for a mirror suspension
without damping (y~ =0). The speed evolution presents
small irregularities at each reflection time, corresponding
to the momentum exchange between mirror and photon.
It appears clearly in these curves that the fluctuations of
the radiation pressure induce fluctuations of the mirror
motion. It is also visible that the mirror motion is
damped, although there is no suspension damping. This
damping is actually connected to radiation pressure fluc-
tuations through fluctuation-dissipation relations. It can
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FIG. 2. Simulated evolution of the incident photon flux (a),
mirror position (b), mirror speed (c), and reflected photon flux
(d). Time t is normalized to the mean delay 7p between succes-
sive photons.

be shown that the mirror is submitted to a viscous force
with a damping constant y„s equal to [18],

~rad 4~rlin

It has to be emphasized that this dissipation results in the
simulation as the cumulative effect of successive photon
collisions treated as discrete events.

The parameters are selected so that the quality factor
Q of the mirror is small:

} d&p 0 QM7p — Q =0M/1 ad=0. 5 ~ (10)

As a consequence, the mirror position [curve (b) in Fig.
2] is smoothed on a time interval of the order of 20rp and
the delay added to every photon [Eq. (8)] does not vary
appreciably from one photon to the next one. Curve (d)
shows the photon flux for the reflected beam. Even
though the event times are changed on reflection, the
photon flux after reflection does not appear more regular
on this time scale than the incident one [curve (a }].

The small delays added to the event times have, howev-
er, important consequences for the noise spectrum. Fig-
ure 3 presents the intensity noise spectra deduced from

the event times obtained in the simulation (Fourier trans-
form of sample data of 10 photons). The power spec-
trum of the incident beam [curve (a}]is at the shot-noise
level, as expected for Poissonian statistics. The power
spectra of the reflected beam [curves (b)—(d)] are ob-
tained for difFerent ratios y„d/y, where y is the total
damping rate

YM+~rad '

Curve (d }exhibits remarkable noise reduction at frequen-
cies about the mechanical eigenfrequency Q~ of the mir-
ror. The shape of the noise spectrum essentially depends
on two parameters. The first one is the ratio between the
two damping constants y„d and yM, which determines
the amplitude of noise reduction. Figure 4 shows the op-
timum noise reduction, that is, the noise at frequency
Air, as a function of the ratio y„s/y. The intensity noise
after reflection is more reduced as y„d becomes larger
than year (y„d/y~l). Best results are obtained when
the mirror is only damped by the radiation pressure
(r,,»~M)

The second important parameter is the quality factor Q
related to the total damping constant y by

(12)

This parameter determines the width of noise reduction.
For large Q, the mirror evolution frequencies are mainly
limited to a small range about the eigenfrequency QM.
As shown in Fig. 5, the noise reduction in the reflected
beam is limited to those frequencies.

We have also computed the energy flux (or field power)
of the reflected beam defined as

E(r)=g A(roc+bra)5(t tk), —

where hco and tk are, respectively, the frequency shift
[Eq. (6b)] and the event time [Eq. (8)] of the reflected pho-
ton k. Figure 6 presents the simulated spectra for the en-
ergy flux of the incident beam [curve (a)] and of the
reflected beam, for different values of the ratio y„d/y
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FIG. 3. Simulated intensity spectra for the incident (a) and
reflected beams, for different damping rate y d due to radiation
pressure. Curves (b), (c), and (d) correspond to y„d/y = 4, 2,
and 1, respectively (y total damping rate). Frequencies are nor-
malized to the mechanical eigenfrequency Q~. Smooth curves
represent analytical results.

0
0

Y rad

FIG. 4. Optimum noise (noise at the mechanical eigenfre-
quency Q~) as a function of the ratio between the damping y„d
due to radiation pressure and the total damping y, for the inten-
sity [curve (a)] aud for the energy flux [curve (b)]. Points and
curves are simulated and analytical results, respectively.
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III. ANALYTIC DERIVATION

In this section, we derive analytic expressions for the
noise spectra of the reflected intensity and energy flux.
%e assume that the mirror is not submitted to fluctua-
tions, except those associated with radiation pressure
(this assumption will be given up in Sec. IV). Its evolu-
tion equation is then given by

0
0

FIG. 5. Effect of the quality factor Q on the intensity spec-
trum of the reflected beam (for y~ =0). Curves (a), (b), and (c)
are simulated results for Q= —', —,', and 1, respectively. Fre-
quencies are normalized to the mechanical eigenfrequency QM.
Smooth curves represent analytical results.

x(t)+y~x(t)+0~x(t)= F„d(t),M

&'do 1 —u(t)I'„d(t)=2 I,„[t—x(t) jc]
c 1+u t)

(15a)

where y~ is the damping rate of the mirror suspension,
A~ its mechanical eigenfrequency, and F„d the radiation
pressure force. This force is proportional to the momen-
turn exchange during the reflection of a single photon and
to the number of photons reflected per second:

[curves (b)-(d)]. It appears that the energy fluctuations
can also be reduced for frequencies about the mechanical
eigenfrequency QM. The dependence of the reduction on
the ratio y«d/y is, however, different from the one ob-
tained for the photon flux. In particular, there is no noise
reduction when y„d is much larger than y~, that is,
when the photon noise reduction is optimized (see Fig. 4).
The Doppler shift bc0 experienced by every photon exact-
ly compensates in this case the modification of the pho-
ton flux. The optimum energy-noise reduction is reached
when the two damping constants are equal, that is, for

yrad yM [curve (c) in Fig. 6].
The computation time evolves as the number of pho-

tons and it is not possible to indefinitely increase this
number. Although these numerical simulations give a
simple interpretation of noise reduction in terms of tem-
poral redistribution of photons, they are limited to small
photon fluxes. In the case of high photon fluxes, the dy-
namic equations can be approximated to obtain compact
analytical expressions.

(

(a)
1
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FIG. 6. Simulated spectra for the energy fiux of the incident
(a) and reflected beams. Curves (b), (c), and (d) correspond to
y„d/y= 4, 2, and 1, respectively. Frequencies are normalized

to the mechanical eigenfrequency QM. Smooth curves represent
analytical results.

u(t)=x(t)lc .

The velocity dependence in this equation is a conse-
quence of the Doppler shift and of the modification of the
field amplitudes by reflection on a moving mirror [18].
The transformation of the intensities may be deduced
from the fact that the number of photons is preserved by
reflection. More precisely, the photon number is an adia-
batic invariant [18] and the instantaneous incident and
reflected intensities, normalized as numbers of photons
per second, are equal in the mirror's proper frame. Using
the Lorentz transformations from the proper frame to the
laboratory frame, one deduces that the instantaneous in-
tensity I,„,(t) of the reflected beam in the laboratory
frame, measured as a number of photons per second, is
related to the incident intensity I;„(t)by

I,„,[t+x (t)lc]= I,„[t x(t) lc] . —1 —u(t)
1+u t

This relation is closely connected to the transformation
of frequencies by Doppler effect on a moving mirror. We
note that this effect is usually ignored by standard quan-
tum optics approaches. If the optomechanical coupling
is, for example, described as a Kerr effect, u(t) is con-
sidered as negligible and the reflected intensity is found to
be equal to the incident one. Although u (t) is small [see
Eq. (15b)], the relation (16) indicates that there is a tem-
poral modification of the intensities. As we will see in the
following, u (t) can be of the same order as the relative in-
tensity fluctuations 6I;„/I,„, thus leading to a significant
modification of the reflected intensity fluctuations.

Equations (14)—(16) allow us to write an input-output
relation for the intensities that gives the reflected intensi-
ty as a function of the incident one. From these equa-
tions, it is possible to determine the statistical properties
of the reflected intensity, that is, the cumulants of I „, at
any order. Assuming that the incident beam is intense,
the intensity fluctuations 6I;„are small compared to the
mean intensity I;„and simple expressions can be obtained
by linearizing the dynamical equations about the mean
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5I,„(r)
x(t)+yx(t)+Q~x(t) =—y„d

I;„
(17)

where y is the total damping rate of the mirror including
the damping y„d due to radiation pressure [Eqs. (9) and
(ll)]. Note that the mirror position x(t) is now defined
relatively to the new equilibrium position, taking into ac-
count a constant term in the radiation force (cy„z/2)
proportional to the mean intensity.

From this equation of motion, the Fourier transform
U [Q] of the mirror speed is found to be proportional to
the incident intensity fluctuations

5I;„Q
U[Q]= — Y[Q]

2 y I;„
(18)

where Y[Q] is the mechanical admittance of the mirror
(normalized to 1 at resonance)

Y[Q]=
QM —0 —iyQ

(19)

At the first order in U and 5I;„/I;„,the input-output rela-
tion for the intensities [Eq. (16)] leads to

intensity. At the first order in v and 5I;„/I;„(assumed to
be small), the radiation force [Eq. (15a)] can be decom-
posed into two parts, a damping force proportional to
x(t) and a fiuctuating force. The evolution equation of
the mirror [Eq. (14)] can then be written

'2

E,„,[t+x (t)/c] = E;„[t—x (t)/c] .
1 —u(t)
1+v t

(24)

Comparing to the input-output relation for the intensities
at the first order in v [Eq. (20b)], it appears that the veloc-
ity dependence is doubled as a consequence of the
Doppler frequency shift

5E,„,[Q]=5E;„[Q] 4E;„U[Q—] . (25)

From Eq. (18},we obtain the normalized spectrum for the
energy fiux of the refiected beam (the incident beam is
monochromatic)

of the quality factor. The fraction in Eq. (23}determines
the amplitude of noise reduction. Starting from the
shot-noise level for y„~&&y~ (y„~/y =0), the noise of
the reflected beam is more reduced as y„d is increased

(y„d/y ~1; see Fig. 4). The noise is completely

suppressed at the mechanical eigenfrequency if the damp-
ing y„d due to the radiation pressure is much larger than
the damping y~ of the mirror suspension. We find the
same dependence of the noise reduction on the two pa-
rameters y„d/y and Q as the one obtained by the numer-
ical simulation.

We can also derive simple analytical expressions for
the energy flux. The energy flux of the reflected beam is
related to the incident energy flux and to the mirror
speed by the relation

Iout; Isn

5I,„,[Q]=5I;„[Q]—2I;„u [Q] .

(20a)

(20b)
SE"'[Q]= 1 —2 Y[Q] = 1—

y

4y..dy M iY[Q]f'.
y'

The mean reflected intensity is equal to the incident one
as a consequence of the fact that all photons are reflected
by the mirror. The intensity fluctuations are modified,
however, due to a temporal redistribution of the photons.
From Eqs. (18) and (20b), we obtain

r

5I,„,[Q]= 1 — Y[Q] 5I;„[Q] .
r

(21)

SI'"'[Q]= 1 — Y[Q]
y

(22)

Using the expression of the admittance function Y [Eq.
(19)],we eventually obtain

S;"'[Q]=1— "', "' (Y[Q]~'.y' (23}

The modification of the intensity noise appears as a
product of two terms. The function Y[Q] characterizes
the frequency response of the mirror. Noise modification
is significant only about the mechanical eigenfrequency
QM, with a relative bandwidth of the order of the inverse

The intensity fluctuations are completely suppressed if
(y„s/y) Y[Q]=1 (that is, at frequency QM, if y«z=y).
Froin Eqs. (2) and (21), the normalized noise spectruin of
the refiected intensity can be written as (the incident
beam is at the shot-noise level)

(26)

The shape of the noise spectrum is also given by the
admittance function Y[Q] [compare to Eq. (23)]. The
dependence on the ratio y«s/y is difFerent (Fig. 4) and
explains the results obtained in the numerical simula-
tions. There is no noise reduction when y„d is much
larger than yM, and the optimum noise reduction is
reached when the two damping constants are equal (per-
fect noise reduction at frequency Q~ for y„d/y =

—,'). It
appears that the energy fluctuations of the light may be
transferred to the mirror and dissipated in the presence
of the viscous force associated with the damping constant
yM'

The smooth curves in Figs. 3-6 represent the noise
spectra of the reflected intensity and energy flux for the
same parameters as in Monte Carlo simulations. The re-
sults are observed to be in excellent agreement. The
slight discrepancies may be attributed to nonlinear effects
associated with the fact that the simulations are not in
the high-intensity regime. Better agreement would be ob-
tained by computing the next-order term in the analytical
derivation. We note, however, that other sects may ap-
pear at this order, in particular those related to the quan-
tum fluctuations of the mirror and to the vacuum radia-
tion pressure [19]. These effects have been ignored in the
numerical simulation as well as in the analytical deriva-
tion.

The semiclassical model described in this section can
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be used to determine the phase fluctuations of the
reflected field. As the mirror motion is not coupled to the
phase of the incident field, the fluctuations added to the
phase by the mirror motion are not correlated with the
incident phase fluctuations (in the case considered in this
paper of a coherent input field) and the refiected phase
noise is always larger than the incident one.

IV. THERMAL FLUCTUATIONS

Up to now, we have considered that the mirror motion
is sensitive only to the intensity fluctuations. Other fluc-
tuations may be taken into account, in particular thermal
fiuctuations associated with mirror damping. Quantum
fluctuations of the mirror and vacuum radiation pressure
effects [19] can be disregarded since they are usually
negligible in comparison with thermal fiuctuations (the
condition kti T )&irin~ is fulfilled for usual temperatures).
Thermal fluctuations can be accounted for by adding a
fiuctuating force Fr(t) to the evolution equation [Eq.
(17)]. The power spectrum of this force is related to the
damping rate yM of the mirror suspension and to the
temperature T (ks is the Boltzmann constant)

sr[Q]=2MyMkti T (27)

Solving the evolution equation in the Fourier space, we
find that the mirror speed acquires additional fluctuations
proportional to FT,

1 y„q 5I;„Q
u[Q]= Y[Q] — + Fr[Q]

2 y I,.„Mcy (28)

As in Sec. III, we derive the output intensity fluctuations
at the first order by linearizing the input-output relation
for the intensities with respect to the fluctuations 5I;„
and Fr. From Eq. (20b) we obtain

5I,„,[Q]= 1 — Y[Q] 5I;„[Q]

2I;„
Y[Q]FT[Q] .

Mcy
(29)

(30)

From the expressions of Y and ST we eventually obtain

The first term is proportional to the incident intensity
fluctuations. It describes the direct reflection of those
fluctuations and the modification of the photon flux due
to the displacement of the mirror associated with radia-
tion pressure. This term does not depend on thermal
fiuctuations and has the same form as in Sec. III [Eq.
(21)]. The last term in Eq. (29) describes the modification
of the photon flux due to the thermal Brownian motion of
the mirror. Since the fluctuations 5I;„and Fz- are in-
dependent, the normalized noise spectrum of the reflected
beam is obtained from Eq. (2) as

4I;„s;"'[n]= 1 — "
Y[n] + . . .IY[n]l's, [n].

kg 7
+2 "', IY[n]l' '

y' f163p

Comparing to the equation obtained without thermal
fiuctuations [Eq. (23)], one finds that the shape of the
noise spectrum is not changed and is still determined by
the admittance function Y[Q]. The amplitude of noise
reduction is changed however, and the intensity noise is

always increased by thermal fiuetuations [the last term in

Eq. (31) is positive]. This correction is small in practice
since ktt T ean be made much smaller than %coo (coo is the
optical frequency). Furthermore, this correction disap-
pears when the squeezing is optimized, that is, when

y„d )&yM. The effect of quantum fluctuations can be es-
timated as a corrective term of the order of finit!ficoo,
which is even smaller in practice.

V. CONCLUSION

We have shown that the beam reflected by a harmoni-
cally suspended mirror exhibits sub-Poissonian photon
statistics. We have attributed the noise reduction to a
temporal redistribution of photons between the incident
and reflected beams. The movable mirror thus appears as
a passive photon-noise eater, based on an optomechanical
coupling between the field and the mirror.

The ei5ciency of this system strongly depends on the
relative values of the damping rate yM of the mirror sus-
pension and the damping y„d due to radiation pressure.
Since the existence of damping leads to the presence of
associated fluctuations, we have included thermal fluctua-
tions in the analytical derivation. These fluctuations have
a negligible efFect on the intensity-noise reduction as long
as ka T remains much smaller than the photon energy
'ANp.

The noise reduction is optimum when y„d is much
larger than yM. This condition seems diScult to achieve
in practice since the damping rate of the mirror suspen-
sion is generally much larger than the one due to radia-
tion pressure (yM ))y„d). We may note, however, that
the mirror has two distinct functions in this system.
First, the mirror position measures the intensity fluctua-
tions of the incident beam. Second, the mirror adds a
variable delay to every photon. This system can be con-
sidered as a passive correction mechanism [16] in which
both the measurement and the correction are realized by
a single mirror. More elaborate systems can be en-
visioned to improve the experimental feasibility. One can
split the two functions of the control mechanism by using
two different mirrors, one mirror measuring the incident
intensity fluctuations and providing a correction signal
that drives the position of a second mirror. The condi-
tion on the damping rates is then replaced by a condition
on the electronic or electromechanical gain of the correc-
tion signal. Another possible approach would consist in
using a high-finesse resonant cavity built with a second
mirror, thus exalting the noise reduction by the cavity
finesse [6]. This system is equivalent to a bistable device
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containing a Kerr medium and it can be described by a
Kerr model, in contrast with the system studied in this
paper for which a Kerr model does not appropriately de-
scribe the photon 6ux regulation.
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