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We analyze the Risken-Nummendal-Graham-Haken instability occurring in a homogeneously
broadened two-level unidirectional ring laser modeled by the Maxwell-Bloch equations. We investigate
the class-B limit of these equations and derive partial differential equations describing the evolution of
traveling waves. In particular, we obtain a degenerate Ginzburg-Landau equation with higher-order
nonlinearities. We then investigate this equation and determine periodic traveling wave solutions. We
discuss their stability in terms of the laser parameters and predict unusual properties for the long-time

behavior of the laser.

PACS number(s): 42.50.—p, 42.55.—f, 42.60.Mi

I. INTRODUCTION

We consider the case of a homogeneously broadened
two-level unidirectional ring laser. When the laser is
pumped to high inversion levels and when the cavity
mode spacing is sufficiently small, sideband modes be-
come excited and their nonlinear interaction results in
pulsations that travel around the ring cavity. This has
been called the Risken-Nummendal-Graham-Haken in-
stability after Risken and Nummendal [1,2] and Graham
and Haken [3], who simultaneously derived the condi-
tions for which the continuous-wave (cw) output becomes
unstable. The former also carried out a numerical inves-
tigation of the self-pulsing phenomena and discussed
transient effects.

Haken and Ohno [4,5] obtained an equation for the
critical bifurcating mode, and found a periodic solution
coexisting with the stable steady state. They determine a
bifurcation equation for the mode appearing at the Hopf
bifurcation but the complexity of the coefficients prevents
an analysis of the effects of the particular laser parame-
ters. Using a combination of analytical and numerical
techniques, Fu [6] has specifically analyzed the traveling
wave solution in the class-B limit. He obtains a bifurca-
tion equation and discusses conditions for a supercritical
or subcritical bifurcation, which are simpler than those
described by Haken and Ohno.

In a previous paper [7], we reexamined the Hopf bifur-
cation formulated by Fu [6]. Using singular perturbation
methods we derived the bifurcation equation and deter-
mined the direction of bifurcation analytically. We found
that the bifurcation is supercritical (subcritical) for all
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wave numbers greater than (less than) that characterizing
the minimum of the neutral stability curve. A higher-
order analysis was necessary to fully resolve a singularity,
known as a vertical bifurcation, that occurs at the
minimum of the neutral stability curve. We will briefly
review these results as a guide to the analysis that will be
presented here.

In this paper, we consider the limit of a very large cavi-
ty length. In this limit, the spectrum of bifurcating
modes becomes continuous. Thus, as the pump intensity
is raised beyond the second threshold, there is a band,
containing an infinite number of modes, that becomes un-
stable. This causes a modulation of the order parameter
and is commonly referred to as “sideband” instability.
We use the method of multiple scales to derive partial
differential equations (PDE’s) describing the space-time
evolution of the order parameter that results from the
sideband instability.

The use of multiscale methods to study the formation
of patterns, which in the present case are the pulses trav-
eling around the ring laser, was pioneered by Newell and
Whitehead [8] and Segal [9] in the area of hydrodynamic
instabilities, and was later generalized in form and appli-
cation by Newell [10]. For a steady bifurcation with
nonzero wave number, the canonical evolution equation
is the real-Ginzburg Landau-equation given by

Ar=m Azz+myA+m,|A|*4 , (1)

where A is the order parameter, T is a slow time, Z is a
long space variable and the coefficients m; are real.

An important feature of our problem is the change of
the direction of the bifurcation at the minimum of the
neutral stability curve. As a result, we obtain a different
and more complicated equation of the form

Ar=m,Az;—iB|| 41?4, +iB, A*A3+m, A
+m,| 4?4 +m | Al*4 , )
This is called a “degenerate” evolution equation in Ref.

[15]. Degenerate evolution equations have been of recent
interest due to the simultaneous occurrence of periodic
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and steady states in experiments involving binary fluid
convection [11,12]. Theoretical investigations have been
performed by a number of authors [13-16] where various
combinations of nonlinear terms and real and imaginary
coefficients have been considered. In all these studies, the
coefficients of the degenerate evolution equation have not
been determined in terms of the parameters of the origi-
nal problem. Our analysis of the laser problem provides
an example of a degenerate equation which is derived
from the original laser equations. We have found the ex-
plicit dependence of the coefficients upon the physical pa-
rameters. Furthermore, we determine periodic traveling
wave solutions and determine their stability. In contrast
to (1), we find that the stability boundary (called Eckhaus
boundaries) does depend upon the parameters of the
problem [16].

This paper is organized as follows: In Sec. II we review
the results obtained in Ref. [7]; in particular, we rewrite
the multimode laser equations in the class-B limit. In Sec.
III we derive the PDE that describe the slow-time and
space evolution of bifurcating solutions, while in Sec. IV
we simplify these results. In Sec. V we look for traveling
wave solutions and determine conditions for their ex-
istence and stability. Finally, Sec. VI is a discussion of
the results.

II. REVIEW

A. Formulation

Risken and Nummendal [1] have normalized the
Maxwell-Bloch equations so that the uniform steady-state
solution (cw solution) is unity. Their equations are in
terms of the real amplitudes of the electric field E, the po-
larization field P, and the population inversion D (sub-
scripts indicate partial derivatives):

E,+cE,+kE=«kP , (3)
P,+y,P=v,ED, (4)

E(r+L,t)=E(r,t), P(r+L,t)=P(rt),
D(r+L,t)=D(r,t), (6)

In these equations, L is the length of the laser cavity, ¢ is
time, and r is space measured in the direction of light
propagation. ¥, ¥, and k are the decay constants for
the population inversion, polarization, and, cavity, re-
spectively, and c is the speed of light in the host material.
A is the bifurcation parameter and measures the strength
of the pumping. It is defined as A=(D,/D,)—1, where
D, denotes the steady-state uniform value of the popula-
tion inversion and D, is the pump rate.

We now rescale (3)-(6) into a form that is more suit-
able for our asymptotic analysis of the class-B limit. This
corresponds to the limit e—0, where € is given by

e=\/y”/K<<1 . (7

This is a singular limit since the problem loses one equa-
tion if €=0. Using singular perturbation techniques we
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may eliminate this difficulty by introducing new variables
defined by

E’=1+y, (8)
N 172
D=1+e¢|— X, 9)
2
p N 172
—=14e€el|Z 0
£ € > z, (10)
1 1 c
= —5, r= —£. (11)
EK\/27LS ekV'2\ a

The new dependent variables are deviations from the cw
solution. The rescaling allows us to treat all the depen-
dent variables as O (1) quantities and is instrumental in
the success of our analysis. These new variables are
motivated by the €—0 limit of the linear stability results
of Ref. [1] (see Carr [17]).

After inserting (8)—(11) into (3)-(6), we obtain a weakly
perturbed conservative system of equations similar to
those studied by Erneux, Baer, and Mandel [18]

xS:~y—§[x+IO(1+y)z] , (12)
ystay.=(+y)z, (13)
1+e%z
1
=— —z)—py |, 14
5= |2 T T ) (14

where the parameters d, §, and I are defined by

d=%, 8=v2I,, I,=A\. (15)

a is defined as the wave number whose value is restricted
by the periodic boundary conditions. The variable £ is a
nondimensional space variable that without loss of gen-
erality we allow to vary between O and 27. Thus, we
have 2m-periodic boundary conditions of the form

x(E+2m,s)=x(§,s), y(E+2ms)=y(E,s),

z(E+2m,s)=2z(&,s) . (16)
These conditions imply that the wave number a takes
only discrete values; from the relation
E=(ebkLa)/c =2mn we have

27c
= =0,+1,%+2,...). 7
a EKSLn (n=0,%t1,£2 ) (17)

In this paper, we will be considering the large cavity lim-
it, L — oo, for which the spectrum of bifurcating modes is
approximately continuous.

The multimode laser equations given by (12)-(16) are
now in a form that is convenient for the e small asymp-
totic limit.

B. Linear stability analysis

We examine the linear stability of the cw solution
(x,y,2)=0 by using a perturbation expansion valid for
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small €. This study will serve to motivate the nonlinear
analysis. Equations (12)—(14) are linearized and we seek
a solution of the form (x,y,z)=(u,v,w)e "+ The vari-
ables u, v, and w, as well as the growth rate o are then ex-
panded as power series in €.

By examining the O (1) and O (¢€) problem, we find that
o =iw+e€o,, where w and o, satisfy

1+% o +ao—1=0, (18)
ot »? 1
Zor,—=-3I,+1+1 -
d2 0 d 0 0 2[0
=— |1+0? 1+% o,. (19

Equation (18) is the linear dispersion relation between
o and a. Using o as a parameter, we can determine the
neutral stability curve Iy =1I,(a) by substituting Eq. (18)
into Eq. (19). The neutral stability curve separates the
values of I, and a corresponding to a stable steady-state
solution from those for which the steady state is unstable.
This curve is shown in Ref. [7] for different values of d.
The minimum of the curve is given by

I,=1,=8, o=0,=*V3d/4,

_(1—3d)
40 ’

(20)
a=a,,
m

In the limit L — o the critical value at which the cw
solution becomes unstable occurs at (I,,,a,, ).

C. The Hopf bifurcation

We now assume that the first instability of the uniform
solution corresponds to a simple eigenvalue, i.e., there is
a unique n such that a (n) becomes unstable at I,(a(n)).
We are interested in determining periodic traveling wave
solutions of these equations. Specifically, we seek 2m-
periodic solutions in the characteristic variable
Z =&+ ws, where o is the Hopf bifurcation frequency to
be determined. We then analyze the resulting system of
ordinary differential equations (ODE’s) by expanding the
dependent variables in €.

The O (1) problem remains nonlinear but is found to be
conservative. It admits a one-parameter family of period-
ic solutions and has a first integral. We would like to
know how the amplitude of the periodic solution and the
frequency vary as a function of the bifurcation parameter
I,. This is accomplished by using the fact that the period
is equal to 27 and analyzing the higher-order problem.
To prevent unbounded solutions in the O (€) problem, we
determine a solvability condition given by
2

a+ 1+% )

Iy= 1)

(a+w)|—a— 1—% 1)

This is the bifurcation equation and relates the frequency
o to the bifurcation parameter I,. Together with the
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2m-periodicity condition, which provides a relation be-
tween w and the amplitude of the periodic solution, we
may determine how the amplitude changes with I,. In
general, this 2-periodicity condition cannot be found
analytically, but we determine an analytical approxima-
tion based upon the small-amplitude limit.

A small-amplitude analysis for arbitrary wave number
determines that there is a vertical bifurcation at the
minimum of the neutral stability curve, i.e., the bifurca-
tion equation is singular when a =a,,. To resolve this
singularity we refine our analysis by specifically examin-
ing about a,,. To this end, we define a new small parame-
ter n<<1 as a(n)=a,, +7%a, (a,==1), as a measure of
the detuning the wave number from the minimum.

We then employ the small-amplitude Poincaré-
Lindstedt method to solve the O (1)=0(€°) as a power
series in 7. We determine the amplitude dependence of
the frequency as

wy=0,=1V3d /4,

3d

_od _3d
(7+3d) "2’

(7+3d)

W)= — |xol2_ (22)

where ©=w,+7°0,. Note that w, depends on the wave
number a,, and on the amplitude x,, which is the leading
approximation to x expanded in €.

We obtain the bifurcation equation by substituting (22)
into the solvability condition for the O (€) problem, Eq.
(21). We obtain

IO_S
(7*72)

where the coefficients m, m,, and m are all positive for
d > 1 and given by

=m1|x0|4+m2a2|x0|2+m3a% ’ (23)

_[ed-va ]’ _2v3dGd—1d
Pl a743d) | 0 T (7+34)*
my=—284__ 4)
(7+3d)

The left-hand side indicates that we are considering small
deviations from the minimum of the neutral stability
curve where I,, =8. The right-hand side indicates that
for positive deviations in the wave number, a, >0, the bi-
furcation is supercritical and stable. At the minimum,
a, =0, the bifurcation is also supercritical and stable.
For deviations in the wave number below the minimum,
a, <0, the limit point of the small-amplitude subcritical
bifurcation is found. This determines a hysteresis loop in
which the basic state will jump up to large amplitude
solutions at the bifurcation point and jump down to the
basic state at the limit point. Note that for d =1 the re-
sult is again singular because both m, and m, equal O;
this limit is discussed in Ref. [7].

III. AMPLITUDE EQUATIONS

We now consider the case of a laser with a sufficiently
large cavity so that the continuous approximation for the
spectrum of eigenvalues is appropriate. As the pump is
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increased beyond the second threshold, a band of modes
becomes unstable. In this section, equations describing
the evolution of the amplitude of the most unstable mode
will be derived from the laser equations.

Specifically, we consider the multimode laser equations
(12)-(14) previously derived in Sec. IIC. We look for a
power series solution in € by expanding x, y, and z, e.g.,
x =x,+ex,;+0(€*). From the linear stability analysis
we know that the solution decays with a decay constant
proportional to €; this motivates defining an additional
time scale 7=es. We find that the polarization variables
zy and z; can be eliminated to yield equations only for x
and y. The space variable has been rescaled so that the
wave number does not appear explicitly in the equations.
Note that the problem is now on an infinite domain, and
we require only that the solution remain bounded. The
laser equations are then given by

X0s +y0:0 )
1 -
1+ Pos Troe=(1+p0)xo , (25)
and
1 Iy .
xls+)’1:"'8_ xo(1+10)+10x()J’0"‘J‘}’0s X7 »

(1+1/d)y ,+y1e—x —(x0p; +yox,)

1 Ye 1 1
d 1+y0 dyOSS 2 oYos

Il

ajo

(1 +y0 )y()

1
4+ =
! d

Yoz - (26)

We use the method of multiple scales to determine
solutions in the vicinity of the neutral stability curve
minimum. The appropriate slow scales are determined
by expanding the neutral stability conditions. We also
take into account the fact that the bifurcation is known
to be vertical at the minimum [7]. The dependent vari-
ables are allowed to be a function of multiple time and
space scales, which are treated as independent variables.
They are given by

to=s, L,=n’s, T=07F, ro=¢, and r,=n%,
27
where 7 is a small parameter defined by
I,=8+7%,, n<<1. (28)

Thus, the bandwidth of unstable wave numbers is
O (1?) as I, is raised beyond the second threshold.

A. The leading problem for x, and y,

We look for a small amplitude solution to the leading
problem (25) by expanding x, and y as

THOMAS W. CARR AND THOMAS ERNEUX 50

xo(8, &) =mxg1(Lgst5, Ty Fgs72)
+?72x02(t0,t2,7‘,r0,r2) cee

Yols, &M =nyo1(Lo,12,7,70572)
0o tosty,Tor0s ) 29)

The expansions (29) are substituted into (25) and lead to a
succession of linear problems for the coefficients of each
power of 1. The problem for x,; and y, is given by

9x g,

—+y,, =0,

at, Yo1

' 1 | o o

1+—= —Xx0; =0 . (30)
I d| o, o, O

This problem admits a traveling wave solution of the
form

Xo1

Yot

1
—iw

(ot

=al(t,,,r,) el o, , (31

where c.c. means complex conjugate. a is an unknown
amplitude which is a function of the slow time and space
variables. o satisfies the dispersion relation

(

{1+5 0 *+an—1=0 . (32)

The next problem for x, and y, is

0x g,
__._+_ —
at, Y2=0,
1 |0
1+g —ato ———aro — X0 =X Vo1 - (33)

Note that (33) is an inhomogeneous system. The homo-
geneous equations are identical to (30) and admit a
periodic traveling wave solution. Therefore, the right-
hand side must satisfy a solvability condition.
Specifically, the right-hand side must be orthogonal to
the homogeneous adjoint solution when integrated over
the domain of the independent variables. Since the
homogeneous solution is periodic it is sufficient to in-
tegrate over the respective periods. Designating the
right-hand sides of the first and second equation of (33) as
(R{,R,), respectively the solvability condition is formu-
lated is

© 3 —i +ar,)
f21r/ f27r/a(R1,R2).[(1’lm)e oty +ar,
0 0

+c.c.ldrodty;=0. (34)

The solvability condition is identically satisfied because
the right-hand side contains only second-harmonic terms.
We can then solve for x, and y,.

Since we still do not know a, we consider the O(7°)
problem, given by



50 UNDERSTANDING THE BIFURCATION TO TRAVELING WAVES. ..

1 |90 , o3
_— + —
l” d ] 3, | dr,
1 | Yo,
=x0Yo1 tX01Y02 — ‘1‘*'3 a1, - ar, 35)

Using the solvability condition (34), we obtain a first-
order partial differential equation for a

da ,08a |, io®, |,
— 4+ _— 4 — =0 . 36
o, @ or, 3 |a|?a (36)

1
14 =
d

0)2

1+

Analogous to (22) of our previous Hopf bifurcation
analysis, (36) is a relation between the frequency correc-
tion and the amplitude, i.e., it is a PDE form of the non-
linear dispersion relation.

Higher-order corrections are required [up to O (7°)] in
order to solve the next problem for x; and y, in (26). We
omit the details of this additional analysis.

B. The effect of damping

Equation (36) does not provide a relation between the
amplitude of the solution and the bifurcation parameter
and thus, motivates the analysis of (26). Since x¢, and y,
satisfy the homogeneous problem for x, and y,;, and
(x9,y0) is a periodic traveling wave in the variables ¢,
and r,, a new solvability condition must be satisfied. This
condition is

f21r/wf211/a(R1’R2).(x{h,ylAt)drodt0=0, (37)
0 0

where R, and R, are the right-hand sides of (26) and the
solution to the homogeneous adjoint problem is

Yo

—_—. 38

xit=xo, yi'=

We now solve (37) by using the expansions of x, ¥,

and I, in powers of 7. To this end, we also need to use

the chain rule for y,,, which appears in R, and R,. This

leads to a series of integral conditions, which are easily
solved.

The O (77) condition is
160*  240?
_O . 39
FER +9= (39)

Equation (39) matches the condition (19) of the linear sta-
bility analysis, which allows us to determine w. Using
(32) and (39), we find =w,, and a,,. We use the nega-
tive value of w, which gives a positive value for a,, when
d>1.

The O (172), o (n3), and O (174) conditions are identical-
ly satisfied. Note that the O (5*) condition is satisfied be-
cause of the choice of the slow variables, the definition of
7, and the fact that the bifurcation is vertical at a =a,,.
We find that the O(%°) condition is the first condition
that is nonzero. We have
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da _ 28 o°a — 20 1 da* | da

-0 v Vv 2+__.___ 0

(7-+-3d)a d a2 i6V'3d |a| d o ot | o,
J4 9d2 4

+ 2 T lalta . (40)

This is a second evolution equation for a. It contains the
dissipation time scale and the bifurcation parameter.
Equations (36) and (40) will now be the subject of a more
detailed analysis.

IV. THE SIMPLIFIED AMPLITUDE EQUATION

Equations (36) and (40) are two separate contributions
to the general evolution equation. This is because they
come from the O(1) and O (€) problems resulting from
the first expansion of the solution in powers of €. In or-
der to more clearly understand their respective contribu-
tions to both the frequency correction and the amplitude
modulation, it is worthwhile to combine (36) and (40) into
a single equation. Moreover, by rescaling all of the vari-
ables, we may reduce the number of independent
coefficients. These new variables are defined by

g | 2T+3d)
3d(3d —1) ’
_12v3d 12 _
r2———-—7+3d r, t, Vﬁt’ =(7+3d)T ,
}r—J 41)
=3

Furthermore, (40) can be rewritten in terms of the slow
space variable using (36). The resulting equation is then
multiplied by € and added to (36) to give

a,+a,+edr
~
—_ ~ |2~ L,_, _ 5 arar_. ~|2~
=iB,|a|’a+e 581y o iB,la@|’a,
+iB,@%ar +Aa—|al‘a | . (42)
Bo=—>—, B,=—2+23B,, B,——:1B 4
0 3d_1 ’ 1= 370 » 27 370 - ( 3)

Note that this equation is valid only to O(e) and we ig-
nore all O (€?) effects.

Equation (42) is now a modified complex Ginzburg-
Landau equation. It describes the bifurcation to periodic
traveling waves, which has been called “type I,,: oscilla-
tory periodic” by Cross and Hohenberg [20]. This equa-
tion differs from other Ginzburg-Landau equations in
several ways. First, it is an equation for the amplitude of
a traveling wave solution propagating in one direction
only. This is the result of the particular form of the origi-
nal multimode laser equations. Second, we note the term
(aya,)/a*, which results from the nonlinear frequency
correction. Finally, we observe the presence of the fifth-
order nonlinearity, which results from the vertical bifur-
cation at a =a,,.
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We may simplify (42) by introducing a moving refer-
ence frame and removing the nonlinear dispersion. Let-
ting

a=eYMA(T,Z), and Z=r—1, (44)
we determine () to be
Q=B,lal?, (45)
so that the resulting evolution equation for 4 (T,Z) is
AT=T72AZZ——155 Ai*Z —iB,|A|?A,+iB, A A}
+A4—141*4 . (46)

By introducing the characteristic variable Z and remov-
ing the nonlinear dispersion, we have effectively solved
(36) and applied its result, the introduction of traveling
waves, to (40). It is common in the study of evolution
equations to propose equations such as (46) directly from
the Landau equation. However, the coefficients B; and
B, and the particular structure of the diffusion term can-
not be predicted easily.

Equation (46) is similar to the degenerate evolution
equation studied by Doelman and Eckhaus [16] except
for the diffusion term

7 5 A7 Az
— Ay 47
1274 12 4+ @7
These terms correspond to
2 *
28 3% 20 1 da* 3a s)
d 3t} d q* 0t, ot,

in (40). The term multiplied by the coefficient 20/d,
which we will refer to as the “diffusion split” term, is
unexpected. However, we have verified that it is still a
contribution of the linearized theory. We find that the
sum of the coefficients (28/d +20/d =48/d), as well as
the time derivative and linear term coefficients, is predict-
ed by expanding the neutral stability curve about the
minimum. These results are consistent with the general
theory of evolution equations [19]. The diffusion split
term results from the fact that the leading-order problem
for €é—0 is nonlinear. This is in contrast to most other
derivations in which the hierarchy of problems, including
the leading-order problem, are all linear.

Before proceeding, we mention that (46) is consistent
with the stability results of the basic state and the single-
mode bifurcation. We demonstrate this for the latter
case. For the single-mode bifurcation, we seek a solution
of the form

A(T,Z)=R (D) (49)
and assume that there are no sideband modes to affect
stability. We obtain the Landau equation

_AV(R)
3R

which describes the evolution of arbitrary initial condi-
tions to the single-mode solution. We have thus deter-

R;=R(A—a}—2a,R*—R*= (50)
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mined the stability of the bifurcating mode. Note that the
right-hand side of (50) is a scaled version of the bifurca-
tion equation derived in Ref. [7]. This equation is similar
to the results of Haken and Ohno [4,5], who interpret the
right-hand side in terms of a potential V. Their
coeflicients are much more complex and do not make ap-
parent the importance of the wave number in determin-
ing the direction of the bifurcation.

V. PERIODIC TRAVELING WAVES
AND THEIR STABILITY

In this section, we determine stationary wave solutions
(SW) to (46) in terms of the characteristic variable Z. In
terms of the variables r and ¢, these correspond to travel-
ing waves with phase velocity equal to one. Since the
nonlinear dispersion has been removed by introducing (2,
the coefficients of (46) are all real. Therefore, similar to
the real Ginzburg-Landau equation, we will refer to the
Eckhaus boundary as separating regions of stable and un-
stable solutions.

We look for a SW solution of the form,

A=Az (51)

Since Z is proportional to the slow variables r, and t,, a,
is proportional to the deviation of the wave number from
the minimum. Specifically,

a—a,=n%, . (52)

Introducing (51) into (46), we obtain a condition for the
existence of SW solutions

A=(Ad2+a,)? . (53)

Equation (53) is the bifurcation equation. If 4,=0, (53) is
the neutral stability curve (NS). For a,>0 (a, <0) the
bifurcation is supercritical (subcritical). The limit point
for a, <0, defined by dA/3 4,=0, is A=0. The region in
the (a,A) plane between the limit-point curve and the NS
curve defines the region of bistability. This is shown in
Fig. 1. Referring to Doelman and Eckhaus [16], our case
corresponds to B=B,+B,=—2, which implies
S =B%/4—1=0 in their classification. They do not ex-
plicitly treat the case S =0 but we found that the results
are similar to the case S > 0.

We now examine the stability of the SW solution by
adding a small perturbation R to the basic solution. R
depends on the slow scales T and Z, and takes the form
of a single mode with arbitrary wave number

A=[A,+R(Z,D]e"??,

R(Z’T)=R1eaT+ikZ+Rzezr*T—ikZ’ (54)

Upon substituting (54) into (46) and linearizing, we obtain
a system of algebraic equations for R and R,. From this
system we determine that the SW solutions are stable if
the real part of o is negative. We find that the following
conditions must be satisfied:

A< A$(2—cBH)+a, A3(2cH —B) ,

12

B=B,+B, . H=}B,—B,), c==- (55)

1
4
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<--Subcriticalas

1.5 Supercritical-->
< 1
Region of
Bistability
0.5

LP

-1 0 1 2
%
FIG. 1. The neutral stability curve (NS) in the (A,a,) plane,
where a, is proportional to the deviation of the wave number
from a,,. The location of the limit point for each value of a is

designated by (LP). The region of bistability lies between the
subcritical NS and LP.

H has been called the “hidden parameter” in Ref. [16]
since it characterizes the part of the coefficients that can-
not be derived from the Landau equation. Our result is
analogous to (2.14) of Ref. [16] except for the parameter
¢, which results from the diffusion split term.

Our analysis of (53) and (55) is now similar to that in
Refs. [15] and [16]. For any particular A, (53) defines a
pair of lines in the (a,, 43) [shown as solid lines in Figs.
2(a)-4(a)]. These lines represent the amplitude of the
solution as a function of a, for A>0. Equation (55)
defines a hyperbola for A >0, and is represented by a
dashed line in Figs. 2(a)-4(a). The portion of the solid
line above the hyperbola corresponds to stable solutions.
The intersection point is the Eckhaus boundary.

Figures 2(b)-4(b) show the complete Eckhaus curve in
the (A,a,) plane. The left half of the Eckhaus boundary
is the limit-point curve A=0. Understanding how the
Eckhaus boundary depends upon the parameter d is
made easier by first using Figs. 2(a)-4(a). This is because
the coefficients in (55) may change sign depending on the
value of the parameters, thus making the inequality
difficult to interpret.

Using the results of the previous section, we can derive
the relationship between the hidden parameter H, and the
physical parameter d. It is given by
H=(7—3d)/[2(3d —1)]. In addition, we determine an
explicit form for the Eckhaus curve in terms of the pa-
rameter d:

A=C(d)a}
where
4(35+3d)?
Cd)=—"2T1247
(—77+15d)? (56)

4225

(a)

FIG. 2. 1 <d<d,=1: (a) The solid lines represent the A}
as a function of a,, when A=1. For a, >0 (a, <0) the bifurca-
tion is supercritical (subcritical). Amplitudes greater than (less
than) the dashed line correspond to stable (unstable) solutions.
The intersection point is the Eckhaus boundary. (b) The Eck-
haus boundary (EB) and neutral stability curve (NS) are shown
as dashed and solid lines, respectively. A is the bifurcation pa-
rameter. For a; >0 the EB is the dashed line, while for a, <0
the EB runs along the limit-point curve (LP).

(a)

stable

EB

LP

FIG. 3. d=d,=1II (see also Fig. 2): (a) The intersection of
the solid and dashed line occurs at a,=0. In (b), the Eckhaus
boundary is the solid dashed line together with the limit-point
curve (LP). Only solutions with a, <0 are stable.
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FIG. 4. d— 0, A~ -t a? (see also Fig. 2): (a) The intersection
of the solid and dashed line occurs at a, <0. In (b) the Eckhaus
boundary (EB) is the dashed line together with the limit-point
curve (LP). Note that for a fixed value of the wave number a,
there is an upper bound to the value of the bifurcation parame-
ter A for which the solution is stable. When d =dc=“3—9 the
Eckhaus boundary exactly coincides with the left side of the
neutral stability curve (NS). For d >d., the EB lies outside the
NS as shown.

Our result is valid provided that d is larger than 1 (f

d—1,By— o in (43) and our expansion of the solution
becomes singular [7]). However, by examining C(d) we
see that for 1 <d <d,= ]} the Eckhaus boundary lies in
the right-half plane of the (a,A) parameter space [see Fig.
2(b)]. Consequently, there exists a band of stable travel-
ing wave solutions for all a,<ag, >0, where
a,,,=(A/C)'2. If d >d,, the band of stable modes be-
comes more restricted and we discuss this important
change of the stability digram in the next section.

VI. DISCUSSION

Class-B lasers are characterized by a vertical-Hopf bi-
furcation located at the minimum of the neutral stability
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curve [7]. By taking advantage of this particular feature,
we use asymptotic methods to obtain a degenerate
Ginzburg-Landau equation for the long-time behavior of
traveling wave solutions. Degenerate evolution equations
have been proposed recently in order to describe phe-
nomena that are not explained by the classical
Ginzburg-Landau equation; namely, the presence of a
subcritical bifurcation for certain wave numbers. At the
end of Sec. IV, we discussed the similarities and
differences between our equation and equations previous-
ly analyzed [16].

Of particular physical interest is the fact that the sta-
bility of the periodic traveling wave solutions now de-
pends on the laser parameters. At the end of Sec. V, we
determine the Eckhaus boundary that separates stable
and unstable traveling waves [see (56)]. We note that if
d>d,=1. all stable solutions are characterized by
a <a,,; see Fig. 3. If the initial periodic wave is charac-
terized by a wave number a >a,,, we expect a gradual
change to a stable traveling wave with a <a,,. If d>d,,
the Eckhaus boundary lies to the left of the neutral stabil-
ity curve and a stable traveling wave characterized by
a <a,, will become unstable if the bifurcation parameter
is raised above the Eckhaus boundary (this is shown in
Fig. 4 for the case when d > %, which is discussed below).
In the classical Ginzburg-Landau equation an initially
stable traveling wave becomes unstable only if the bifur-
cation parameter is Jowered below the Eckhaus boundary.

If d is further increased and surpasses d, =%, the Eck-
haus curve will be located to the left of the neutral stabili-
ty curve as shown in Fig. IV. There are no stable travel-
ing wave solutions having a wave number inside the neu-
tral stability curve. In this case, we expect that the initial
wave will progressively change to a stable regime charac-
terized by a low value of the wave number.
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