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The influence of injected atomic coherence on a laser's operation is discussed by analyzing the semi-

classical equations of motion of this system. Both stationary-steady-state and time-dependent regimes of
operation are investigated. We present the dependence of the stationary laser intensity and phase on the
external parameters (population inversion, amplitude of atomic coherence, and detuning). For small

cavity-field detuning and large atomic coherence, both frequency and phase locking occurs. The laser

frequency is locked to the atomic frequency, and the phase is locked to a value determined primarily by
the phase of the atomic coherence. Under certain conditions, in the inverted regime, the output intensi-

ty is an S-shaped function of the atomic coherence, leading to the possibility of a bistable behavior.
However, only a portion of the bistable curve gives stable stationary operation, and in critical points (the
location of which depends crucially on the external parameters) time-dependent instabilities branch
away. When the detuning is larger than a critical value there is neither phase nor frequency locking.
We find that the time-dependent behavior of the laser intensity in this case is oscillatory (quasiperiodic),
and show that there is a stable limit cycle in the phase plane of the quadratures. There is a small param-
eter region where a stationary steady state and an oscillatory state may coexist. We also consider the
nonlinear quantum theory of a laser with injected atomic coherence, and include the effect of pumping
statistics. We derive the Fokker-Planck equation for the I' representation, and express the noise in terms
of moments. We find that in the steady state the intensity noise can be suppressed below the shot-noise
limit but that the phase fluctuations are not affected by pump regularity. For nonzero detuning, we find

that transient squeezing of the phase fluctuations is possible.

PACS number(s): 42.50.Lc, 42.50.0v, 42.60.Lh, 42.60.Mi

I. INTRODUCTION

Since the initial development of the quantum theory of
the laser more than 20 years ago [l], much theoretical
and experimental effort has been devoted to the problem
of quantum-noise reduction in the output Seld. One of
the earliest proposals was the laser with an injected signal
[2]. In this system, the phase is not a freely difFusing
quantity any longer due to phase locking to a value deter-
mined by the phase of the external signal. While this re-
sults in a reduction of the net phase fluctuation noise it
leaves the fundamental sources of noise, spontaneous
emission in particular, unchanged. It is not surprising
therefore that, although the original idea of a laser with
injected signal was directed towards stabilization of the
output intensity and phase or mode selection, the system
became the prime candidate for the study of instabilities
(quite in line with some of the findings of the present pa-
per) and chaos in a quantum optical system (for recent
development and a review of existing work in this area,
see, e.g. , Ref. [3]).

A closely related idea, but one which also targets the
microscopic mechanism of the emission of light, assumes
preparation of the active atoms in a coherent superposi-
tion of all levels participating in the laser operation. Fol-
lowing the original suggestion [4], recently a considerable
amount of theoretical work (semiclassical as well as quan-
turn theory) has been directed towards lasers with inject-
ed atomic coherence [5—9]. It has been demonstrated
that with a proper relation among the initial atomic

coherence of randomly injected atoms, it is possible to
reduce both the photon-number noise and phase noise in
the laser simultaneously [5]. Furthermore, the injected
atomic coherence plays the role of an injected signal in
achieving phase locking [6,7] and may lead to lasing
without inversion (LWI) [8]. In these latter systems LWI
may be accompanied by noise quenching with a proper
choice of the initial atomic coherence [9].

These features prompt us to investigate the laser with
coherent initial conditions for the active atoms extensive-
ly. In particular, we focus on the role played by the vari-
ous detunings (cavity field, atom field) in the dynamics.

An important difference between an ordinary, in-
coherently pumped laser and a laser with injected atomic
coherence is the effect of phase locking [5—7]. In an ordi-
nary laser, the phase of the electromagnetic field is not
locked to a particular value but can freely diffuse over the
entire angular interval of 2m. Injecting atoms with initial
coherence, a phase information is introduced into the sys-
tem and the laser phase will lock to a preferred value in
steady state.

In addition in Ref. [5], we have developed the full non-
linear quantum theory of a laser with injected atomic
coherence and demonstrated the possibility of reducing
both the intensity and phase noise. However, that work
has dealt with perfect resonance only, i.e., the cavity fre-
quency, laser frequency, and the atomic transition fre-
quency all coincide. In a closely related work, using
semiclassical theory, Carty and Sargent [6] have studied
the effect of injected atomic coherence on single-mode
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frequency locking in a cavity. It has been assumed that
the laser frequency coincides with the atomic transition
frequency and the discussion has been restricted to
cavity-atom detunings small enough to allow phase lock-
ing.

In the present paper, we will give a detailed study of
the field dynamics of a laser with injected atomic coher-
ence for arbitrary detuning. Also, we will consider the
full quantum theory including fluctuations. First we will
restrict our treatment to what essentially amounts to the
semiclassical approximation. We rely on the results of
our earlier work [5], which employed density operator
methods [10], and derive from them the nonlinear equa-
tions of motion for intensity and phase. These equations
exhibit the dependence of intensity and phase on the
external parameters (population inversion, amplitude of
atomic coherence, and detunings). They also give a sim-
ple physical picture of the time-dependent behavior of the
system, as well as the steady-state characteristics. In our
discussion we will investigate the stability of the assump-
tion, made in Ref. [6], that the laser frequency locks to
the atomic transition frequency. When the atoms are in-
jected into the cavity in a coherent superposition, an ad-
ditional feature appears in the coupling of the atoms with
the cavity. Even if the laser frequency equals the atomic
transition frequency, the coupling strength still depends
on the cavity-field detuning. When this detuning is zero,
we obtain total cavity resonance which represents the
strongest coupling. As the detuning increases, the cou-
pling strength decreases and, after a certain critical value,
phase locking cannot be achieved.

Then, we focus on the reduction of noise in the laser
with injected atomic coherence and regular pumping.
The noise in the output of a laser field stems from the in-
teractions with the gain and loss reservoirs. The search
for new schemes that can reduce these fluctuations has
become one of the most active fields in laser theory. The
fluctuation in the number of active atoms (pump fluctua-
tions) and spontaneous emission events (random emis-
sions by the active atoms) contribute to the noise origi-
nating from the interaction with the gain reservoir. Vac-
uum fluctuations enter the cavity through the mirrors
and contribute to the noise due to the interaction with
the loss reservoir. These noise sources have been ad-
dressed in various works recently. Pump-noise
suppressed laser schemes address the problem of pump
fluctuations [11—13], the correlated-spontaneous-
emission laser [4,5, 14—15] targets spontaneous emission
noise through the introduction of atomic coherence in
the laser. These systems deal with the reduction of noise
due to the interaction with the gain reservoir. Laser
buildup from squeezed vacuum [16], in turn, targets the
reduction of output fluctuations that originate from the
interaction with the loss reservoir. This second line of in-
vestigations is somewhat less practical since in order to
reduce output fluctuations one needs a field with reduced
fluctuations to begin with.

Thus, we turn our attention to pump-noise suppressed
and correlated emission laser (CEL) schemes. In particu-
lar, we are interested in combining these two effects and
we will discuss the influence of the pumping statistics and

the injected atomic coherence on the fluctuations of the
laser radiation. If these two concepts are considered sep-
arately, the following results hold:

(1) In pump-noise reduced lasers [11,12], phase fluctua-
tions are independent of the pumping statistics and inten-
sity fluctuations can be significantl reduced, up to 50%
below the shot-noise limit if the pumping noise is elim-
inated.

(2) In the one-photon laser with injected atomic coher-
ence [5], the initial atomic coherence plays an important
role in phase locking and noise reduction. It has been
demonstrated there that with a proper relation among
the initial atomic coherence of randomly injected atoms,
it is possible to reduce both the intensity noise and phase
noise in such a laser below the noise level of incoherently
pumped lasers. However, no squeezing of either phase
noise or intensity noise has been found in coherently
pumped two-level one-photon laser.

In our analysis we combine the pumping statistics and
the injected atomic coherence and develop the nonlinear
quantum theory of this laser scheme. The key feature of
our results is the coupling of these two factors. We find
that the cavity-field detuning plays an important role in
this coupling. It should be noted that the theory of a reg-
ularly pumped laser with coherent atomic initial condi-
tions has been worked out by Benkert and Scully for the
particular case of zero detuning [17]. Similar system with
an injected resonant signal has been investigated in Ref.
[18]. On resonance, of course, the question of stability
does not arise. Even more important, there is no cou-
pling between the intensity and phase noise and, thus,
pump regularity does not affect the phase noise. Here we
show that only the photon-number noise is squeezed in
steady state if there is regular pumping. More important,
however, we show that in some cases with finite cavity-
field detuning there is a transient squeezing of phase
noise.

This paper is organized as follows. In Sec. II we
present the general equations of motion and discuss the
steady-state operation. Section III deals with the problem
of stability of the steady-state. Section IV is devoted to
the study of nonstationary processes in the regimes with
and without phase locking. They include initial transi-
tions and quasiperiodic oscillations when the stationary
steady state is missing overall. In Sec. V we derive a gen-
eral Fokker-Planck (FP) equation for the scaled intensity
n and phase P in P representation with pumping terms.
Numerical solutions for the steady state as well as time-
dependent states are computed from moments of the dis-
tribution P. We also present limits (where a linearized
treatment around steady state can be used) on initial in-
tensity and detuning. The conclusions are then summa-
rized and a relatively simple physical picture in terms of
competing frequencies is given in Sec. VI.

II. EQUATIONS OF MOTION AND STEADY STATE

The system under consideration is the same as that of
Refs. [5]—[7]: two-level atoms consisting of upper level a
and lower level b and a single cavity mode. The atoms,
initially prepared in a proper form of the atomic coher-
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ence, are injected into the laser cavity at a rate r and al-
lowed to interact with the laser field in the single mode.
The initial density matrix for the jth atom injected at
time t- is

Paa
i vt.

Pbae J

—ivt-
Pabe

Pbb
j l)2& ~ ~ ~ ~ (2. 1) and

H=AHO+fiV=A Qa a+ g [H)"+8(t t, )V,—]
i=j

Here v is the laser frequency. p„,p,b, and p, b =pb, are
the same for all atoms. The Hamiltonian under the elec-
tric dipole and rotating wave approximations can be writ-
ten as [5]

j
a(paa pbb )

1+I (13/a)

2v'I is@., l

sin(P —8+arctan5)
1+I (P/a)

(Paa Pbb } 5
1+I (P/a) 2

I~P.b I

[ cos( g —8+arctan5 )v I [1+(13/a)]
+I(P/a)V 1+5 cos(1( —8)] .

(2.8)

(2.2)

with

and

A =a, b

(2.3)

V =go. +a+ga cr (2.4)

Here 0 is the frequency of the bare cavity eigenmode,
a (a+) the field annihilation (creation) operator, H" the
free Hamiltonian of the jth atom, o* the atomic raising
and lowering operator. 8(t t ) is the step—function. Fi-
nally, g is the atom field coupling constant.

The corresponding Fokker-Planck equation has been
obtained in Ref. [5] by employing standard techniques of
the quantum theory of the laser [10]. First, a master
equation for the density operation of the field has been
derived and then it has been converted into a FP equation
in the P representation. From that Fokker-Planck equa-
tion, we can get a set of equations of motion for the mean
and variance of the intensity and phase variables. It
should be noted at this point that an identical set of equa-
tions for the mean values can be obtained from a com-
pletely semiclassical theory [19]. Thus, quantum effects
are responsible for the fluctuations only. In this section
we will focus on the semiclassical features of the system,
without the quantum fluctuations (the behavior described
by semiclassical theory). The genuine quantum effects
will be discussed in Sec. V. In the absence of fluctuation
terms, we obtain the following equations of motion for
the scaled intensity, I (=—photon number), and phase, 0',
of the field,

G —n 0
2C

singo=0
"0

(2.9)

C
D — cos&0=0 .

~no
(2.10)

To solve for the steady-state intensity n 0, we can elimi-
nate the steady-state phase, $0, from the above equations,
giving

In the above expressions we introduced the following no-
tations: gain coefficient, a=2rg /(I +b, ); saturation
parameter, P=grg /(I' +b, ); field-coherence coupling,
S = rg I(I +i b ); scaled atom-field detuning, 5=6/I; the
cavity loss rate, y; and finally, the phase of the atomic
coherence, 0. Everywhere in these expressions
6=~, —

cob
—v=~ —v is the atom-field detuning and I is

the atomic decay constant (for simplicity assumed to be
the same for all levels).

In steady state d Idt =0, the left-hand side of Eqs. (2.5)

and (2.6) is zero. The laser intensity and phase are locked
to their respective stationary values, Io and $0. The re-

sulting equations become more transparent if we express
them in terms of the scaled quantities: no=Ip(P/a)
(photon number vs saturation parameter), $0=%'o —8
(phase relative to the phase of the injected coherence),
D =(v—0)/y (cavity-field detuning), G =a(p„
—

pbb )/y —1 (gain), C =a lp, b l /y (amplitude of atomic
coherence). First, we want to study the stability of the
states resulting from the assumption of frequency lock-
ing, 5=0, which was the crucial point of Ref. [6]. Under
these conditions Eqs. (2.5} and (2.6) yield for the steady
state

dI
dt

dr (2.5} no 2Gno+ [4D—+G ]no —4C =0 . {2.11)

and
This is a cubic algebraic equation for np. Similarly, after
eliminating np we can find a cubic equation for the
tangent of the steady phase $0, T = tango,

dt
(2.6)

T3 T2+ T+ —0
2D 2D 2D

(2.12)

Here the driving terms, di and d+, are given by the fol-

lowing expressions:
Equations (2.11) and (2.12) represent the equation of

state of the 1aser with injected atomic coherence in the
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stationary steady state provided a solution exists. The
equations depend on three external parameters: gain, 6,
coherence, C, and detuning, D. Depending on the values
of the parameters, there can be one or three real solu-
tions. In the following section we will systematically in-
vestigate these solutions from the point of view of their
stability, finding those regions in the 6, C, D parameter
space where a single solution exists, two stable solutions
may coexist, instabilities develop, etc.

In the remainder of this section we present numerical
results for the state equations for two typical choices of
the parameters. First, we note that in an ordinary in-
coherently pumped laser population inversion,
p„—p&b &0, is necessary for laser operation. However,
in a laser with atomic coherence, population inversion is
not necessary because the atomic coherence, ~p, b ~, acts as
a driving force for the laser intensity. In Fig. 1 we plot
the laser intensity, no and phase term T, as a function of
the coherence parameter, C, for three typical values of
the gain 6 and with D =0.25. There is one steady-state
solution for each value of C. We will find in next section
that the system with negative population inversion
(G & —1) is always stable. It is also stable in the region—1 (6 & 0 where the inversion is positive but the laser is
still below the resonant threshold. In the region
0&G &(12)'~ D (gain between the resonant and off-
resonant threshold) the dashed part of the curve in Fig.
1(c) becomes unstable. The phase shows an entirely simi-
lar smooth behavior as a function of C, the locking is al-
ways such that —n/2 & Pc &0.

In the region G )(12)"D the plot of no as a function
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FIG. 2. Steady-state scaled intensity, no (thin lines) and
tangent of the steady-state phase, T tango (thick lines), vs C in

the region above threshold and D =0.284, G =1. Solid line

corresponds to stable steady state, dashed line to unstable

steady state.

of C, obtained from Eq. (2.11), becomes S shaped, indi-
cating the emergence of a possible bistable behavior in
the above threshold regime of operation. As shown in
Figs. 2-4 (thin lines), there are three possibilities. Either
part of the lower branch and the entire upper branch
(Fig. 2), or the entire upper branch and none of the lower
portions (Fig. 3), or just a part of the upper branch (Fig.
4) can be stable. Stable portions are denoted by solid line,
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FIG. 1. Steady-state scaled intensity, no (thin lines), and
tangent of the steady-state phase, T =tantbo (thick lines), vs the
amplitude of atomic coherence, C, in the region below threshold
and for (a) and (A) D =0.2, G = —1.5; (b) and (B) D =0.25,
G = —0.5; (c) and ( C) D =0.5, G =0.5. Solid line corresponds
to stable steady state, dashed line to unstable steady state. The
scale on the left-hand side (right-hand side) is for the thin lines
(thick lines).

-1.5

FIG. 3. Steady-state scaled intensity, no (thin lines) and
tangent of the steady-state phase, T =tango (thick lines), vs C in

the region above threshold and D =0.525, G =5. Solid line cor-
responds to stable steady state, dashed line to unstable steady
state.
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1.0
0dy Bdybs+ bP .

o 4' o

The subscript 0 means that the derivatives have to be
evaluated in the steady state. Since this is a system of
linear equations we can assume that a simple exponential
solution, BI( t) =AI(0)e ' and b P(t) = b P(0)e ', exists.
Substituting this ansatz into the above equations yields
the following characteristic equation for k,

— 0.4

adl ady adl ady adi My
as ay ay as

4
7.15

I

7.20
I

7.25 7.30
0.2

7.35

FIG. 4. Steady-state scaled intensity, no (thin lines) and
tangent of the steady-state phase, T =tango (thick lines), vs C in

the region above threshold and D =2.5S, 6 =9. Solid line cor-
responds to stable steady state, dashed line to unstable steady
state.

For the sake of simplicity we have omitted the subscripts
from the derivatives.

In view of our ansatz for the solution any initial devia-
tion from the steady state will decay exponentially in
time if Rek. &0, where Re stands for the real part. Thus,
this is just the condition of stability of the steady states.
Applying Hurwitz's criteria, for the negative definiteness
of the roots of a quadratic equation, to Eq. (3.4) gives
two relations between the coefficients:

and

Bdy Bdy

as ay ay as
(,3.5)

III. STABILITY OF THE STEADY STATE

We study the stability of steady-state by employing the
methods of normal mode analysis. In the neighborhood
of steady-state Io and Po, the intensity I(t) and phase
P(t) may be written as

I(t)=so+BI; Q(t)=Po+bP . (3.1)

Substituting (3.1) into the equations of motion (2.5) and
(2.6) and expanding di and d& around Io and Po to first
order in b.s and b,P, neglecting higher order terms in the
perturbations, we get the set of linearized equations

BdI
(3.2)

Bt ay

BdI hI+I o

and

unstable ones by dashed line. In Figs. 2 —4 we also plot T
(thick lines) as a function of C. These plots, too, are again
S shaped and stable and unstable parameter regions coin-
cide with those of no. We note that as D increases, the
gap between the vertical axis and the turning points of
the S-shaped curves also increases. Since it is essentially
in this gap region where most of the instabilities occur we
can say that with the increase of the detuning the region
of unstable behavior also increases.

Figures 1 to 4 illustrate the two basic possibilities: ei-
ther monotonic dependence on the atomic coherence as
in the region below ordinary laser threshold or a mul-
tivalued characteristics as in the region above the thresh-
old.

Bdi Bd
p+ &0,aI ap

(3.6)

Using the expressions for the drift coefficients, Eqs (2.7)
and (2.8), and the steady-state conditions, Eqs. (2.9) and
(2.10), we can easily evaluate the left-hand side of Eq.
(3.5), yielding

4D +G 46no+ 3n o + 0 (3.7)

Bno

BC
!3.8)

This is our first condition of stability. The other condi-
tion can easily be derived from Eq. (3.6). Again, using
the explicit expressions for the drift coefficients and the
steady-state conditions, we obtain

no+(4 —G)no —2G )0 . 43.9)

This inequality is satisfied for no &no
&

and no&no2,
where no, and no 2 are the roots of the quadratic expres-
sion on the left-hand side, arranged in such a way that
no, & no z. The explicit expressions for the roots, from
Eq. (3.9), are

G —4—+G +16
"o &= (3.10)

and

"o2= G —4++6 +16
(3.11)

By comparing this expression to the equation for steady
state, Eq. (2.11),we can see that it is equivalent to
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From Eq. (3.10) no, &0 always, independently of the
value of G. Since no&0, by its definition, no, falls in the
unphysical region and the inequality no &no, does not
give additional condition for the stability. On the other
hand, no z may fall in the physical region and the inequal-

ity no& n02 may yield a second condition for the stabili-

ty. As we shall see later, in this case the point no 2 is the
critical point at which a Hopf bifurcation occurs. There-
fore, with the notation n02=n„ the above requirement
can be written as

6 —4—V'6'+16
no&n, , where n, = (3.12)

This is our second condition of stability. In the follow-
ing, we shall apply the two conditions, Eqs. (3.8) and
(3.12}, to the investigation of the stability of the single-
valued steady state (the region below ordinary laser
threshold) and multivalued steady state (the region above
the ordinary laser threshold} separately.

A. Stability of the single-valued steady states

When we have a single-valued steady state the first
condition, Eq. (3.8}, holds automatically. The slope of
the intensity vs coherence curve is given by Eq. (3.7).
From this equation it follows that the steady state is sin-

gle valued (the slope does not change sign ) if
6 &(12}''D and multivalued otherwise [see Eqs. (3.13}
and (3.14) below]. We can now distinguish between the
regions 6 &0 and 0&6 &(12)'~ D. It should be noted at
this point that G,b &

=0 is the threshold for the corre-
sponding incoherently pumped laser without detuning
and the expression G,s z

=(12)'~ D is the laser threshold
for the corresponding incoherently pumped laser with de-
tuning.

(i) In the region G &0 (or, equivalently, G & G,s, ) the
critical point, n„defi ednin Eq. (3.13), is negative and the
second stability condition, given in the same equation, is
satisfied for all no &0, i.e., in the entire physical region.
No part of the curves (a) and (b) in Fig. 1 becomes unsta-
ble, for any value of the external control parameters.

(ii) In the region 0&6&(12)' D (or, equivalently,
6,„,&6&G,„z) the photon number no continues to be
a single-valued function of the coherence parameter C.
In this region, however, n, &0. Applying the second sta-
bility condition, Eq. (3.12), to this case gives that the part
of the curve (c) in Fig. 1, where 0& no &n„ is unstable
(denoted with dashed line). Here n, is a Hopf bifurcation
point and in the region between the origin and n, period-
ic oscillations occur. They branch away continuously
from the steady-state curve which, thus, is stable above
the critical point. The region below the critical point,
where the oscillations take place, will be studied in Sec.
IV.

Summarizing the findings of this subsection we can
conclude that the steady state is single valued if
G ~ G,z 2. The entire steady-state curve is stable if
G ~ G,I, &

and the section between the origin and the criti-
cal point is unstable if Gth 1 + G G,». Entirely similar
conclusion hold for the phase plots in Fig. 1(thick lines).

B. Stability of the multivalued steady states

When we are dealing with a multivalued steady state,
i.e., the plot of the photon number vs coherence is S
shaped as in Figs. 2—4 (thin lines) then the first stability
condition, Eq. (3.8), tells us that the portion with negative
slope (the middle section of the S}is unstable. To investi-
gate this case further we note that the two turning points
of the S-shaped curve can be calculated from the zeros of
the left-hand side of Eq. (3.7) since in these points the
slope of the curve changes its sign. The turning points
are then given by

and

26 —~G —12D
n, =

3

2G+~6 —12D
np=

3

(3.13)

(3.14)

n,

c 2

FIG. 5. The critical point, n„and the lower and upper turn-

ing points, n l and n2, vs G for D =G/&12. 1.

so that n& (n2. Obviously, we need G &G,z 2 to have
two real turning points or a multivalued steady state.
Conversely, in the region G & G,z 2 the steady state is sin-

gle valued, a condition that we used in connection with
the stability analysis in Sec. IIIA. It should be noted
that, since G & 0, n, is always positive and, thus, a part of
the S-shaped function is always unstable. We can now
distinguish three different parameter regions: I n, & n „
II n, ~n, &n2, and III n2 &n, . In region I the part of
the curve with np (n, on the lower branch in Fig. 2 is
unstable. The rest of the lower branch and the entire
upper branch are stable. Between the stable parts of the
upper and lower branches steady-state bistable behavior
is expected. Beyond the Hopf bifurcation point, n„ locat-
ed on the lower branch periodic oscillations appear. In
region II, n, falls on the globally unstable middle branch



4194 J. BERGOU, J. ZHANG, AND A. HOURRI

and is never realized. In this case, the upper turning
point becomes an effective critical point beyond which
non-Hopf oscillations appear. The entire upper branch is
stable. This situation is depicted in Fig. 3. Finally, in re-
gion III the critical point is located on the upper branch.
Beyond the critical point stable periodic oscillations
evolve. The rest of the upper branch, no )n„ is stable. A
typical situation is shown in Fig. 4. It should be men-
tioned at this point that the phase diagrams, thick lines,
exhibit a very similar behavior. In particular, stable re-
gions, turning points, and the critical point all occur at
the same parameter values.

In Figs. 5 —7 we summarize these findings. In Fig. 5
the turning points, n„n2, and the critical point, n„are
depicted as functions of the gain parameter, 6, for
D =G /12. 1. The regions correspond to the regions dis-
cussed above. In region I part of the lower branch is un-
stable, the critical point is a Hopf bifurcation point. In
region II the entire upper branch is stable, the upper
turning point is the effective non-Hopf bifurcation point.
In region III part of the upper branch is stable, the criti-
cal point is again a Hopf bifurcation point. In Fig. 6 we
display the G-D parameter plane. In this plane the equa-
tions G = (12)' D, n, =n &, and n, =n 2 correspond to
lines and play the role of separatrixes. They separate the
parameter plane into five regions. Above the line
G =(12)' D is region 3 (ii) of the previous subsection,
where no is a single-valued function of C, as in Fig. 1(c),
since 0 & 6 & 12D . The region below this line is region
B investigated in this subsection. The other two lines
divide region 8 further. In region I, some part of the
lower branch and the entire upper branch are stable. In
region II, only the upper branch is stable and the upper
turning point is a non-Hopf bifurcation point. Finally, in
region III, only part of the upper branch is stable. In
Fig. 7 we display the D-C parameter plane as for Fig. 6.
Region I is so smaH in this plane that we show the lower

3.0

2.5

2.0

1.5

1.0

2.5

2.0 I-

1.0

0.5

0.0
5 6

FIG. 7. Projection of the D, 6, C parameter space onto the
C-D plane. The inset shows the lower left corner of the main

plot enlarged to exhibit region I more clearly.

left corner of Fig. 7, region I, enlarged in the inset in or-
der to make it visible.

IV. DYNAMICAL EVOLUTION

So far, we have dealt with the steady states of the sys-
tern by replacing the time derivatives with zero on the
left-hand side of Eqs. (2.5) and (2.6). Let us now consider
time-dependent scenarios by keeping the full time depen-
dence in the equations. In this section we shall investi-
gate time evolution from a given initial condition. In
particular, in Part A we shall study how the system ap-
proaches steady state in those regions of the external con-
trol parameters where they exist. In Part B we shall in-
vestigate the states that evolve from a given initial state
in the unstable regions.

First, we rewrite Eqs. (2.5) and (3.6) in terms of the
scaled external parameters introduced in Eqs. (2.7) and
(2.8) and the scaled photon number and phase, n and P,
which are obvious generalizations of no and $0 for the
time dependent case, as

Qn

dt

with

0.0
0 10

and

G n2&nC-
~n =" sin

1+n 1+n
(4.2)

FIG. 6. Projection of the D, 6, C parameter space onto the
D-G plane. The different regions correspond to the different sta-
bility regions discussed in the text. with

(4.3)
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FIG. 11. n ptrajecto-ries for C =g, D =2.55, G =9 (cf. Fig. FIG. 12. Time evolution of the phase P with D =0.525,

G =5, C=0.75,

fix point with some trajectories running into others origi-
nating from it. It corresponds to the unstable steady
state on the lower branch. Any slight deviation from
point b or point c will result in passage to the stable point
a.

In the n /plane-, the point (n(t), P(t)) moves, with the
increase of the time t, along the integral curve and con-
verges ultimately to the table point a. Thus the time-
varying solutions are correlated with the trajectories of
(4.5) and the steady state with the singular points, a, b,
and c, in the n Pplane. -

B.Time evolution in the unstable regions

quency of these phase oscillations is the same as that of
the intensity oscillations, given by Eq. (4.6).

Before we develop an analytical theory of the frequen-
cy shift (the slope of the curves in Fig. 11) we display this
oscillatory behavior from another point of view. Namely,
we again discuss the integral curves, resulting from Eq.
(4.5). This time, however, instead of displaying the tra-
jectories in the n )plan-e, we will plot them in the X-Y
phase plane of quadratures [20], where X =+no costI)o

and Y =+no sinPo are the usual quadratures component
variables. Figure 13 shows the trajectories in the X-F
plane with C=0.75 and 6 =5 and D =0.525. Each tra-

In this subsection, we shall discuss time evolution from
a given initial condition in those regions of the external
control parameters where the steady state becomes unsta-
ble, i.e., beyond the critical point. This corresponds to a
choice of the initial condition such that n(0) (n, . We
find that n (t) oscillates around a value which is very
close to the critical intensity, n„after the initial tran-
sients have decayed. The period of oscillations, T, can be
found from

D=
C=

dP
C

cosP
1/22C

n,

(4.6)
0—

The phase P(t ) vs r is depicted in Fig. 12 with
D =0.525, 6=5, and C=0.75. The time dependence
has two ingredients. First, there is a constant shift of the
operating frequency which results in a steady increase of
the phase, strictly proportional with time. This is
represented by the average slope of the phase vs time
curve. Second, superimposed on this straight line devel-
opment, there is a small oscillation very similar to the os-
cillation of the average intensity. In particular, the fre-

FIG. 13. Integral curves in the phase plane of quadratures, L
and Y, with D =0.525, C =0.75, 6 =5.
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jectory approaches a stable limit cycle. The point
(X(t ), Y(t)), starting from any initial condition, after the
initial transients, i.e., after the approach to the limit cy-
cle, moves along the limit cycle as t increases. The period
required for the point to complete one cycle is given by
(4.6).

Finally, we turn our attention to the study of the
operating frequency of the laser. In our assumption, the
atom-field detuning is much smaller than the cavity-field
detuning, i.e., co —v(&Q —v. In fact, for the case of
stable frequency locking, the atom-field detuning van-
ishes. For the general case, we can write the field as [6]

E 0(- ~ l Vf (x ~ l COf (4.7)

dt

d — cosP
C

Qn, „
(4.8}

The above expression has some interesting consequences:
(1) For C =0 we have

Clearly, for frequency locking v=co and /=const. In the
unstable regimes the phase P of the electric field, in ac-
cordance with Fig. 12, can be represented as

P =b,vt +6$(0) cos(2n.t /T). The deviation from the
atomic frequency is given by b v = ( d P /dt ), where ( )
stands for tiine average (it should be noted that frequen-
cies are measured in units of y and time in units of y
throughout this section}. We can now expand the general
phase equation (2.6) to lowest order in y/I', keeping the
atomic detuning 5 in it as in Eq. (2.8), around the mean
values of the oscillations, n,„and hvt, to obtain

FIG. 14. Average operating frequency of the laser in the un-

stable region of operation. Corresponds to the average slope of
the curve in Fig. 12.

average deviation decreases. When C is larger than a
critical value, the average deviation is zero, i.e., frequen-
cy locking occurs. The mean operating frequency, v, vs
the coherence parameter, C, is plotted in Fig. 14 for the
unstable region of operation. The result of this calcula-
tion is in excellent agreement with the average slope of
the various P(t) plots in Fig. 12.

1+ G+1 2I

giving v=c0 —hv=(21Q+yco)/(21'+y), which is just
the operating frequency of a usual incoherently pumped
laser as given by the frequency pulling expression [1].

(2) If C & C, (D &D, ) the phase is locked, dP/dt =0.
This also involves the laser frequency being locked to the
atomic frequency, v=to. (Here C, and D, are the values
of the coherence and detuning, respectively, in the criti-
cal point. )

(3) For the intermediate case, when C & C, and
D &D„ there is no stable frequency locking. As it has al-
ready been discussed in connection with Fig. 11 the fre-
quency is shifted from the atomic frequency and superim-
posed on this shift, there is also a small oscillatory part of
the phase. The frequency shift is a function of the exter-
nal control parameters and can be obtained in analytical
form by taking the average of Eq. (4.8), yielding

2 1/2
C

(4.9)

1+n,„2I
As the amplitude of atomic coherence C increases, the

V. NOISE DYNAMICS AROUND STEADY STATE

In order to consider the effect of both atomic coher-
ence and pumping statistics on the quantum noise of the
laser we adopt the following model. We assume that a
beam of three-level atoms first passes through a prepara-
tion region then enters the laser cavity. In the prepara-
tion region, each atom is excited from a distant ground
level c to the upper level a of the lasing transition with a
probability p, and then interacts with a preparation field
producing the initial atomic coherence between the upper
level a and lower level b of the transition. When the
atoms leave the preparation region, they have a proper
form of the initial atomic coherence and pumping statis-
tics distribution, which, in some cases, can be adequately
described by the Bernoulli's distribution.

Inside the cavity, the system we are going to consider
is the same as in the previous sections, except for the in-
clusion of pumping statistics of the atoms: two-level ac-
tive atoms consisting of an upper level a and a lower level
b. These active atoms are injected into the laser cavity at
a rate r to interact with the laser field, and the initial den-
sity matrix is given by Eq. (2.1).

If we assume that the interaction time of each atom
with the field inside the cavity is much smaller than the
cavity damping time, the dissipation during the interac-
tion can be neglected. Let the jth atom enter the cavity
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at the time t and spend a time ~ inside the cavity. Vr'e

can write
I

4n (1+n)
A +6+1 An+ +C 11 sill

p! t, +r) =M(r)p(tj ) . (5.1)

p'"'(t) =M "p(O) . (5.2)

Here the operator M (r) describes the change of p( t~ ) due
to the interaction with a single atom and its explicit form
will depend on the particular model under consideration.

If n atoms cross the cavity from initial time 0 to the
time t, the density matrix of the field at time t is

D C cos P D&n Ccos(I}
2 2 2n n

&n C cosP
4(1+n)

8(1+n) [Dn (6+1)—2D&n C sing

(5.9)

%e have taken into account the fact that each atom finds
the field in the state prepared by the preceding atom.

Because the atoms have a pumping statistics distribu-
tion we must average Eq. (2.3) with the distribution. Fi-
nally, we have [11]

—p(t) =—ln[1+p (M —1)]p(t) .
dt p

(5.3)

If M —1 is small, we consider p an expansion parame-
ter, and expand Eq. (5.3)

p(t)=r (M——1)—+(M —1) + p(t) . (5.4)
d
dt 2

In Ref. [21], we have shown that even after including the
loss into the master equation, Eq. (5.4) remains valid in
the sense of an asymptotic expansion to adequately de-
scribe the time rate of change of the density operator due
to interactions with the gain reservoir.

In our model, we will consider a laser with the initial
atomic coherence and pumping statistics, so M is the
operator with the initial atomic coherence [5]. Using P
representation, Eq. (5.3) can be transformed into a
Fokker-Planck equation. In this paper, we want to dis-
cuss the properties of the intensity and phase of laser
field. So we will express the Fokker-Planck equation in
terms of intensity I and phase 1(t. Introducing n =(p/a)I
and P =P 8, where 8 is—the phase of p,b. We have

r

82d„— d&+s D„„+s D&&

&—n (6 + 1)C cosP+ C sin2$],

(5.10)

—(n ) =(d„),
dt

(5. 1 1)

—(y&=(d&),
dt

—((5n ) ) =2(d„5n ) +2m(D„„&,d

dt
(5.13)

—((5P) ) =2(d~5$)+2s(D~~),d (5.14)

—((5n)(5$)) =(d„5$)+(d&5n )+2m(D„&) .d

dt

(5.15)

where s=P/a and A =a/y. Here we assume the atom-
field detuning to be zero.

From the Fokker-Planck equation, we can get an
infinite set of ordinary differential equations for moments.
If we assume the noise to be very weak, c &(1, we can
truncate these equations into a finite set of nonlinear
equations. In this paper, we assume that only the first-
and second-order moments are nonzero. These nonzero
moments obey the following equations:

(6 —n)n
n

2&nC
1+n

C
d& =D — —cosP,

&n

a2
+2E D~ P, '

I)n B
(5.5)

(5.6)

(5.7)

Here we introduced the notations 5n = n —( n ),
5P=P —(!(}).In this section we will use these equations
to discuss the steady-state noise and the dynamical noise.

A. Steady state

D„„=(1+n)

A +G+1 (A —G —1)n+
2 . 2

+2C&n sing

n (1+6) 2C sin P+
2(1+n) (1+n)

2(6 + 1)C sinII}&n

(1+n)
(5.8)

First, we pay attention to the steady-state diffusion
coefficients. In steady state (no, go), for the stable values,

the value of sinPo is less than zero. So both the atomic
coherence p,b and pumping statistics p can reduce the in-

tensity diffusion coef5cient D„„, but only the atomic
coherence C can reduce the phase diffusion coefBcient

D&&. In steady state the diffusion coeScients are
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no A+6+1 A —6 —1
nn 2 2 2 0(1+no)

+2C+no sin/0

Expanding d„, d&, Dn„, D„&, and D&& around steady
state no, Po up to the first order in 5n and 5$, we get

d 2 = d
&(5n) &=2 d„&(5n) &

dn

no
no(1+G) 2C sin $0

2(1+no} (1+no)

2( G + 1 }Csingo+n 0

(1+no)
(5.16)

+2 d„&(5n5$) &+2E(D„„)o,
d

dP

(5.21)

D
1

4no(1+no)
A +G+1 + 0 +C~

2 2
nossn 0

(5.17)
+2 d& &(Sn5$) &+2e(D&&)o,

d
dn&0

Dno

4(1+no)
(5.18)

In the following we discuss the steady-state variances of
the intensity and phase. In the P representation, the in-
tensity variance is [20]

5 S~)&= d~ &(S ) &+ d„&(
dt dn &, 0

(5.22}

&(aI)'&=&(SI)'&+&I&,

and the phase variance is

(5.19)

(5.20)

d + d

+2e(D„~)o .

0
& (5n5y) &

(5.23)

where (5 ) corresponds to the normal ordered part of
(& )

By setting d ldt =0 in Eqs. (5.21), (5.22), (5.23), and solv-
ing for (Sn} and (5$}, then inserting these into (5.19)
and (5.20), we can get

and

& (gI )z
& Dz(DzD2z —D4D»n —

2D3D &2n)+D3n (D, +D3)D»=1+I n (D, +D3}(D2D4 D,D3)—

D4 (D4D» n D2D22 —2D
&

—D &2n }+D
&
(D

&
+D3 )D22

4 (D ~ +D3 )(D3D4 D ~D3 )

(5.24)

(5.25)

Here we introduced the notation D, =Bd„jBn,
D =Bd„iBQ, D3=dd~ldp, D =dd~idn, and
D

& )
= (D~~ )0 D )2

= (D~4)o D22 = (D~~ )o.

Using Eqs. (5.24) and (5.25), we can plot the values of
&(EI) &/I and &(bP} &I as a function of the injected
atomic coherence C for several sets of parameters. Inten-
sity noise as a function of C, for zero detuning, is plotted
in Fig. 15. The dashed line is for random pumping
(p =0), solid line for regular pumping (p =1). The pa-
rameters are D =0, 6 =5, and A =7.5. Phase noise is
shown in Fig. 16 and parameters are the same as in Fig.
15. We find that the injected atomic coherence can
reduce both the intensity and phase noise and the larger
the injected atomic coherence, the lower the noise. Also

we find that pump regularity is a very important factor
for intensity noise squeezing but has no effect on the
phase noise under the condition of zero detuning. In Fig.
15 there is almost 75% squeezing in the laser intensity for
C =2.25. We notice that the range of p,b depends on p„
and p&&, that is 0 ~p, b

~ (p„p&& )' . For our parameters,
the range of p,b is O~p, b ~0.3, so the range of C is
O~ C ~2.25.

In Figs. 17 and 18 we plot the intensity noise and phase
noise, respectively, as a function of detuning D, with
A =2.5, 6 = —1, and C = 1.25.

Though the noise with detuning is still larger than the
noise without detuning for the same initial atomic coher-
ence C, the coupling of initial atomic coherence C and
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FIG. 15. Intensity noise as a function of the amplitude of

atomic coherence C with A =7.5, D =0, and G =5 for p =0
(dashed line) and p =1 (solid line). The dotted line corresponds
to the vacuum noise level.

FIG. 17. Intensity noise as a function of detuning D with
A =2.5, G = —1, and C=1.25.

pumping statistics p suggest a way to reduce or even
squeeze the noise of the laser field. We will discuss this
aspect later.

B.Time-dependent behavior

In the previous sections we investigated both steady
state and time-dependent regimes of operation. Here we
will study the transient behavior of the noise around both
stationary steady states and time-dependent mean values.

Expanding the coefficients d„, d&, D„„,D&&, and D„&
around mean values (n )(t) and (P)(t), we have the

same equations as (5.18), (5.19), and (5.20), except now
5n =n no —is changed to 5n =n —(n )(t) and
Sy=y y, to Sy=—y (y)(t)—

First, we show in Fig. 19 the intensity as a function of
time for difFerent initial conditions. Three trajectories
starting at n (0)=0.1, n (0)=2, and n (0)=4, respective-
ly, lead to the same stationary values. Obviously they
have different transient behavior.

As discussed earlier, there is no squeezing of phase
noise in the steady state. The reason is the vanishing of
the pumping statistics term in the phase diffusion
coefFicient D&& in the steady state. In the transient re-
gime, we can have a nonzero pumping statistics term.

60
0.7

50—

40 j.

D=O.O
G=5.0

0.6

h 30

20—

A

0.5

0.00
I

0.75 1.50 2.25

FIG. 16. Phase noise as a function of the amplitude of atomic
coherence C. The parameters are the same as in Fig. 15. The
dotted line corresponds to the vacuum noise level.

FIG. 18. Phase noise as a function of detuning D. The pa-
rameters are the same as in Fig. 17.
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FIG. 19. Typical intensity transients for difFerent initial con-
ditions n (0)=4, n (0)=2, and n (0)=0.1, respectively. The pa-
rameters are A =2.5, D =2.0, 6 = —3.0, and C =0.75.

FIG. 21. Squeezing boundaries for a given detuning. Tran-
sient phase noise squeezing occurs if the initial intensity is be-
tween the dashed line and solid line. Parameters are same as in

Fig. 19.

This nonzero pumping statistics term leads to the tran-
sient squeezing of phase noise. This can easily be seen
from Eq. (5.9). For nonzero detuning D and sufficiently
large initial intensity n (0), the term D becomes the lead-
ing one in the phase diffusion coeScient. Under these
conditions, the value of D&& is negative and, thus, the
squeezing of phase noise occurs. We show this transient
phase noise ((bP) )I in Fig. 20 with D =2, A =2.5,
G = —3, C =0.75 for three initial intensities, n (0)=0.1,
n(0)=2, and n( )0=4, respectively. The curve starting
at n(0)=0. 1 is larger than the squeezing limit 0.25,
everywhere. A transient squeezing of phase noise occurs

for the curve with n(0 =)2. The inverted peak corre-
sponds to the minimum of the curve depicted in Fig. 19.
But there is an unphysical transient behavior for the
curve with n (0)=4. This means that there are some lim-
itations on the permissible initial intensities and other pa-
rameters where we are allowed to employ a linearized
treatment. Using ((EI)2)((hP) ) =0.25, we can Snd the
conditions under which the uncertainty principle is
satisfied. The results are displayed in Fig. 21. Other pa-
rameters are the same as in Fig. 20. The region under the
solid line is compatible with the uncertainty principle. Of
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FIG. 20. Typical phase noise transients for different initial
conditions n (0)=4, n (0)=2, and n (0)=0.1, respectively, with

p = 1. Parameters are the same as in Fig. 19.

FIG. 22. Typical intensity noise transients for different initial
conditions n (0)=4, n (0)=2, and n (0)=0.1, respectively, with

p = 1. Parameters are the same as in Fig. 19.
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course, this does not mean that the uncertainty principle
is violated outside this region. It simply means that our
quasilinearized treatment breaks down for initial condi-
tions that are too far off the stationary solutions. Above
the dashed hne squeezing of the phase noise occurs. %'e
plot the intensity noise as a function of time in Fig. 22.
The parameters are the same as in Fig. 20.

VI. CONCLUSION

We have analyzed the infiuence of the injected atomic
coherence on laser operation. The numerical results for
the intensity and phase of the laser have been obtained
from the semiclassical equations of motion. %e have dis-
cussed the steady-state laser operation first. It has been
shown that lasing without population inversion occurs in
the system. %e have also found that, in the usual laser re-
gime, i.e., above threshold, the plot of intensity vs ampli-
tude of atomic coherence, no(C), becomes S-shaped
(Figs. 2—4), similarly to optical bistability. With the help
of linear stability analysis we have shown that both below
and above threshold the no(C) curve contains unstable
parts. The size of the unstable region increases with in-
creasing cavity-field detuning. In the unstable region
both the intensity and phase exhibit periodic oscillations.
%'e gave an analytic expression for the oscillation fre-
quency.

In the stable region, the operating frequency of the
laser is locked to the atomic frequency. This requires
that C) C, where, in turn, the critical coherence is a
function of the detuning D and gain 6 in such a way that
with increasing detuning the instability region also in-
creases. In the unstable region, in addition to the oscilla-
tory behavior of the intensity and phase, there is also a

shift in the operating frequency of the laser. This shift ][s

such that our expression reduces to the frequency pulling
expression of an incoherently pumped laser when the arn-
plitude of the injected coherence is zero and rises mono-
tonically with increasing C to match the atomic frequen-
cy at the critical point. %'e can, thus, interpret the unsta-
ble region as a competition between the atomic frequency
and the pulled frequency of a detuned laser. The coher-
ence in this region is not suf5cient to maintain stable
1ocking to the atomic frequency but, via the driving terms
in the nonlinear equations of motion, it makes the laser
feel its presence in the dynamics and leads to the constant
interplay between these two frequencies. A study of the
trajectories of the laser reveals that in this case there is a
stable limit cycle in the phase plane of the quadratures.

We have investigated the influence of the pumping
statistics on the laser with injected atomic coherence. %e
have found that with random pumping statistics (p =0)
there is quantum noise reduction for both intensity and
phase, but there is no squeezing for any of them, because
the diffusion coefBcients DII and D&&, although reduced
by p,b, remain always larger than zero (Dtt 0 and

D&& &0). In the present paper, we have focused our at-
tention on the regular pumping statistics (p =1). In
steady state the regular distribution leads to the squeez-
ing of the intensity noise. For short times the phase noise
is squeezed (transient squeezing) and the solutions cru-
cially depend on the initial intensity.
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