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We investigate the effect of injected squeezed vacuum on the phase and intensity fluctuations of a
laser. By using a stochastic simulation of the Langevin equations, we find that the phase diffusion noise
of a laser with injected squeezed vacuum can be transiently reduced by a factor of 2, in agreement, with
earlier predictions. Further, we find that the laser linewidth is broadened. The key observation is that
the phase-diffusion rate is time dependent. We find that the steady-state intensity fluctuations are in-
creased by the injected squeezing, in qualitative (but not quantitative) agrecment with an earlier predic-
tion. The problem of locking is examined. We find that the injected squeezed vacuum does not cause
the laser to lock to any particular phase. We present an approximate solution of the Fokker-Planck
equation in steady state, and a simple geometrical, vector kick model from which most of our results can

be obtained.

PACS number(s): 42.55.—f, 42.50.Dv

I. INTRODUCTION

What is the lower quantum limit of the laser linewidth?
The theoretical lower limit was first obtained by
Schawlow and Townes; Awgy=C /27 =D, where D, is
the phase-diffusion rate [1]. Here C is the empty cavity
linewidth and 7 is the mean number of photons in the
cavity. This fundamental limit arises from amplified vac-
uum fluctuations and spontaneous emission noise, and is
due to the quantum nature of the field. Various schemes
have been proposed to reduce the linewidth below this
limiting value [2,3]. A few years ago, one of us [4] con-
sidered the case of squeezed vacuum rather than ordinary
vacuum incident on the output port of the laser. When
the phase of the squeezed field (relative to the laser field)
is chosen so that the field leaking into the cavity has re-
duced phase noise, the phase-diffusion coefficient of the
Fokker-Planck equation describing this system can be re-
duced by a factor of 2. As the phase-diffusion coefficient
can be simply related to the linewidth for an ordinary
laser above threshold, one might naively assume that a
reduction in the phase-diffusion rate would narrow the
linewidth by the same factor of 2. Subsequent calcula-
tions of the temporal eigenvalues of the equivalent
Fokker-Planck equation suggested however that the laser
linewidth could not be reduced by injected squeezing [5].
For an ordinary laser the smallest eigenvalue of the
Fokker-Planck equation is doubly degenerate, and equal
to the laser linewidth Awgy. The results of Ginzel and
co-workers [5] indicate that as the amount of squeezing is
increased, this degeneracy is broken, with one eigenvalue
becoming smaller, and the other larger, than Awgr. The
eigenvalue that initially decreases with increased squeez-
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ing was shown to reach a minimum much greater than
Awgr/2 and then increase as the squeezing is increased
further. The implication was that the laser linewidth
could not be lowered to the value of Awgr/2, or substan-
tially reduced in any meaningful way.

To shed some light on the noise properties of a laser
with injected squeezed vacuum, we have taken the
Fokker-Planck equation for this system, and have formed
an equivalent set of Ito stochastic differential equations.
These were then directly simulated on the computer. We
find that the laser phase-diffusion rate, defined as

([¢(z+T)—(1)]*)

D(t)=1lim , (1)
r—0 T

can indeed be made as small as D,/2, for times small
compared to (1/Awgr)e ~2"=(1/Dg)e ~ %, which we refer
to as the relaxation time 7z. Here r is the usual squeez-
ing parameter. This transient reduction in the phase-
diffusion rate is not immediately obvious because one
might expect that the phase-diffusion rate could not in
any case be smaller than the smallest eigenvalue calculat-
ed by Ginzel and co-workers [S]. For times comparable
to the relaxation time, and for large 7, the average phase-
diffusion rate increases to a value of (Awgp/4)e?
=(Dy/4)e?. Here we refer to the time averaged phase-
diffusion rate as the average phase-diffusion rate. This
average phase-diffusion rate is one half of the value ob-
tained when the squeezed light is phased such that in-
creased phase noise is injected into the cavity.

As the intensity of the laser satisfies an equation of the
form

I=(A—C)I—BI? )
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in the semiclassical theory, it seems possible that the laser
would quench the large amplitude fluctuations that it
must see when quiet phase light is injected. The laser
would then seem to prefer the state where it sees reduced
amplitude fluctuations, and hence increased phase fluc-
tuations. From this naive picture, one might think that
intensity fluctuations are reduced in the steady state, but
they are actually enhanced [6]. According to Marte,
Ritsch, and Walls [3], this is a stable steady state,
whereas the steady state with reduced phase noise is un-
stable. Marte, Ritsch, and Walls have considered the
effects of squeezed pumps as well as injected squeezing,
and it is the latter work that is relevant here. Our results,
however, do not support this interpretation. This state is
not stable as the laser phase suffers large phase kicks in
this state, and eventually the laser phase explores all pos-
sible angles. The steady-state fluctuations in amplitude
(as well as phase) are an average of the ‘“quiet” and
“noisy” values. In the steady state, there is no corre-
sponding decrease in amplitude noise. The laser phase is
uniformly distributed over 2w, but the phase-diffusion
rate is dependent on the relative instantaneous phase of
the laser and injected squeezing. This phase, defined as
¢.s, is constantly changing. Thus the average phase-
diffusion rate in the steady state will be the average over
all possible phases weighted by the probability that the
laser field occupies that phase. This is in general larger
than when no squeezing is present.

We also present results of a direct numerical solution
of the Fokker-Planck equation, which can be described
for large laser intensities by a fairly simple approximate
form. The results of this work are consistent with those
obtained from the simulation of the Ito stochastic
differential equations. Finally, we present a simple semi-
classical vector kick model that reproduces results ob-
tained by the more rigorous treatments described above.

Overall, we find that the laser with injected squeezed
vacuum behaves as a laser with one half the phase-
diffusion noise of a normal laser, but that this behavior is
transitory. However, we stress that the time over which
the phase noise is reduced is indeed a useful one, and that
the essence of earlier predictions is correct [4]. The
phase-diffusion rate is reduced for a time short compared
to the integration time necessary to resolve the laser
linewidth (1/Awgr); after this times it becomes
significantly greater than in the unsqueezed case, result-
ing in an increased linewidth. We should note that the
transient nature of the noise reduction is to be expected
in all practical applications of squeezing, and not just in
the present model. Unless special precautions are taken
to ensure that the squeezed light and local oscillator drift
in phase together, the noise will only be reduced for a
range of times where the relative phase has the correct
value. At other times, the phase mismatch will in general
result in increased noise.

II. PHYSICAL MODEL
The system under consideration is depicted in Fig. 1.

The master equation for the laser with injected squeezing
is [4,6]
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FIG. 1. Schematic of the physical system under considera-
tion, a single-model ring laser with squeezed vacuum injected
into the output port.
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where A is the linear gain, C is the loss rate, and B is the
saturation factor as in the equation for the laser intensity
in standard third-order laser theory, Eq. (2). The
squeezed reservoir is described by N and M. Here
N =sinh?r, M =cosh(r)sinh(r), where r is the usual
squeezing parameter, and ¢;5=d¢; —¢s is the relative
phase between the laser field and the injected squeezed
vacuum. ¢;5(0) is the initial value of this angle. When
this angle is zero, the laser mode sees reduced phase fluc-
tuations, i.e., the error ellipse is aligned such that the
long axis is aligned with the laser field. The equivalent
Fokker-Planck equation for the Glauber-Sudarshan P
distribution is

[ei¢LS(0)(a2p—Zapa +paz)+H.C-] ’ (3)

OPle,t) 1| 8 , - gl
9 2
- aa*(A—C—BIaI )
. 2 2
— CMetes© _a_2+ d .
da® da*
2
+2(A+CN) P(a,t) . 4)
da*da

For ¢;4(0)=0, and using the Cartesian representation
defined by the transformation,

a=x'+iy', a*=x"—iy’, x'=lata*),

y'=2i(a—a*) , 5)

i
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and letting a=V2(4—C)/VAB, b=C/A; x*
=V2B/Ax'%, y*=V2B/Ay"?, and 7=V AB/2t, we
obtain

_ll 2r__ aZ

+ l+2(e 1)]—ax2

+ 1+£(e‘2’—-1) & P (6)
2 Iy? '

Using these expressions we finally obtain the equivalent
set of Ito stochastic differential equations for ¢,;4(0)=0
initially.
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dw.

x

dx=21[a—(x*+y?)]x dt+ ‘1+§(e2’—1)

dy=1a—(x2+yH)lydt+ )

1/2
1+—g—(e"2r—1)l aw

(8)

Here the dW; are independent Wiener processes. We
note that the equations for ¢;¢(0)=m/2 are obtained by
setting r— —r in the above equations, but that more
complicated expressions are required for arbitrary
¢:5(0). The squeezing parameter r only appears in the
noise terms, and does not affect the deterministic parts.
We also note that the noise terms are positive definite for
b <2, and hence to describe the laser above threshold
(b =1) the normal P representation is adequate, and we
need not use the positive-P representation. As
I=(x*+y?) we have

AL ®X 9y D — (a1 . ©)
Neglecting noise, we have two steady-state values I =a,
and I =0, just as in the case where ordinary vacuum
fluctuations are incident on the output mirror. These
correspond to the laser above and below threshold, re-
spectively. The phase diffusion rate D, for the ordinary
laser is [1]

1(44C) __1 BC
== =— 1+C/A4). 1
D, 4 - n A—C( /A) (10)
Letting Dt =D 7, we have using our scaled time
~ b 1
Dy=—(14+b)=—, 11
0 2a( ) a an

when b is approximately 1, i.e., for a laser not too far
above threshold. In terms of our scaled time, the relaxa-
tion time is

TR=?ab~e*2’z%e_2' . (12)

This is a characteristic parameter of the laser with inject-
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ed squeezed vacuum which will be referred to repeatedly
in what follows. A discussion on the physical origin of
this time scale appears in Sec. VI E. Note that for no
squeezing (r =0), 7, =~ 1/D,, whereas if r >0, 7z <1/D,,.
The origin of this relaxation time will be discussed in Sec.
VL

III. RESULTS OF SIMULATIONS OF STOCHASTIC
DIFFERENTIAL EQUATIONS

A. Algorithm

The Ito stochastic differential equations were simulated
on the computer using a simple Euler integration
method. The Wiener processes were simulated as
aw,, =§x,y\/dt, where £, , is a random number that is
generated from a Gaussian distribution with unit mean
[7]. We have checked that making time increments
smaller and the number of trajectories larger does not
change the result substantially. Typical numbers used
were 10* trajectories and 10° time steps. To further veri-
fy that our program functioned properly, our simulations
exhibit the laser intensity building from zero intensity to
the steady-state value of @, independent of the value of r.
We give results here for different choices of r and for
¢,5(0)=0 and 7/2. For ¢;5(0)=0, noise in the x direc-
tion (amplitude) is enhanced while the noise strength in
the y direction (phase) is reduced. (Of course, the con-
cepts of phase and amplitude noise are only meaningful
for large photon numbers, as in a laser.)

B. Phase-diffusion rate

Figure 2 shows the dependence of the phase-diffusion
rate on time. In the usual theory of the laser linewidth it
is assumed that the phase-diffusion rate is independent of
time. This is certainly not the case for a laser with inject-
ed squeezed vacuum. Here the laser linewidth cannot be
calculated via the usual Schawlow-Townes argument.
Figure 3 shows a plot of the phase-diffusion rate for times
small compared to the relaxation time. In this transient
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FIG. 2. Phase-diffusion rate as a function of time for r =2,
a =100, b=0.95, and ¢,;5 =0 initially. The phase-diffusion rate
is equal to one-half the Schawlow-Townes rate D, for short
times, and grows to an enhanced value, approximately
e¥/4=13.1D,.
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FIG. 3. Phase-diffusion rate as a function of time for r=3,
a=100000, and b=0.95, for times short compared to the relax-
ation time, which is approximately 130 sec.

regime, the phase-diffusion rate is indeed approximately
one half of D,. In Fig. 4 we present a plot of the value of
the transient phase-diffusion rate Dy as a function of the
strength of the injected squeezing, . Dy is defined as a
time average of the phase-diffusion rate over times small
compared to the relaxation time. Recall that the relaxa-
tion time decreases with increased squeezing, so that the
time over which quiet phase noise persists is reduced as
the amount of squeezing is increased. The amount of
phase noise reduction during that period is of course in-
creased as the amount of squeezing is increased. Error
bars are smaller than the symbol designating the data
point, and typically are in the neighborhood of 1%. Note
that as the amount of squeezing is increased, the phase-
diffusion rate is indeed reduced to one half the value
when there is no injected squeezing. The solid line in Fig.

|

P _ . bM 3
a1 [(a DI+2(1+4bN)]— 7 3.5
32
_2bMaIa¢ s1n(2¢Ls)+2I ¢Ls

Assume that the initial P distribution is narrowly local-
ized around the phase ¢;3=0. Equation 14 can be used
to calculate the evolution of the phase uncertainty
(A¢?s)=(¢25), multiplying both sides by ¢2¢, and in-
tegrating over I and ¢;¢. The result, after integrating by
parts and setting all of the surface terms to zero, is

d . | 1+bN—bM cos(24,5)
d'r<¢1‘s(t))—< - )

#rssin(2¢,¢) >
-7 |

Next, assume that the average values of products of I and

+2bM< (15)
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FIG. 4. Plot of the time averaged phase-diffusion rate (aver-
aged over times short compared to the relaxation time) versus
the strength of the squeezing r. The circles represent the nu-
merical data, and the solid line the analytical approximation,

Eq. 13.

4 is an approximate solution for the phase-diffusion rate
valid for short times [4],

p=L1l1+Ler
a 2

1 -
~—(1+e™ ¥
2a( e )

b
=—2—°(1+e_2’) . (13)

There is a striking agreement between this approximate
solution and the direct numerical simulations. To see
how this solution arises, consider the Fokker-Planck
equation written in polar coordinates,

2

——sin(2¢,5)+2[1+bN +bM cos(2¢Ls)]

[1+bN—bM cos(2¢,5)] |P (14)

é,.s approximately factorize, and that (1/I)=1/a
(small intensity fluctuations). Also, if P(I,¢;g,t)
remains, for short times, localized near ¢;;=0, the tri-
gonometric functions may be expanded, with the result

%wzs(mz% 1+§<e—2r 1 +6———-(¢Ls(t))

(16)

If the initial relative phase is free from uncertainty, and
equal to precisely zero, Eq. (16) yields the result (13) for
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the short-time phase-diffusion rate [compare to the
definition (1)]. For longer times, the phase uncertainty
would appear to grow exponentially. The factor
6bM /a ~3be "% /2a (large r approximation) equals
(3/4)(1g )" !, where 75 is the relaxation time defined in
Eq. (12). A simple physical argument of the origin of this
time scale is given in Sec. VI E. For arbitrary ¢;5, one
obtains

D
D= TO( 1+sinh? —sinhr coshr cos2¢, ;) (17)

as first discussed in Ref. [4].

At later times, Eq. (17) clearly does not describe a sim-
ple phase-diffusion process, as evidenced by the
amplitude-phase coupling term, which is dependent on
M. Eventually, at times long compared to the relaxation
time, the average phase-diffusion rate is found, from the
numerical simulation, to increase to the value

Dy ~(1/4)e* Dy , (18)

for large r. Again, D is a time average of the phase-
diffusion rate, taken after many relaxation times. For
¢rs=m/2, (Fig. 5) we find that the transient phase-
diffusion rate is initially increased but the average phase-
diffusion rate decreases with time to D, which is the
value one obtains by averaging Eq. (17) over ¢;g. This
rate is also the average value of the phase-diffusion rates
at ¢; =0 and ¢, g=m/2. We show in Sec. IV that the
laser phase is equally distributed over 27 at long times.

For any initial choice of ¢;g, the average phase-
diffusion rate is D. The laser phase is found to be uni-
formly distributed over 27, and hence the time average of
the phase-diffusion rate D is the average of the values of
the phase-diffusion rate at all angles, essentially an aver-
age of the quiet value (¢;¢=0), and the noisiest value
(for ¢;s=m/2). The laser linewidth will be determined
essentially by the steady-state phase-diffusion rate, and
hence the laser linewidth is approximately broadened by
a factor of %ez’, for large r, with injected squeezing.
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FIG. 5. Phase-diffusion rate as a function of time for r=2,
a=100, and »=0.95. The dashed line is for ¢;5=0 initially,
the solid line for ¢, s = /2.
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C. Intensity fluctuations

We have also considered the intensity fluctuations of
this system. Pedrotti and Gea-Banacloche have predict-
ed that the steady-state intensity fluctuations should be
enhanced by a factor of %sinhz(r)z-;—ez’ above the value
in the absence of squeezing (AI*/I*=2/a? in our units).
This result was derived using a truncation scheme for the
coupled moment equations resulting from the master
equation, as well as an assumption that the laser locked
at ¢, =m/2. In Fig. 6 we present a plot of AI?/I? as a
function of time for initial values of ¢; ¢ of 0 and 7 /2, ob-
tained from the simulation of the stochastic differential
equations. For ¢;¢ initially O, the asymptotic value
disagrees with Ref. [6] by a factor of 2; the intensity fluc-
tuations are twice as large as predicted earlier. This
value is also reached if the initial value of ¢;¢=7/2, or
for any other value as well. This is explained in later sec-
tions; here we note that one assumption of Ref. [6], the
locking of the laser phase to ¢, = /2 is contradicted by
our numerical results, which show that the laser phase
uniformly explores all 27

IV. NUMERICAL SOLUTION
OF THE FOKKER-PLANCK EQUATION

A. Algorithm

In this section, we discuss the numerical solution and
analytical approximation to P(I,¢;s). In Ref. [5] it was
shown how the numerical solutions to the Fokker-Planck
equation could be obtained in polar coordinates; using
the variables I and ¢, (field intensity and relative phase,
respectively), and expanding P(I,¢,¢) in a doubly infinite
series, using trigonometric functions for the ¢, depen-
dence and Laguerre functions for the I dependence. The
resulting eigenvalue equations for the coefficients can
then be solved numerically by a continued fraction
method. This approach works well for relatively small

0 1

0 10 20
T/ TR

FIG. 6. Intensity fluctuations as a function of time, for times
long compared to the relaxation time. The y axis is scaled to the
value without squeezing. Results for =100, b=0.95, r=2,
and ¢, =0 (solid line) and ¢, s =0 (dashed line).
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values of a, but becomes cumbersome for a >>1; the
reason is that the Laguerre functions are not really well
suited to the problem, and the expansion converges
exceedingly slowly for large a (more than 150 terms are
needed for a =10). As we wish to consider larger values
of a, another approach is necessary.

Here, we retain the Fourier expansion for the variable
&5, which converges fairly rapidly when r, the squeezing
parameter, is not too large, and simply discretize the
function in the I variable, replacing the derivatives with
respect to I by a finite difference scheme. The solution to
the time-dependent problem requires then the diagonali-
zation of an N XN matrix, where N=n ng,. is the
product of n,, the number of points in the interval I ;,
to I,,, where the function is evaluated, and ng,, the
number of trigonometric functions kept in the Fourier
series. This method is relatively straightforward to pro-
gram, and the lowest eigenvalues of the matrix can be
directly identified with the eigenvalues of the Fokker-
Planck equation (finding the eigenvalues and eigenvectors
is much more complicated in the continued-fraction
method). For large a large matrices are again needed: as
an extreme example, the calculation for a =100 and r =1
required ng,., =5 and n,, =100, leading to a 500X 500
matrix which can, however, be diagonalized in less than
an hour using MATHEMATICA on a small workstation.

B. Approximate analytic approximation for the P distribution

The numerical calculations show that, in fact, for large
a the steady-state P distribution is well described by the
following very simple form

—(I—a? /2014 5)?

Po(l,¢,5)= 217_13/2 201(¢.5) ’ (19)
where
AI(¢;5)*=2+2b sinh?(r)
+2b sinh(r)cosh(r)cos(2m;g) . (20)

This approximation is already fairly good for a =10, pro-
vided r is not too large (r =0.5 or so). The exponential
part of Eq. (19) can be derived easily from the Fokker-
Planck equation in the variables I, ¢, ¢, by changing vari-
ables to x =I —a and keeping only the terms proportion-
al to a.

The prefactor 1/AI(¢, ) in Eq. (19) (which, we should
point out, we have not succeeded at deriving by any sim-
ple analytical means) has the effect of making the phase
distribution

Po(drs)= [ "PolLds )dI=—2—1; , 1)

that is, the phase distribution is flat, all the phases appear
to be equally probable; the greater height of the distribu-
tion at ¢, 5 == /2, where it is narrowest, is compensated
by its greater width at ¢, ¢ =0, 7, where it is lowest (see
Fig. 7). This is supported by the results of our numerical
calculations; direct numerical solution of the Fokker-
Planck equation and the simulation of the Ito equations.
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That is, although the calculated phase distributions do
show a very slight modulation, this effect decreases as the
precision of the calculation is increased.

C. Phase diffusion

A numerical solution for the steady-state P distribution
is presented in Figs. 7(a) and 7(b). At first glance, it ap-
pears that the laser phase spends more time in the noisy
phase region around ¢,5=m/2. However, if one in-
tegrates over the radial variable to find a probability dis-
tribution for the phase, it is 1/(27) for all angles, mean-
ing that any relative phase of the laser field is as likely to
occur as any other. Alternatively, we may say that the
laser phase is uniformly distributed. For r as large as one
(injected light 85% squeezed), the numerical calculations

(b)

FIG. 7. Plot of the steady-state P distribution, calculated nu-
merically using the method discussed in Sec. IV, (a) three-
dimensional view, (b) a contour plot.
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place an upper bound on the modulation of the phase dis-
tribution at less than 1%. We conclude, therefore, that
the steady-state solution of the Fokker-Planck equation
does not support the idea that locating at any particular
phase takes place at all in this system.

It is obvious from our discussion that there is no
steady-state value for the phase, in contrast to the case of
a squeezed pump [3]. As every phase is equally likely, we
see that the average phase-diffusion rate is just the aver-
age of all possible values, D ~ (e /4)D,.

D. Intensity fluctuations

Equation (19) indicates that, for a given phase ¢, the
spread in intensity of the function Py, is given by AI(¢, ).
The conditional variance of the Gaussian distribution
[AI%¢.5)] oscillates between a maximum at ¢,5=0,
AI*(0)=2+b(e*—1) and a minimum at ¢,q=m/2,
AI*7/2)=2—b(1—e ?). Note that for large r the
minimum value of AI*(¢,s) approaches 2—b, which is
positive as long as the laser is above threshold (b <1)
and, in fact, as long as the condition b <2, necessary for a
positive definite diffusion matrix, holds

The overall intensity variance predicted by (20) is the
average of the conditional variance

Al(¢y ) /17
=(2/a*)[1+b sinh*(r)+b sinh(r)cosh(r)cos(26,)]
22)
over the uniform phase distribution, i.e.,
AI?/I*=(2/a®)[1+b sinh*(r)] . (23)

This also coincides with the average of the conditional
variances at ¢, =0 (laser field in phase with squeezed
vacuum) and ¢;¢=m/2 (laser field in quadrature with
squeezed vacuum). When r is equal to zero, one obtains
the standard result for an ordinary laser, i.e., a variance
of two in the normalized units; converting again to ordi-
nary units one can write, for the size of the photon num-
ber fluctuations in the cavity

An?=(An) 1+—i¢sinh2<r)

=<
B

1+—§-sinh2(r) ] , (24)

where the subscript O refers to the situation with no in-
jected squeezed light. In the limit of large squeezing, and
for a laser not too far above threshold ( 4 =C), the injec-
tion of squeezed light, therefore, increases the photon
number variance by a factor of about e?"/4. This is in
agreement with our earlier results obtained from numeri-
cal integration of the corresponding Ito stochastic
differential equations.
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V. INTERPRETATION OF RESULTS

We present here a simple graphical picture (Fig. 8) of
the behavior of this system along the lines of Schawlow-
Townes arguments. Initially, ¢, =0, so the cavity field
is coupled to fluctuations that have small phase noise. It
is possible to think of laser phase noise as being in part
due to amplified vacuum fluctuations and part due to
spontaneous emission into the lasing mode. That part of
the laser phase noise due to amplified vacuum fluctua-
tions is “‘quenched” by the reduced phase fluctuations in
the squeezed vacuum entering the cavity, and as a result,
as long as the phases are right, the effect on the laser
phase of a spontaneous emission “kick” is reduced. Asa
result, the laser phase slowly diffuses away from the op-
timum point ¢, =0, and as it does so, the probability of
events that significantly alter the phase of the laser field is
increased, as the projection of the error ellipse along the
direction perpendicular to the field is increased. Essen-
tially, the large amplitude noise becomes phase noise in
the laser field. Thus the phase-diffusion rate begins to in-
crease, and eventually ¢,s=m/2. This is not a stable
steady state as the phase-diffusion rate is very large com-
pared to the nominal rate, and the laser phase is very
quickly kicked away from this point. The laser phase
does not “lock” to the injected squeezed field as it would
to an injected signal of a well-defined phase. As it is
kicked away, the phase-diffusion rate decreases again un-
til eventually ¢, is kicked significantly away from
¢, =m/2, perhaps even back to 0 or 7. In the limit of
larger r, the width of the noise ellipse goes to zero, but
the probability for a spontaneous emission event perpen-
dicular to the field can only be reduced to one half the
unsqueezed value. This is due to the fact that we are only
reducing the vacuum fluctuations that are injected into
the cavity, but we are not able in this scheme to modify
the other part of the spontaneous emission [10].

Essentially, as the laser phase explores the full 27
available to it, the intensity fluctuations are sometimes
enhanced (by e?’) and sometimes decreased (by e ~*") rel-
ative to the laser with no squeezing, and likewise for the
instantaneous phase-diffusion rate. Hence the time aver-
aged expressions for the phase-diffusion rate and variance
of the intensity are essentially enhanced by +(1+cosh2r)
over the value when no squeezed light is injected. For
large squeezing, this results in an enhancement of
~(1/4)?"

FIG. 8. Schematic of the geometrical vector kick model.
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V1. VECTOR KICK MODEL

A. Physical description

The results of this paper can be obtained in a simple
semiclassical pictorial analysis. This results from con-
structing a simple mathematical model that is based on
the physics discussed in the preceding section. We
represent the complex electric field in the cavity as
E =Eoe'¢"5 as a vector as shown in Fig. 9. We further
use units such that the square of the field yields a photon
number, i.e., the field is scaled by the electric field per
photon. The length of the vector is the magnitude of the
field E and the phase (¢,5) of the field is the angle that
the vector makes with the real axis. It is along this axis
that the major axis of the error ellipse of the squeezed
vacuum lies. The vector sits in a frame rotating at the
nominal laser frequency so that ¢, ¢ would not vary for a
monochromatic field. The effect of the two noise sources,
spontaneous emission into the lasing mode, and vacuum
fluctuations leaking into the cavity, can be represented by
vector addition as shown in the phasor diagram (Fig. 9).
The field after one spontaneous emission kick Eg and one
kick from the vacuum Ej is

EeS=FE+E;+E,
=Eqe' S+ Egpe'’s
+EV0(coshreioV+sinhre oy (25)

These kicks will be taken to occur at the cavity photon
loss rate (which is approximately equal to the linear gain
rate close to threshold). Here the last term represents the
injection of the squeezed field which is taken to have
minimal noise along the direction ¢, =m/2. Our choice
is based on the operator Bogoliobuv transformation that
maps ordinary vacuum into squeezed vacuum. Further,
the phases of the spontaneous field and the squeezed vac-
uum, 65 and 6y, respectively, are assumed random and
independent of each other. The amplitudes of the noise
contributions, or kicks, are taken to be

E E
50 _~vo _ 1_= 1_, 26)
Ey E, Vo V2,
P R4 .
e Vo v
y ',' .
¢
E'," ESO o5
e D - -
‘O
0'
¢ a4
LS,
40”' Eo
Ors

X

FIG. 9. Schematic of vector kick model of phase diffusion for
the laser with injected squeezed vacuum.
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with 77 =1, being the average number of laser photons in
the cavity in steady state. This choice is consistent with
the interpretation that, with no squeezing, vacuum fluc-
tuations and spontaneous emission each add one half of a
photon per cavity lifetime. We will find that this choice
is necessary for the results of the vector kick model to
reproduce the results from the previous sections. This is
also consistent with considering the strength of the noise
due to the gain reservoir (spontaneous emission into the
cavity mode) being equal to the noise due to the loss
reservoir (amplified vacuum fluctuations) near threshold,
where the gain is approximately equal to the loss. This is
also consistent with the results of a calculation using a
symmetrical ordering of operators, as opposed to normal
or antinormal ordering [9]. For a good treatment of the
effects of operator ordering on the interpretation, or
cause of a quantum mechanical process, we point the
reader to several references [10,11].

B. Phase diffusion
Multiplying Eq. (25) by Ee 15 and taking the imagi-
nary part of the resulting expression leads to
Srs— s = %[sin(es—(hs )+coshr sin(6y, —¢;5)
0

—sinhr sin(8, +é.5)] 27)

where the fact that each phase kick is small has been used
to set sin(¢d7s —d;s)=drs—@.s. Since the phases of the
added fields are random, the average value of the phase
kick is zero. Consider now the fluctuations, which result
in a nonzero average value of the square of the phase
kick. Squaring Eq. (27) and performing an average gives,

(Bls—ps )= 4—}—[ 1+ cosh?r +sinh?r
0

—2coshr sinhr cos(2¢;5)] . (28)

Here, we have set I;=I,=E}=# since the steady-
state intensity is maintained at, approximately, a constant
value by gain saturation. The spontaneous kicks occur at
the gain rate 4 ~C (near threshold) and the vacuum
kicks occur at the loss rate C, the rate at which the vacu-
um fluctuations leak in. Thus, we have

2 (($i5—4s")=D, 29)
with
= Z-IC—[ 1+ cosh?r +sinh?r —2coshr sinh7 cos(2¢, )]
0
(30)

Note that for the laser phase originally along the direc-
tion of minimum phase fluctuations, (i.e., ¢; 5 =0),
C

D= Ho— + 4—?0(coshr —sinhr)?

D
=—5‘1(1+e"2') X 31)
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This agrees with Eq. (13) obtained by more rigorous
means. An average over a time long enough so that the
laser field wanders through all phases (as indicated by our
numerical results) leads to an enhanced phase-diffusion
rate of

C
D=D,cosh’r=——e?" 32
OCOS r 810 e ( )

for large r.

C. Intensity fluctuations

A similar procedure can be used to obtain the uncer-
tainty in intensity, starting with Eq. (25) and squaring
both sides to obtain

I'—I,=[1+sinh?r +coshr cos(5—8))
+sinhR cos(8g + 6, )+ coshr sinhr cos(26y,)]
+2v/1,/2[cos(¢ s — O5)+coshr cos(d s — 0 )
+sinhr cosh(¢;s+6,)] . (33)

The phases of the noise fields are random so the terms
involving these phases, (i.e., the interference terms) aver-
age to zero. The fields add incoherently to the semiclassi-
cal cavity field. That is, the pair of noise events adds the
amount,

SI=(I'—1I,)=1+sinh% . (34)

Due to gain saturation and the assumption that the num-
ber of photons in the squeezed field (sinh?r) is much less
than I, this noise does not appreciably change the aver-
age intensity of the laser field. However, in agreement
with the results of the main body of this paper, the intro-
duction of the squeezed vacuum does drastically effect
the variance in intensity. The fluctuations in intensity
can be calculated using Eq. (33) as,

SUIH)=(I'—1y)*)
=4I ,+ 41 jsinh?r +2I jcoshr sinhr cos(2¢,5) , (35)

where we have assumed that I, >>cosh?r.

We now show that adding this noise term to the usual
classical equations of motion for the photon number in a
laser field leads to the results presented earlier in this pa-
per. The equation of motion for the expectation value of
the photon number is taken to be

(IY=((A—C—BDI)+C8I
=(A—C),—BI}—BA(I*)+C8I . (36)

Here we have written I=I,+Al. The last term

represents the noise added due to the two noise sources.
The equation of motion for d (I2)/dt is then

<d (%

dt

>=2((A —C—BDI*)+C8(1?%)

=2(4—C)I3+AI*)—2B(I*)+C8(I%) .
37
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Here again, the first terms come from the deterministic
change in I due to gain saturation, and the last term
represents the change in I due to the two noise sources.
To proceed, we use the approximation that
{(I?)=I’+3BIAI*. Using this, and solving Egs. (36)
and (37) in steady state gives
A—C :
I= B (38)

and
T PP I
AT 2B [8(1°)—21,61]

= % [1+sinh?r +coshr sinhr cos(2¢;5)] . (39)

Note that this shows the expected behavior of
enhanced number fluctuations at ¢;¢=0 and , and re-
duced fluctuations at ¢, =m/2 and 37 /2. Note that this
is not a true steady-state value but rather is an average
taken over many cavity lifetimes but before the phase has
wandered significantly from ¢;5. The steady-state value
is the average of Eq. (39) over equally weighted phases.
Again, our rationale for this is based on numerical results
that indicate that the instantaneous laser phase is uni-
formly distributed over 277. This gives

AIZ:% iH—sinhzrl

=(AI%), [1+sinh2r

) (40)

in agreement with Eq. (23). Here we note that if we took
the laser phase to be locked at ¢;¢=m/2 or 37 /2, we
would obtain the results of Ref. [6], where exactly that
assumption was made. In the equations of Ref. [6], if one
averages over all possible values of the laser phase, one
obtains the result presented in Eq. (40).

D. Dynamical evolution of the laser phase

We now discuss the locking of the laser, or more ap-
propriately the lack of locking in this system. As noted
earlier, the phase does not lock to ¢, ¢=m/2 or 37 /2 as
discussed in earlier treatments of this problem [3,6].
Rather there is a tendency for the phase to drift towards
these values but in fact the phase wanders through all
values. In steady state, the field is equally likely to be
found at any phase. This is not uniform phase diffusion
as in the usual laser, as we have seen from our previous
results, but occurs in a more complicated fashion. The
field does tend to be driven towards ¢, ¢ =7/2 or 3m/2
more often than towards ¢;¢ =0 and , but near ¢;s =0
and 7 the phase tends to stick because of the smaller
phase diffusion in that vicinity. That is, the phase does
tend to oscillate about ¢, ¢ = /2 or 37 /2 with occasional
long-lived forays into the regions surrounding ¢;s=0
and 7. In Fig. 10, we present the time evolution of the
laser phase for representative individual trajectories from
the numerical simulation of the stochastic differential
equations. All trajectories viewed show similar behavior.
The tendency to be driven towards the “poles” can be
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FIG. 10. Output of simulation of stochastic differential equa-
tions, showing the temporal evolution of two representative tra-
jectories. Here a =100, b=0.95, and r=3.

seen from the simple geometrical picture. The laser field,
at a given time, is equally likely to receive a kick which
tends to increase or decrease its phase. However, the size
of the resulting phase change due to a single squeezed
noise event is not symmetric as can be seen from the
figure below. For simplicity, consider the field represent-
ed in Fig. 11, where ¢, =m/4. Noise events along the
long sides of the squeezed noise ellipse contribute to a
larger phase change for the event which drives the field
towards ¢; ¢ =m/2 than the one which drives the field to-

pi

e

X

FIG. 11. Vector kick model for ¢,;5=m/4. Here AO. is the
phase kick associated with spontaneous emission events that
would increase the phase noise, and A8 is the phase kick asso-
ciated with spontaneous emission events that would decrease
the phase noise.
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wards ¢;¢=0. The mathematical reflection of this effect
can be seen in Eq. (27), since E’ is less, and hence
@15 — s more, for the case in which the field is driven
towards = 7/2.

E. Origin of time scales

In this section, we wish to discuss the origin of the two
time scales in the problem. These two times are (i) the
time it takes for the laser phase to diffuse out of the quiet
region (the relaxation time 7z we have referred to) and
(ii) the time it takes for the laser phase to explore a
significant portion of 27, denoted by 7. For times short
compared to (i), the laser phase-diffusion rate is approxi-
mately constant, and at times long compared to (ii), the
laser phase-diffusion rate becomes (for the ensemble aver-
age) the steady-state value D, which is the average over
all ¢; . Here we present order of magnitude calculations
for these two times.

To calculate (i), we begin with the instantaneous
phase-diffusion rate at some angle ¢, g,

D,
D=—-(1 +sinh?r —sinhr coshr cos2d,g) . (41)
We now calculate the angle at which this rate equals the
unsqueezed rate of D,. The result is

cos¢; g =(sinh?» —1) /sinhr + coshr)
—2r
4 ’
where we have taken the large squeezing limit. Assuming
this is a small angle, we can expand cosd, g as 1 —¢2¢ /2,
and find that

e —2r
¢%_ §= . (43)
2
Now we calculate the time it takes for the laser phase to
diffuse to this value, and use the quiet diffusion rate
(D, /2) to obtain an order of magnitude estimate,

(42)

—2r
TR=" > (44)

D,

2

dis=

and hence find that the time it takes for the laser phase to
wander into the noisy regime, our relaxation time, is ap-
proximately
e —2r
o=
R 2p,

(45)

This is of course just an order of magnitude estimate,
as the laser phase diffuses at a slightly larger rate during
the evolution to this point. However, using the nominal
phase-diffusion rate of D during this evolution results in
a time one half of the value obtained above, and this sets
the upper and lower limits on this time.

We now ask about the time that it takes for the laser
phase to explore a significant portion of the 27 available
to it. If one takes the “significant portion” to be 7/2,
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then the approximate time to reach steady state is on the
order of

= s —2r— 2
T ™ 2Doe =T"TR . (46)

Here we see that the time it takes the laser phase to have
explored both the noisy and quiet regions of parameter
space is about 10 times longer than the time it takes for
the laser phase to leave the quiet region, the relaxation
time. This order of magnitude estimate is borne out by
the numerical results presented in Figs. 5 and 6.

In this model, the noise in the laser is ascribed in equal
amounts to effects of vacuum fluctuations leaking into the
cavity, and to spontaneous emission into the cavity mode.
This decomposition of the effects of the two noise sources
corresponds to the result obtained using a symmetrical
operator ordering [9]. Dalibard, Dupont-Roc, and
Cohen-Tannoudji [11] have argued that to ascribe cause
in quantum mechanics, one must use a symmetrical or-
dering of operators in calculations. Of course, the total
field operator and atomic operators commute at equal
times, and the choice of the ordering does not matter in
the final answer. But when the field is considered as the
sum of more than one piece, for example a sum of source
and free fields, the individual components of the field do
not commute with atomic operators, and hence one can
proceed using different ordering schemes. The argument
of Dalibard, Dupont-Roc, and Cohen-Tannoudji [11], as
we understand it, is that using symmetrical ordering re-
sults automatically in a Hermitian operator for each of
the terms in the interaction Hamiltonian, and one could
in principle make measurements as to the result of those
terms. Hence, one may ascribe a definite weight to the
various terms, as in the case of spontaneous emission,
where the result is that equal weight is given to vacuum
fluctuations and radiation reaction. In our case, such a
calculation would indicate that the laser phase noise
would be ascribed in equal measure to vacuum fluctua-
tions and spontaneous emission into the cavity mode.
Hence our vector kick model is consistent with the inter-
pretation that the laser linewidth stems in equal measure
from vacuum fluctuations leaking into the cavity and
spontaneous emission into the lasing mode. These are in-
dependent noise sources, although we note that spontane-
ous emission into the lasing mode is due in part to vacu-
um fluctuations in nonlasing modes that couple to the
atom.

VII. CONCLUSIONS

We have investigated the behavior of a laser with
squeezed vacuum injected into the output mirror. We
find that the phase-diffusion rate of the laser is not con-
stant, and hence the laser linewidth is not given as simply
as in the usual Schawlow-Townes argument. For a
choice of relative laser-squeezing phase ¢;5=0, the
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phase-diffusion rate is reduced to one half of the nominal
value given by the Schawlow-Townes formula for a time
short compared to the locking time, 7x =(a/2b)e "
~(a/2)e ¥. At longer times, the phase-diffusion rate
equals the steady-state value D ~(1/4)e?D,, indepen-
dent of the initial phase of the laser, a value much larger
than the Schawlow-Townes value. As the linewidth de-
pends essentially on the integral of the phase-diffusion
rate for all times, it seems obvious that the linewidth of
the laser will indeed be well above the Schawlow-Townes
value, in agreement with earlier predictions. However,
the phase noise of a laser can be reduced transiently by a
factor of two, as indicated above.

Is this a useful effect? The relaxation time decreases as
the amount of squeezing is increased, and so the opera-
tional question becomes how long do you need quiet
phase light. As an example of how this effect may be use-
ful, consider the following. A He-Ne laser of length 0.5
m, 10-mW output power, and with an output reflector of
95% has a linewidth of about 0.01 Hz. If squeezed vacu-
um with r=1 is injected into this laser, the relaxation
time of this device is 13.5 sec. This time is large enough
so that this transient effect could be used for a host of
spectroscopic and interferometric applications. Of
course, we must realize that here we discuss the ultimate
quantum limit, which is generally swamped by effects
such as Doppler and collisional broadening, or thermal
fluctuations in cavity length to name just a few. But we
have shown that the quantum limited phase noise of a
laser can be reduced significantly for useful periods of
time.

We have also examined intensity fluctuations in this
system, and found that when the phase of the injected
squeezing is chosen so that the laser field initially sees re-
duced phase noise, the intensity noise that the laser is
coupled to is necessarily increased. At longer times when
the laser sees increased phase noise, one might intuitively
expect that the intensity fluctuations decrease, but they
do not as the laser field is not in a minimum-uncertainty
state. This qualitative behavior was predicted earlier by
Gea-Banacloche and Pedrotti [6], and the results of this
work differ by a factor of 2 from the results they obtained
using a truncation of moment equations and an assump-
tion about the laser locking at ¢;3=m/2. Upon relaxa-
tion of this latter assumption, their results agree with
ours. As with the phase-diffusion rate, the value of the
intensity fluctuations in the steady state is independent of
the initial choice of the laser phase.

The dynamics of the laser phase evolution has been dis-
cussed, and we find that the laser phase does not lock in
the usual sense, but that the phase is alternatively pulled
towards ¢, =0 and 7 /2, and then kicked away. The net
result is that the laser phase is uniformly distributed over
27, but that this results in a more complicated manner
than the usual phase diffusion of a laser with no squeez-
ing.

A simple geometrical, vector kick model has been con-
structed that agrees with the results of the fully quantum
mechanical calculations. In this model, one ascribes
equal weight to two independent noise sources, spontane-
ous emission into the lasing mode, and vacuum fluctua-
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tions coupled to the cavity mode. This is the result one
obtains in a calculation using a symmetrical ordering of
operators, after the field has been decomposed into vacu-
um and source contributions, and our result is consistent
with the arguments of Dalibard, Dupont-Roc, and
Cohen-Tannoudji [11] on the relation between operator
ordering and interpretation in quantum mechanics.
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FIG. 1. Schematic of the physical system under considera-
tion, a single-model ring laser with squeezed vacuum injected
into the output port.



FIG. 11. Vector kick model for ¢, =m/4. Here A@. is the
phase kick associated with spontaneous emission events that
would increase the phase noise, and AG . is the phase kick asso-
ciated with spontaneous emission events that would decrease
the phase noise.
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FIG. 7. Plot of the steady-state P distribution, calculated nu-
merically using the method discussed in Sec. IV, (a) three-
dimensional view, (b) a contour plot.



