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Chaotic transients of two particles in a Paul trap:
Interpretation as a boundary crisis

J. HoH'nagle and R. G. Brewer
IBM Alrnaden Research Center, 850 Harry Road, San Jose, California 95120

(Received 8 June 1994)

Calculations based on coupled Mathieu-Coulomb equations indicate that the transition kom tran-
sient to stationary chaos for two ions in a Paul trap near the edge of the stability region is due to a
boundary crisis. Numerical simulations reproduce the long-lived chaotic transients observed in ion
trap experiments, obeying the power-law dependence T(q) oc (q, —q) ~, where T is the average
transient lifetime and q the dimensionless trap voltage. The unstable, periodic orbits which are
fundamental to a heteroclinic boundary crisis were identified and the intersection of their invariant
manifolds in the four-dimensional phase space was located, yielding a prediction for q„the tran-
sition point between transient and stationary chaos, that agrees well with the experimental value.
This provides a theoretical understanding of a transition which previously has been a subject of
controversy. Finally, a heuristic derivation is given for the critical exponent p, based on the stability
properties of the mediating periodic orbits. Thus solutions of the deterministic, time-dependent
equations of motion can be used to accurately describe the duration of transient two-ion chaos near
criticality, with only a single &ee scale factor.

PACS uumber(s): 32.80.Pj, 03.20.+i, 52.55.Mg

I. INTRODUCTION

Ever since the 6rst observations of ordered arrays of
cold, trapped ions [1,2], there has been considerable in-
terest in the dynamics of these "ion crystals. " Exper-
iments on laser-cooled ions in Paul traps showed that
changing the trap parameters could induce abrupt tran-
sitions between the crystalline state and a diffuse, ex-
tended state of motion [3, 4], which we interpreted as
deterministic chaos. While numerical calculations con-
firmed that the extended "cloud" is indeed chaotic [3—5],
the nature of the transitions between order and chaos has
remained controversial. The very existence of a control
parameter with a critical value was disputed [6] until it
was established experimentally [7] that the evolution of
the trajectories on long time scales is crucial —the tran-
sition observed in Ref. [3] is one between stationary and
transient chaos. There is by now an extensive litera-
ture of transient chaos, including both experimental and
theoretical studies [8]. The observed power-law depen-
dence of the transient lifetime on the control parameter
q suggested that the boundary crisis mechanism, expli-
cated in a series of papers by Grebogi and co-workers
[9—16], could be responsible for the transition. This pa-
per presents further calculations of the long-tixne behav-
ior of the two-ion system that agree with the observed
chaotic transients. Careful examination of the trajecto-
ries at the conclusion of the chaotic transient allows the
identification of the unstable, periodic orbits involved in
the crisis. Further analysis of the equations of motion
locates the manifold intersections postulated by bound-
ary crisis theory, and leads to predictions for the critical
parameters of the transition &om transient to stationary
chaos.

Theoretical investigations of Paul trap dynamics have
relied largely on numerical solutions of the equations of

xnotion, though some analytic results are possible in the
pseudopotential approximation [17], which replaces the
oscillatory trap potential with a static, time-averaged,
harmonic well. The integrability of the two-ion pseu-
dopotential model for special values of the parameters
[6] has been pursued at some length [18, 19], though de-
tails are disputed [20, 21]. Unfortunately, a clear connec-
tion between these results and experixnents has not been
forthcoming, and the justi6cation of secular averaging
is questionable for practical conditions under which the
"fast" and "slow" &equencies differ by only about a fac-
tor of 2. It has also been shown that as long as dissipation
is not too large, the dynamics supports a large number
of frequency-locked states [22, 23]. Since these solutions
have periods that are multiples of the trap potential's,
they do not appear in models which replace the tixne-
dependent potential with a time-averaged one. We shall
see that similar unstable orbits, with periods equal to
three times that of the trap potential, are central to the
dynamics of the trapped-ion system on long-time scales.

Numerical simulations of the ion motion can accom-
modate the time dependence of the trapping potential,
and also the complexities of laser cooling. They have
been applied in several investigations of the order-chaos
transition in ion traps [3, 4, 6, 7, 24], including studies of
many-ion systems [4, 6, 25, 26]. In Sec. VB we present
simulations that reproduce the essential features of the
experiments on chaotic transients, at the same time not-
ing that they have important limitations for the study
of long-tixne dynamical evolution, due to the separation
of time scales. Despite this drawback, the simulations
still provide valuable information about the transition
&om chaotic to regular motion, by revealing details of
the trajectories that are not accessible experimentally.
A better understanding of the order-chaos transition re-
lies on the identification and characterization of the un-
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stable, periodic orbits responsible for the crisis. This
approach addresses the transition at a more elementary
level than simulations alone, and also allows more accu-
rate computation of the critical parameters [11,12, 16].
With the numerical simulations as a guide, we find the
crisis-mediating orbits. Prom their stability properties
and the geometry of their invariant manifolds, a theo-
retical description of the boundary crisis can be derived
which agrees well with the experimental data.

The theory of trapped-ion dynamics is further compli-
cated by the role of laser-cooling. The interaction of an
ion with a resonant laser beam depends nonlinearly on ve-

locity, leading to a system with two unrelated, nonlinear
forces: Coulomb repulsion and radiation pressure. After
the latter was used to initiate transitions at low trap volt-
age in experiments [1, 4], several computational studies
have included both the Coulomb and laser-cooling non-
linearities [4,6, 24, 25]. Laser cooling also has a stochastic
component, since photons are absorbed and emitted at
random times, and it has been suggested that this could
initiate chaos [24]„rather than the collisions observed
in Ref. [7]. However, the complication of a nonlinear,
fIuctuating laser-cooling force is not necessary for the ex-
istence of order-chaos transitions. One of the first ex-
periments on electrodynamic trapping [27] reported such
transitions in ensembles of electrostatically charged par-
ticles for which the only damping was linear, aerody-
namic drag; since the equations of motion for particles
in a Paul trap are scale independent, this observation
that the Coulomb nonlinearity alone can give rise to an
order-chaos transition applies to trapped ions as well.
We therefore consider the observations of Refs. [3] and

[7] in the framework of the simple, deterministic system
in which the Coulomb force is the sole nonlinearity. The
only calculations in this paper that are not purely deter-
ministic are the numerical simulations in Sec. V 8, which
include a stochastic component as an artifice to desta-
bilize the very shallow frequency-locked attractors. We
speculate that the laser-cooling force has a similar efFect
on trapped ions. The transition from transient to sta-
tionary chaos has an entirely different origin, which is to
be found in the deterministic, time-dependent equations
of motion.

The rest of the paper is organized as follows: Sec-
tions II and III review the equations of motion of two
ions in a Paul trap and the concept of boundary crises;
they also serve to define notation. Section IV analyzes
the experimental observations of transient chaos in ion
traps and compares them with the predictions of crisis
theory. In Sec. V we show the results of numerical sim-
ulations, looking first at lifetime scaling and then at the
details of the motion in the final moments of the tran-
sient. The information thus obtained is used in Sec. VI
to describe the boundary crisis in terms of its fundamen-
tal, geometrical elements. Section VII summarizes the
results.

II. EQUATIONS OF MOTION
A. Mathieu-Coulomb equations for two ions

in a Paul trap
The Paul trap [27, 28] is an electrodynamic trap that

confines charged particles in an oscillatory, quadrupole

and dimensionless static and oscillatory potentials,

—8e VDc
mr 00

(3a)

4eV&c
mr 00

(3b)

With these definitions, the equations of motion of a single
particle separate into independent Mathieu equations for
the three Cartesian components, r(7),

i, + (a, —2q, cos 2&)r, = 0; i = 1, 2, 3.

Here aq ——a2 ———a/2, as ——a, Vq ——92 = —0/2, 93—
and dots denote differentiation with respect to ~.

The solutions to Eq. (4) are Mathieu functions [29],
which are either oscillatory or exponentially divergent,
depending on the parameters a, and q;. For a = 0 stable
single-particle motion is possible in the parameter range
0 & q & qM, where qM is numerically determined to have
the value qM

——0.908046. . . . In the stable region of pa-
rameter space the Mathieu functions may be expanded in
Floquet series of the form P& c2~e+'0+2"&, where
the Floquet exponents P and the coefficients c2~ are tran-
scendental functions of the a's and q's, and are there-
fore generally difFerent for the axial and radial degrees
of &eedom. Keeping only the k = 0 term in the series
yields the pseudopotential approximation of the trap as
an anisotropic, harmonic well, with secular frequencies

(in dimensional units) u„,= 2P„,A.
The motion of two identical particles, with coordinates

r~ ~ and r~ ~ separates into a center-of-mass part, obey-
ing Eq. (4), and a relative part rq2 ——r~~l —ri2l, with
components (r,P,z) in cylindrical coordinates. Extensive
calculations have shown that the essential features of the
dynamics are contained in the restricted system with two
spatial dimensions (r, z) that corresponds to the special
case where the angular momentum about the z axis van-

ishes, I~ ——0. The Coulomb force between the particles,
e rq2/r&2, takes its simplest form if we adopt a natural
unit of length,

[/] = 2 (2e /mO )

Introducing a linear damping term proportional to a con-
stant I' (discussed at greater length below) yields the fol-

lowing equations of motion:

r+Ir+ [gcos2r —a/2 —(r +z ) i r=0,
z + I'z+ [a —2qcos27 —(r + z ) ~ z = 0. (6;

potential,

x +g —2z
V(r) = (V~c —VAc cosnt)

2r0

The equations of motion for a single particle of charge e

and mass m can be expressed in dimensionless form by
introducing a new time variable,
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This pair of coupled, nonlinear differential equations de-
scribing the motion of two ions in a Paul trap will be re-
ferred to as the Mathieu-Coulomb equations. Henceforth
we restrict our attention to the special case a = 0, leaving
one control parameter, q. One regular solution is of spe-
cial significance; it is denoted the crystal because it is the
two-ion analog of the regular arrays seen in multiple-ion
systems, and it has a simple explanation in the pseudopo-
tential approximation. For a = 0 the Floquet exponents
satisfy P„(P, and the total pseudopotential is lowest
when the two ions lie in the radial plane, z = 0. When
the relative coordinate is

p
—2/3

the average trapping force just balances the ions' elec-
trostatic repulsion. Exact solutions of Eqs. (6) have a
regular solution with r —r, that is stable over the range
0 ( q ( qM. (Recent calculations predicting instabil-
ity of the crystal apply only to a g 0 [30, 31].) Because
of the periodic trapping field the ions oscillate about r,
("rnicromotion") with a period equal to that of the trap.

It is often useful to regard a periodically driven system
as a discrete mapping of phase space onto itself, rather
than a differential equation with a continuous time vari-
able. Equations (6) are equivalent to a fiow,

dx/d7. = f(x, 7.),

of the four-dimensional phase-space vector x, with com-
ponents r, z, r', and z. Integration of Eq. (8) yields an
evolution operator U, that advances a point in phase
space through a finite time interval,

x(~p+ 7.) = U, , (x(rp)).

Because of the periodicity of the trapping potential, the
parameter 7 p in the evolution operator always can be re-
placed by Tp mod x. Choosing some conventional start-
ing time, say, rs ——0, repeated applications of F = U
give a representation of the motion as a series of points,
each of which is obtained &om its predecessor by a map-
ping of phase space onto itself:

In this stroboscopic mopping a solution x(r) of Eq. (8) is
represented by an infinite series (x„)of discrete points.
The crystal, having period vr, is a fixed point of the stro-
boscopic mapping, F(xc) = xc, and the solutions with
period Per correspond to repeating sequences of P dis-
tinct points, each of which is a fixed point of F . In the
following, both the differential equations, Eq. (6), or the
stroboscopic mapping, F, will be used to describe the ion
motion. We try to avoid confusion by reserving symbols
such as x~ for points in the phase space acted on by F,
and denoting the corresponding continuous solution as
A. The term "trajectory" applies either to a particular
solution (r(r), z(w)) of Eq. (6) or the sequence of points
obtained from the same initial conditions by a strobo-
scopic mapping, depending on the context.

B. Energy dissipation

Observations of individual trapped ions were made
possible through the use of laser-cooling to restrict the
ions motion to micrometer-sized regions [32] and ion
crystals themselves are stable only when the ions' thermal
energy is about 200 times smaller than their electrostatic
potential energy [33]. For two ions separated by a few

pm, this requires efFective ion temperatures on the order
of 10 mK. Laser cooling enables such low temperatures,
but at the price of adding a fundamental complication to
the trapped-ion dynamics.

The simplest treatment of laser-cooling considers a
two-level ion with energy separation u and linewidth

p, illuminated by a plane wave of frequency ~~ and wave
vector k. Then the average force on an ion moving with
velocity v is [34]

where

4 p
2 1+p'

(12)

is the saturation parameter, and K denotes the Rabi &e-

quency. In the limit of small ion velocities, applicable to
a well-cooled crystal, Eq. (11) can be expanded in v to
obtain linear damping, (f)/m = —ak v, but in general
it is nonlinear in the ion velocity, leading to a system
with two nonlinearities: the interionic Coulomb interac-
tion and the ion-optical interaction. The latter can have
nontrivial effects for even a single trapped ion [35, 4].
While the laser-cooling nonlinearity is undoubtedly re-
sponsible for some transitions that have been seen in ion
traps [6,36], it is not essential to the understanding of the
observations of Refs. [3] and [7]. The laser-cooling non-
linearity also couples the center-of-mass and relative co-
ordinates, thereby doubling the dimension of the two-ion
phase space. It thus simplifies the theory considerably to
replace the light pressure force with a linear, dissipative
term, in order to focus on the dynamics of the Coulomb
nonlinearity.

As mentioned in the Introduction, experiments [27] in
dicate that the order-chaos trunsition is still present when
laser-cooling is replaced by linear damping, —I'v. In this
context, it is important that the energy dissipation due to
laser-cooling is very small compared to other terms in the
ions' equations of motion. Under the conditions of the
Ba+ experiments reported in Sec. IV the parameter o. de-
fined in the last paragraph was approximately 4 x 10
in the dimensionless units of Eqs. (2) and (5). More-
over, this represents the maximum energy dissipation
that laser-cooling can provide. With the usual choices
2e/7 1 and 2(uri —u )/p 1 the light pressure force
drops oK rapidly when k. v is larger than the linewidth,
as is generally the case for chaotic motion. Hence the
damping is very weak, and its exact form does not signif-
icantly acct the motion. The value of I' should not be
crucial either, provided it is much less than unity. With
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the exception of the simulations of Sec. V B, all computa-
tions reported in the next sections were performed with
I' = 1 x 10, which was the smallest value that gave
convergence of trajectories to their attractors within a
manageably short time.

III. BOUNDARY CRISES

Even small energy dissipation has the important con-
sequence that phase-space volumes contract with time,
thus trajectories ultimately tend to attractors [37]. For
a = 0 there is always at least one regular attractor,
namely, the crystal. Stationary chaos implies the exis-
tence as well of a chaotic attractor, which is built around
unstable periodic orbits [37, 8). These orbits generally
have a saddle-like character, i.e., they are stable with
respect to infinitesimal perturbations along some direc-
tions in phase space and unstable with respect to pertur-
bations along other directions. Consequently they have
both stable and. unstable invariant manifolds, which can
be loosely defined as the sets of points in phase space
that transform into themselves under the How, Eq. (8),
and tend to t;he periodic orbit in the limits ~ + +oo and
r m —oo, respectively. In a boundary crisis [9] the unsta-
ble manifold of an orbit on the attractor (denoted as orbit
A) is tangent, at a critical value q, of the control parame-
ter q, to the stable manifold of an unstable periodic orbit
B, lying on the boundary of the basin of attraction of the
chaotic attractor. For this geometry the basin boundary
is the stable manifold of B. (The orbits A and B need
not be distinct. The crisis is called heteroclinic if they
are and homoclinic if not. In a heteroclinic crisis A and
8 must have the same period [12].) Since the manifolds
change smoothly as q is varied, their tangency represents
a borderline case between two geometrically diferent sit-
uations: for q & q, the manifolds intersect, while for

q & q they do not. The geometry may be visualized
more easily if instead of a continuous How we consider a
discret;e mapping, such as a stroboscopic map. Then the
periodic orbits A and B correspond to fixed points x~
and x~, and for a two-dimensional mapping one has the
situation shown schematically in Fig. 1. The fixed points
each have stable and unstable manifolds, which are rep-
resented by the curves W and W, respectively, and
the diagram is drawn for q slightly less than q„in which
case W (A) and Ws(B) intersect at the points p and
p'. With increasing q the intersections approach each
other, disappearing above q, as illustrated in Fig. 2. Be-
cause B is on the basin boundary, the two half-manifolds,
W +(B) and W (B), of its unstable manifold evolve
very differently. Trajectories leaving x~ along W (B)
lead into the chaotic region of phase space, while those
following W +(B) are in the basin of attraction of the
crystal and quickly revert to regular motion.

Chaot, ic transients arise when q decreases through q .
Then the small loop between p and p', which had been
part of the chaot;ic attractor, protrudes into the basin of
attraction of the crystal and is removed from the chaotic
attractor. Moreover, the infinite series of preimages of
this segment is also removed. Even though these seg-
ments are small, any trajectory in the chaotic region of

w .(8)
wu (B)

FIG. 1. Schematic representation of a heteroclinic bound-
ary crisis (after Ref. [11]).

phase space eventually reaches one of these "holes" and
then rapidly evolves to the crystal. The result is that;
what had been an attractor for q ) q, becomes a fractal
object called a repeller [8], since nearby orbits ultimately
diverge from it. Orbits near the repeller may, however,
remain in its vicinity for a long time before leaving, and
during this time a chaotic transient is observed. It can
be shown that the lengths of the individual transients
are exponentially distributed [10], i.e. , the probability of
observing a transient of length 7. is

(13)

and that the average lifetime T(q) has a power-law de-

pendence on q [ll],

Aside from a constant of proportionality, the critical ex-
ponent p and the parameter q, completely describe the
divergence of chaotic lifetimes as the control parameter
changes. In the next section we shall review the experi-
mental evidence that Eqs. (13) and (14) apply to trapped
ions. Subsequent sections discuss the calculation of the
critical parameters, first on the basis of simulations and
then in terms of the invariant manifolds of the mediating
orbits.

{a)

FIG. 2. Detail of the region around the intersection at the
top of Fig. 1. The geometry of the manifolds is sketched for

(a) q&q (b) q=q»d(c) q&q
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IV. OBSERVATIONS OF TRANSIENT CHAOS
IN AN ION TRAP

100

Measurements of transient lifetimes were made on bar-
ium ious in a Paul trap with re ——2.5 mm and 0/27r =
3.55 MHs, and have been briefly described in Ref. [7].
Here we review the experimental data in order to ex-
tract quantitative values for the critical parameters that
appear in Eq. (14). Ions in the crystalline state were per-
turbed, either by a collision with a residual gas molecule
or by applying a high voltage pulse to the central trap
electrode. The ensuing chaotic transient was observed
for up to 3 min, i.e., w = 2 x 109; if the motion was
still chaotic after that time, the trap voltage V~~ was
reduced until the ions recrystallized and the experiment
was repeated. Comparison of all the data sets shows no
statistically signi6cant dependence of the observed tran-
sient lifetimes on the mechanism by which the crystal
was perturbed. It is therefore proper to group together
all the data taken at a given trap voltage, regardless of
how the chaotic transient was initiated.

Figure 3 is a histogram of all transient lifetimes for

q = 0.854; it is seen to be consistent with an exponential
distribution. In principle, a correction for the 6nite ob-
servation time could be made, but it is very small when
the average lifetime is much less than the observation.
time, as in the data of Fig. 3, so we prefer to use the
directly measured lifetime. The exponential lifetime dis-
tribution was also veri6ed for other values of q. No tran-
sients with lifetimes less than 3 min were observed for

q & 0.88. A few transients were observed for q = 0.87 and
0.88 but under these conditions the duration of chaotic
motion often exceeded the observation time, so that the
data do not yield reliable estimates for T(q). A series of
Monte Carlo simulations was performed to address the
question of how a power-law distribution, Eq. (14), is
distorted by 6nite observation time. The result was that
if the data is limited to points with T(q) less than about
one-third of the observation time, the underlying power
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FIG. 4. Measured average transient lifetime as a function
of q for two trapp'ed barium ions. The error bars are statis-
tical only. The curve shows the fitted power-law dependence,

q,
' " = 0.87 and p

' " = 2.3.

q,
' = 0.87(l), (15a)

p(' "') = 2.3(6). (15b)

The fit has y2 = 6.1 for four degrees of freedom (con-
fidence level 0.19), and is shown in Figs. 4 and 5. The
fitted value of q, agrees with the observed lack of conden-
sation for q ) 0.88. Although Eq. (14) implies T(q) -+ oo

law can be accurately reconstructed by fitting the mea-
sured data without any corrections, whereas larger val-

ues of T are badly distorted. The data set of Ref. [7] was

therefore restricted to q & 0.86, for which the measure-
ments showed a monotonically increasing transient life-

time, as illustrated in Fig. 4. These points are in good
agreement with a power-law dependence, and a y~ 6t
yields the parameters
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FIG. 3. Distribution of 24 measured transient lifetimes
for q = 0.854. The curve describes exponential decay with a
mean lifetime of 34.5 s.

qc q

Flc. 5. Measured average transient lifetime vs (q~ —q),
with q, from Hq. (15a).
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as q approaches q, the presence of noise in physical sit-
uations leads to a finite transient lifetime at q = q, [15].
Referring to Figs. 1 and 2, one sees that noise tends to
smooth out the sharp transition in going from q & q, to
q ) q, because fIuctuations can transport a trajectory
across the basin boundary W~(B), even in the absence
of an intersection with W (A). The divergence of T(q)
with q led us to propose that a boundary crisis could
be responsible for the order-chaos transition in this sys-
tem [7]. The next sections present evidence to support
this interpretation, based 6rst on numerical simulations
and then on the geometry of the underlying structures in
phase space.

V. NUMERICAL SIMULATIONS

A. Attractors of the Mathieu-Coulomb equations

Straightforward numerical integration of the Mathieu-
Coulomb equations commonly yields long, chaotic tran-
sients. For instance, z(r) for one solution of Eqs. (6)
is shown in Fig. 6. When ~ & 112400m the particles
oscillate erratically in amplitude and phase, the largest
Lyapunov exponent is positive, and the Fourier spectrum
is continuous [3—6]. Then the irregular motion abruptly
gives way to a damped oscillation ending in the crys-
talline state. A plot of r(r) is similar, but also shows
a characteristic symmetry breaking upon crystallization:
during the chaotic transient r is equally likely to be pos-
itive or negative, but after ~ = 112402m it stays negative
forever. Such chaotic transients agree qualitatively with
the experimental observations. However, the numerical
simulations often terminate on regular solutions which
have not been seen in ion traps. Before proceeding to
a detailed consideration of the computed transients, we

must first understand the multiple attractors of Eqs. (6).
The Mathieu-Coulomb equations are remarkable for

their plethora of frequency-locked solutions: stable, pe-
riodic orbits which close after v = Pm, where P is
an integer. Each has an attractor with a nonvanish-

ing basin of attraction. Although an example was 6rst
given in Ref. [3], the nonobservation of frequency-locking
in trapped-ion experiments led to the phenomenon be-
ing neglected. Further calculations have shown that
frequency-locked attractors are very common in this sys-
tem; in fact, in the limit I' ~ 0 their number tends to-
ward infinity as 1' [23]. However, except for the crys-
tal (the case P = 1), which is stable for 0 & q & qM,
the frequency-locked orbits are stable over only a limited
range in I" and q, which generally becomes narrower the
larger the value of P. Recently, the predicted frequency-
locked orbits have been observed in a Paul trap for micro-
spheres, in which aerodynamic drag gives linear damping,
as in Eqs. (6) [22].

Though interesting in their own right, the frequency-
locked orbits pose a problem for the simulations, since in
the trapped-ion experiments the chaotic transients con-
densed only to the crystal and not to any other attrac-
tor. The resolution of this discrepancy [22] is that the
frequency-locked attractors are easily destroyed by small
perturbations to Eqs. (6). In this respect only the nonlin-
earity due to laser-cooling may play an important role in
the evolution of chaotic transients, by preventing the ions
from settling into a frequency-locked state. Other per-
turbations can have the same effect, e.g. , higher-order
multipoles in Eq. (1), noise on the trapping voltage, or
noise added to the ions positions or velocities. Even lin-
ear dissipation destroys the f'requency-locked attractors
[23]; only the crystal is stable for arbitrarily large I'.

The behavior of the solutions of Eqs. (6) on long-time

30

20

10

—10

-LO
300

I I

BIO 4OO
s/s -ilk 000

600
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scales thus agrees with the two-ion experiments, pro-
vided that some sxnall perturbation, either determinis-
tic or stochastic, destabilizes the &equency-locked states,
leaving the crystal as the only regular attractor. As in
the experiments, the chaotic motion is very long lived
when q is greater than about 0.88, and otherwise it is
transient and ends in crystallization.

eao4

B. Lifetime scaling of simulated chaotic transients

Having seen that numerical simulations can model the
chaotic transients, we wish to calculate the average life-
time as a function of q. Computations of the average
transient lifetime, however, are plagued by the separation
of time scales, which also poses difhculties for simulations
in celestial mechanics [38] and accelerator dynamics [39].
The trapping potential, Eq. (1), imposes a natural time
scale of order unity in dimensionless units, and it is nec-
essary to take a much smaller time step to accurately
integrate the equations of motion. However, crystalliza-
tion takes place on an enormously larger time scale—the
data of Fig. 4 extend to ~ 10 . Consequently, the tra-
jectory calculation for even a single chaotic transient re-
quires considerable computation, and extracting the crit-
ical parameters by simulating data sets and fitting the q
dependence of the transient lifetime to Eq. (14) is a diffi-
cult task [14—16]. Nevertheless, numerical simulations are
capable of at least qualitatively reproducing the experi-
mental results. To minixnize the time-scale problem, the
simulations of lifetime scaling used I' = 3 x 10,which is
considerably larger than the average rate of laser-cooling
for ions in the chaotic state. This leads to faster crystal-
lization, but could also slightly affect the critical param-
eters.

A series of sixnulated transients was generated by start-
ing with a set of 50 random initial conditions for the po-
sitions and velocities of two ions and numerically solving
the Mathieu-Coulomb equations, augmented by a small
noise term applied to q, as discussed in Sec. V A. The in-
tegration was carried out until the ions either condensed
or a predetermined maxixnum integration tixne of 1.5 x 10~
was reached. The limit on integration time is analogous
to the finite observation tixne in the experiments, but
smaller, re8ecting limited computational power. After a
set of transients was calculated, q was increased in steps
of 0.05 until the simulations consistently failed to con-
dense within the allocated time. As in the experiments,
the lifetimes obtained for this value of 1 were distributed
exponentially, Eq. (13). Condensation was observed for q
up to 0.88. Figure 7 shows the results of the simulations,
along with a y2 fit to a power law, Eq. (14). The best-fit
parameters were

.' ' '=0.89(1), (16a)

~(sina) 1 3(7) (16b)

and the fit had y = 5.6 for six degrees of freedom (con-
fidence level 0.47). The critical exponent is consistent,
within the large uncertainty, with the exponent derived

O.O4 0.44 0. ON

FIG. 7. Transient lifetime (in dimensionless units) as a
function of q for the simulations with I' = 3 x 10 . The
curve is the Stted power law, q.'--' = 0.89 and ~("-) = 1.3.

C. Terminal phase of simulated chaotic transients

Both experixnents and simulations show chaotic tran-
sients which scale with q in a manner consistent with the
boundary crisis scenario. The existence of a boundary
crisis, however, implies much more than lifetime scaling,
Eq. (14). It gives a detailed picture of how orbits ini-
tially near the chaotic repeller find their way into the
basin of attraction of the crystal, postulating an inter-
section of invariant manifolds of one (for a homoclinic
crisis) or two (in the heteroclinic case) unstable, periodic
orbits. We next consider the question of how this un-

derlying structure of phase space manifests itself in the
detailed behavior of chaotic transients.

Although there is no general procedure for identifying
the mediating orbits, in some cases they have been found
by careful examination of the transient trajectories. The
basic idea [12] for a two-dimensional mapping is illus-
trated in Fig. 8. The invariant manifolds of the unstable
fixed points x~ and x~ are shown schematically, along
with a series of points a —f on a trajectory at the end

from the trapped-ion observations, Eq. (15b). The value

of q, in Eq. (16a) is slightly larger than the experimental
value, Eq. (15a), but this may be due to the large damp-

ing required to produce crystallization on a time scale
accessible to the simulations.

While the results of these simulations are encouraging,
the computational effort involved was very great, and
even larger sets of sixnulated lifetimes would be needed
to improve the fitted values of the critical parameters.
One would also like to know how the critical parameters
depend on I'. Generating even xnore saxnples of simu-
lated lifetimes appears impractical; instead more insight
into the order-chaos transition can be gained by taking
a closer look at the simulated trajectories in the last few

trap cycles before crystallization.
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of a chaotic transient. From the discussion of Sec. III we
know that the trajectory passes through a region, labeled
pp' in Fig. 1, where the chaotic repeller pokes into the
basin of attraction of the crystal. A point in this region
is represented by d in Fig. 8. If q is close to q, then the
area of pp' is small, which means that d is close to both
the unstable manifold of x~ and the stable manifold of
x~. Since d is close to W (B), its iterates under the
mapping (e and f) approach the fixed point x~ before
following the branch of WU(B) that leads to the crystal.
Similarly, since d is close to W+(A), some of its preit-
erates are in the vicinity of x~. Consequently, there are
some points on the trajectory (b and c) which lie in the
neighborhood of x~, while others (e and f) are close to
x~. Expressed in the language of continuous Qows, rather
than discrete mappings, Fig. 8 suggests that the trajec-
tory may brieiy approximate the unstable periodic orbits
A and Bbefore condensing to the crystal. Short segments
of the trajectory provide a glimpse of the underlying pe-
riodic orbits, despite their instability. While there is no
guarantee that the mediating orbits will emerge &om in-
spection of the chaotic transients, instances in which this
fortunate situation obtains have been demonstrated both
numerically [12] and experimentally [13,14].

This approach was applied to long chaotic transients,
obtained by nuxnerical integration of Eqs. (6) without any
stochastic component. Recall that the end of the tran-
sient is marked by symmetry breaking: after some time,
e.g. , x = 112,402vr in Fig. 6, the radial component of
the relative ion position remains either positive or neg-
ative forever. Stroboscopic mappings of the transients
near this value of 7. showed approximate recurrences after
three trap cycles. Threefold sequences appeared in many
transients, at several values of q, and when the coordi-
nates of such triplets were used to initialize a Newton's
method search for periodic orbits [40], the algorithm con-
verged to either of two unstable, period-3' orbits, which

2-

%2

FIG. 9. Trajectories in the r z plane of the unstable,

period-3x orbits A and B for q = 0.863. Also shown is the

stable, period-m orbit, i.e., the crystal with its micromotion.

are shown in Fig. 9. The simulated trajectories always
followed first A then B, as in the schematic representa-
tion of a heteroclinic boundary crisis, Fig. 8. The equal-

ity of periods for A and B also satisfies an important
theoretical requirement [12]. The next section presents
additional arguments supporting the identification of the

orbits A and B.
A close view of the end of a chaotic transient shows

how the mediating orbits "guide" the trajectory &om
the chaotic repeller into the basin of attraction of the
crystal. Figure 10 shows r(w) and z(7.) for a solution of
Eqs. (6), each frame representing a segment of the tra-
jectory that covers three cycles of the trapping potential.
The frames (a) —(f) of Fig. 10 correspond approximately
to the phase-space points a —f in Fig. 8, if the latter is

now regarded as representing the thrice-iterated strobo-
scopic mapping, Fs. Prior to frame (a) the trajectory
oscillates wildly, but in (b) it clearly resembles the un-

stable orbit A. The approach to A is even closer in kame

(c). In frame (d) the trajectory starts close to A, then
crosses over to follow the orbit 8, and in frames (e) and

(f) it has the three-lobed shape characteristic of B. Af-

terwards, the motion gradually decays to the crystalline
attractor, retaining its basic shape while the two lobes
extending away from the r axis collapse inward. After
a few hundred trap cycles, only the radial micromotion
remains.

FIG. 8. Schematic illustration of the geometry of phase

space for q ( q„near a heteroclinic boundary crisis. The
curved lines represent the invariant manifolds of the Sxed

points x~ and x~ of a stroboscopic mapping; these 6xed

points correspond to the mediating periodic orbits of the full

differential equations. The points a —f depict a trajectory

leading from the neighborhood of the chaotic repeller into the
basin of attraction of the crystal.

VI. PREDICTION OF TRANSIENT BEHAVIOR
FROM PHASE-SPACE GEOMETRY

The identification of the unstable, periodic orbits that
mediate the boundary crisis opens the possibility of re-

lating the observed transient behavior to the geometrical
properties of the mediating orbits' invariant manifolds,



50 CHAOTIC TRANSIENTS OF TWO PARTICLES IN A PAUL. . . 4165

without recourse to n»clerical simulations. If, for in-
stance, it is possible to locate the intersection of W+(A)
and W (B), then the critical parameter q, can be found
as the value of q for which the intersection becomes a
tangency, rather than by fitting transient lifetimes to a
power law [16]. This approach has the important advan-
tage of circumventing the time-scale problem discussed at
the begin~~ng of Sec. VB. The reason is that although
the duration of chaotic transients diverges near critical-
ity, the manifolds transform smoothly in phase space as q
is varied, and the difhculty of locating their intersection
remains essentially constant. The critical exponent p can
also be derived &om the stability properties of the me-
diating orbits in the case of a two-dimensional mapping,
and the derivation has been extended to some higher-
dimensional mappings [12]. Except for an overall scale
factor, the parameters q, and p completely determine
the lifetime divergence as transient chaos becomes sta-
tionary. Crisis theory therefore has the potential to pro-
vide a complete description of this transition, provided

BF~(xp)
i9xo

(17)

describes the linearized mapping in the neighborhood of

that the invariant manifolds of the mediating orbits can
be found.

For two-dimensional mappings, it is possible to con-
struct the invariant manifolds as suggested in Fig. 1 and
find their intersections graphically [16]. The analogous
picture for our dynamics, however, would represent the
intersection of elaborately folded hypersurfaces in a four-
dimensional phase space. Without attempting to visu-
alize this complicated geometry, it is possible to gain
some important information about the invariant mani-
folds &om the linearized motion in the neighborhood of
the periodic orbits. Recall that an orbit of period Px
corresponds to a fixed point xo of the P-fold iterated
stroboscopic mapping. The monodromy matrix of the
periodic orbit, M, defined by

(a)

o -& 4 e 4 a

(e)

FIG. 10. Sequence of tra-
jectories in the r z plane at
the end of a computed chaotic
transient. The parameters were

q = 0.863 and F = 1 x 10
Each frame follows the trajec-
tory through three periods of
the trap potential, with ar-
rowheads indicating the coordi-
nates at ~ = 0 mod m. The thin
curves in frames (b) and (e) are
the unstable, period-3m orbits
A and B from Fig. 9.
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That is, for an infinitesimal perturbation Bx, F
maps the point xo + bx onto xo + hx', with

Bx' = M . Bx.

The monodromy matrix has, for our four-dimensional
phase space, four eigenvalues A;, which can be denoted
as stable or unstable, according to whether ~A;~ is less
than or greater than 1, respectively. The corresponding
eigenvectors V; define local, linear manifolds [40] which
are tangent at xo to the full invariant manifolds of the
mapping F+. Therefore the number of stable (unstable)
eigenvalues is equal to the dimension of the stable (un-
stable) manifold.

The eigenvalues of the monodromy matrices for the
mediating orbits identified in the preceding section are
listed in Table I. Because I' « 1 the eigenvalues appear
in multiplets resembling those of symplectic matrices,
which are organized in one of three ways [39]: (1) complex
4-tuples A, A', 1/A, and 1/A" with ~A~ g 1 and ImA g 0;
(2) real pairs A and 1/A; and (3) complex pairs A and A*

with ~A~
= 1. Consider first the orbit B, the monodromy

matrix of which has three eigenvalues of magnitude less
than unity, implying that its stable manifold is a three-
dimensional hypersurface. This satisfies the theoretical
postulate that for q & q, the basin of the chaotic attrac-
tor is bounded by Ws(B), which obviously must have di-
mension 3 in order to separate the four-dimensional phase
space into disjoint regions. As discussed in Sec. III, the
one-dimensional, unstable manifold, WU (B), can be bro-
ken into two half-manifolds, which extend &om x~ in the
directions +Vq. A small displacement &om x~ in these
directions places a point either just inside or just outside
of the basin of attraction of the crystal. Figure 11 shows
how trajectories starting at x~ 6 10 Vq evolve over the
next 30 trap periods. Depending on the sign of the per-
turbation, the trajectory either gradually approaches the
crystal or bursts into chaotic motion, in agreement with
the interpretation that B lies on the boundary between
the regular and chaotic regions of phase space.

The monodromy matrix of A has two complex pairs
of eigenvalues: A~, AU with ~A~~ & 1; and As, A& with
~As~ & 1, hence the stable and unstable manifolds in
this case are both two-dimensional hypersurfaces. The
intersection W (x~) fl W (x~), if it exists, must be a

TABLE I. Eigenvalues of the monodromy matrix for the
mediating orbits A and B at the critical value q = 0.869.
The damping parameter is I = 1 x 10

Eigenvalue Orbit A

0.099 —1.815i
0.099 + 1.815i
0.030 —0.544i
0.030 + 0.544i

3.485
0.077 —0.992i
0.077+ 0.992i

0.284

one-dimensional loop in phase space. Even though the
full manifolds are impossible to visualize, it is possible
nevertheless to generate rays on WU(A) and Ws(B) by
starting in the neighborhood of the fixed points, where
the manifolds are approximately linear, and applying the
mapping F or its inverse. If for q ( q, two such rays
intersect, the intersection required for a boundary cri-
sis is established. In general, finding the intersection of
two hypersurfaces in a four-dimensional space would be
a daunting task, but fortunately the simulated transients
provide a good indication of where to look; for instance,
Sec. V C discussed in some detail the route that one par-
ticular trajectory follows &om the neighborhood of orbit
A to that of B. Taking initial values &om Fig. 10, rays on
the invariant manifolds were generated, starting near the
fixed points on the linear spaces spanned by the appropri-
ate eigenvectors. An empirical criterion for "nearness" is
that the linear mapping Eq. (18), be identical to within
some small factor ( 1%) with the exact mapping F .
The starting points on the linear spaces were then iter-
atively adjusted with a function-minimizing routine [41]
to reduce the distance of closest approach of the rays,
until they intersected to within computational accuracy.

As the parameters of the Mathieu-Coulomb equa, tions
are varied, the locations of the fixed points and their
manifolds move smoothly in phase space. Therefore a
point on the intersection W (x~) 6W (x~) can serve as
a starting point for an iterative intersection search with
difI'erent parameters, provided the parameter change is
small. With a fixed value of I' = 1 x 10, the parameter
q was increased in steps of 2 x 10 until the procedure
failed to locate an intersection, yielding an estimate of
the critical parameter,

o- FIG. 11. Evolution of trajectories from
the neighborhood of the boundary orbit, B.
The initial conditions are (a) xn + 10 Vq
and (b) x~ —10 Vq.
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q~ "~ = 0.869, (19)

Inserting Eq. (21) with P = 3 into Eq. (20) yields a
theoretical value for the critical parameter,

(22)

For F && 1 the critical exponent is slightly less than 2
(from Table I, p~~"& = 1.99) in agreement with the un-
constrained fit to the lifetime scaling data, Eq. (15b). If
the parameters in Eq. (14) are constrained to the values
of Eqs. (19) and (22), then the experimental transient
lifetimes can be fitted with only one free parameter (a
proportionality constant). In this case the confidence
level of the fit rises to 0.30 (y2 = 7.25 for six degrees
of freedom), indicating good agreement between experi-
ment and the boundary crisis prediction.

VII. CONCLUSIONS

Exact solutions to the Mathieu-Coulomb equations
support the interpretation of Ref. [7] that the order-
chaos transition at q = 0.87 observed in ion trap experi-
ments is due to a boundary crisis. Guided by nnTnerical
simulations, the unstable periodic orbit 8 lying on the
boundary of the regular attractor was located. , as was
the nearby orbit A on the chaotic repeller. The two me-
diating orbits have the saxne period, as required for a
heteroclinic boundary crisis. One question that remains
for further investigation is why these particular orbits,
out of the infinite number of unstable periodic orbits,
should play the central role in the crisis. Points of in-
tersection of the invariant manifolds W (A) and W (B)
were located, fulfilling a central postulate of boundary
crisis theory, and perxnitting the critical parameter q to

that is in excellent agreement with the value of 0.87+0.01
for the trapped-ion experiment, Eq. (15a).

For two-dimensional mappings, it has been shown that
the critical exponent p in Eq. (14) can be expressed in
terms of the eigenvalues of the monodromy matrix of x~
[11].This result was extended in Ref. [12] to heteroclinic
crises in mappings of arbitrary dimension D, for a geom-
etry in which the unstable xnanifold of x~ has dimension
D —1. Unfortunately, this does not apply to our system,
for which D = 4 and W+(A) has dimension 2. In the
Appendix the argument of Refs. [11,12] is adapted to
the geoxnetry of the present problem with the additional
assumption that the points originating near the repeller
which escape to the crystal lie in a band of some charac-
teristic width around W+(A). That assumption leads to
the following expression for the critical exponent:

p = —2ln[wr [/in[a, [.

The fictional damping term that appears in Eqs. (6)
implies that phase-space volumes contract uniformly in
time; consequently the eigenvalues of the monodromy
matrix for a period-Pn orbit satisfy

D

)»)&;[= —2Psr.

be predicted. Finally a heuristic derivation of the crit-
ical exponent in terms of the stability properties of the
xnediating orbit A completes an accurate description of
the experimentally observed lifetime scaling, based on the
geometrical properties of fundamental phase-space struc-
tures. %e emphasize that these results are grounded en-
tirely on the deterministic Mathieu-Coulomb equations,
without any stochastic terms or additional nonlinearity,
such as arises &om laser-cooling.

These calculations were carried out with a small, linear
daxnping term that models the more complicated energy
dissipation in real ion traps, but the xnain results should
not be sensitive to the mechanism of dissipation, or to the
value of the damping parameter, provided that it is small.
The role of dissipation was examined in more detail for
the manifold intersection at q = 0.863. The damping
paraxneter can be varied over the range F = 1 x 10 4—
1 x 10 3 and the intersection is always present at nearly
the same location in phase space. Much the same behav-
ior was found in previous studies of the stable, &equency-
locked attractors of the Mathieu-Coulomb equations [23],
in which the solutions for finite damping transformed
smoothly as F ~ 0 to solutions of the Haxniltonian equa-
tions of motion. This is reminiscent of the situation in
celestial mechanics, in which extremely weak dissipation,
acting over long periods of time, often results in trajecto-
ries being attracted to frequency-locked orbits [38] that
are essentially identical to the solutions of Hamiltonian
equations.

In locating the mediating orbits, we were guided by nu-
merical simulations in which (as shown in Fig. 8) the me-
diating orbits are visible as a "skeleton" underlying the
transition &om chaotic to regular motion. The possibil-
ity exists to observe experimental trajectories in enough
detail see these fine features of the motion, by using
the Paul trap for microspheres. Because the Mathieu-
Coulomb equations depend on the trapped particles'
charge and mass only through the dim. ensionless com-
binations a and q, microspheres obey the saxne equations
of motion as ions; they are subject to linear, aerodynamic
drag, and also exhibit order-chaos transitions [27]. For
dynamical studies, trapped microspheres and ions pro-
vide complementary information: the coarse features of
the ions' motion can be observed over billions of trap cy-
cles but the fine details of the trajectories are not seen,
whereas the motion of microspheres can easily be resolved
on the time scale of one trapping cycle. This capability
has been exploited in the study of stable, periodic or-
bits that had eluded detection in ion traps [22] and it
xnay provide more information about the unstable orbits
underlying the boundary crisis.

APPENDIX: HEURISTIC DERIVATION
OF EQ. (20)

We begin by sketching the argi~ment of Ref. [11],relat-
ing the critical exponent to the eigenvalues of the mon-
odromy matrix of x~ for a heteroclinic boundary crisis
in a two-dimensional xnapping, and then consider its ap-
plication to our four-dimensional geometry. Referring to
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Fig. 1, note that the lenticular area defined by the seg-
ments of W+(A) and Ws(B) between the points p and
p' encloses points that were once near the chaotic re-
peller but lie within the basin of attraction of the regular
attractor. Approximating the arc of W (A) that pro-
trudes across Ws(B) by a quadratic curve, it follows that
if the height of the arc is r, then the distance between p
and p' along W (B) is proportional to ~r and the en-
closed phase-space volume is V r / . The preiterates
of this region under the mapping accumulate at x~ and
the volume V of the nth preiterate is determined by the
linear mapping at x~, provided that n is large enough.
Since the segment p' lies along the expanding direction of
W+(A) (with unstable eigenvalue Aq) the corresponding
dimension in the nth preiterate is +r/IAqI . Similarly,
the height of the arc scales as r/IA2]", where A2 is the
stable eigenvalue. The volume of the nth preiterate is
thus

3/2

This volume represents a region in the neighborhood of
the chaotic repeller which escapes &om the repeller after
a short time (about n iterations of the map), i.e. , it is
proportional to the escape rate T ~(q) that appears in
Eq. (13). When q is varied W+(A) and Ws(B) change
smoothly, and for small variations we can assume r
(q, —q). Consider the new volume V' obtained by the
rescaling r ~ IA2]r. Its (n+ 1)st preiterate, V'+~, has a
volume

(A2)

so the ratio of escape rates for o.2r and r is

which leads to the expression

r P8

IAv]2" IAs]2"
(A5)

Again scaling r -+ IAslr and taking the (n+ l)st preit-
erate gives a new volume

for heteroclinic crises of two-dimensional maps.
Generalizing to a mapping in D dimensions, if W (A)

has dimension D —1 then it follows that W (A) and
W (B) together bound a D-dimensional volume in phase
space. Again this volume encloses a set of points that
originate near the repeller but escape &om it, and the
critical exponent can be derived by considering how it
scales with q, —q, exactly as for D = 2 [12], yield-
ing an equation similar to Eq. (A4). For our geometry,
W (A) is a two-dimensional hypersurface, and together
with Ws(B) it does not define the boundary of a four-
dimensional volume in phase space, so we cannot apply
directly the argument presented above. There still ex-
ists, however, a nonvanishing volume within the basin
of attraction of the crystal containing points that were
once in the neighborhood of the repeller, since otherwise
the chaotic motion would not be transient. Assume that
near p and p' these points surround W+(A) in a sheet
of thickness s, where s does not depend on q, —q. The
four-dimensional volume that plays the role of V in the
preceding paragraph is thus defined by segments of length

r and s along the contracting direction of W (A)
and two segments ~r along the expanding direction.
Its nth preiterate has a volume

IV„+~/V„=A~ A2

From the scaling law, Eq. (14), this ratio is just IA2] Identifying V„'+~/V„=IAsl~ as before yields Eq. (20).
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