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EfFects of Zeeman degeneracy on the steady-state properties of an atom interacting
arith a near-resonant laser field: Resonance fluorescence
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EKects of the atomic Zeeman degeneracy on the resonance Buorescence spectrum of a closed two-
level atom with arbitrary ground-state angular momentum J~ and excited-state angular momentum
J, are studied in detail. Especially interesting are the narrow structures due to the spontaneous
Raman scattering and the incoherent Rayleigh scattering. Results for the cycling transition of a Cs
atom are presented as part of the examples.

PACS number(s): 32.80.Pj, 42.50.Hz, 32.70.Jz

I. INTRODUCTION

Progresses in laser cooling and trapping have stim-
ulated a great deal of interest in the effects of atomic
Zeeman degeneracy on laser-atom interactions [1—20]. It
has become quite clear that transitions with a degenerate
ground state are in many aspects qualitatively difFerent
from a two-level system (TLS).With a degenerate ground
state, laser-atom interactions become intrinsically non-
perturbative (if ground-state m-changing collisions are
insignificant) [21]. Polarization-gradient cooling becomes
possible [1],and there can be structures which are much
narrower than the spontaneous decay rate in both the
probe [6—8,13,15,17,21] and the resonance Quorescence
spectra [22,5,10,12,16,18, and this paper]. The signifi-
cance of these studies is not limited to the laser cooling
and trapping. After all, there is simply no atomic transi-
tion that can be strictly modeled as a TLS if the efFects
of collisions have to be taken into account [23].

This paper presents a systematic study of the efFects
of the atomic Zeeman degeneracy on the resonance Buo-
rescence spectrum. Atomic motion is ignored. The nar-
row resonances which are due to the localized atomic
motion [5,10,12,16,18] will, therefore, not be discussed.
The system we consider is a two-level stationary atom
with arbitrary ground-state angular momentum J~ and
excited-state angular momentum J, interacting with a
linearly polarized coherent laser field. We show how
the resonance Buorescence spectrum for such a system
can be calculated easily and efBciently for any detuning
and Rabi &equency. Results for degenerate transitions
(Js g 0) are found to differ qualitatively from the spec-
trum of a TLS (Js = 0 and J, = 1) [24]. For example, it
is well known that the resonance Buorescence of a TLS
is completely coherent in the limit of either weak field or
large detuning [24]. This is found not to be the case for
Zeeman-degenerate transitions. The origin of this di8er-
ence will be traced to the spontaneous Raman scattering
and the incoherent Rayleigh scattering, both of which
show up as narrow structures in the spectrum when the
laser-atom coupling is relatively weak. Another key dif-
ference due to the Zeeman degeneracy is the &equency

dependence of the angular distribution. For a TLS, the
angular distribution is frequency independent because
the resonance fiuorescence comes solely from the Am = 0
type of processes. In contrast, there are three types of
processes with Em = 0, +1, and —1 that contribute to
the resonance Buorescence of a Zeeman-degenerate tran-
sition. The angular distribution is determined by their
relative contributions which can obviously be frequency
dependent. Among Zeeman-degenerate transitions, we

will also address the difFerences between the 6J = 0 and
the 4J = 1 types of transitions [25].

Our procedure for calculating the resonance Buores-
cence spectrnm is based on the approach of Ref. [26]
(referred thereafter as paper I) in which the analytic
solution for the steady-state density matrix is derived.
This approach emphasizes the following points which are
completely independent of the particular system we are
studying. First, the resolvent operator (in the Liouville
space) contains all the information embedded in the orig-
inal master equation, including the steady-state density
matrix elements which are related to the residues of the
resolvent operator [26]. This is not surprising since the
resolvent operator is the Laplace transform of the time
evolution operator for the master equation. Second, for
a system of finite dimensions the computation of the re-
solvent operator requires only a matrix inversion. Third,
symmetry can greatly simplify the computation. These
simple realizations are crucial for achieving the kind of
generality we are looking for.

II. THEORY

A. Resonance fluorescence spectrum
and its angular distribution

The theory presented here is a generalization of the
work of Mollow [24] to transitions between states of arbi-
trary angular rnomenta. The derivation of the resonance
Buorescence spectrum is the same as that presented in
Ref. [27] and I will simply give the result for a station-
ary atom,
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Here W (~, 8, $) is defined such that W (u, 8, $)dudO is
the rate of emitting a photon with polarization e and ke-
quency inside eke into a solid angle dO. p+ are the atomic
raising and lowering dipole operators, respectively. R(s)
is the resolvent operator defined by

B(s)—:(s —LA))

in which I& is the Liouville operator of the density ma-
trix equation in the rotating kame and rotating-wave
approximation (RWA). And p&

' is the corresponding
steady-state density matrix. For a J~ to J transition
driven by a linearly polarized coherent laser field,

E(t) = Eoz cos (dL, t,
the density matrix equation in the rotating kame and
RWA is given by [28]

BtPA (t) = L~&~ (t)
= (1/ih) (H„"+ H„"I,)), p„(t) —(p/2) ).(J.m. ) (J.m.

~ p~(t) —
S ~(t)(W/2) ) .I J.m ) (J m

I

~C ~C

+p ) (Jsm' lq~ J,m', )~ Jgm')(J, m', ~p&(t)[J,m, )(Jam'~(Jgmglq~ J,m, ),
q, all~

(2)

with

Hf = —hb, ) ~J.m, )(J.m, ~,

cited state and the reduced Rabi &equency; and

H~l, ———h(A, s/2) ) f (~J.m)(Jsm~ +
~
Jgm)(J. m~),

(4)

We have obviously taken the laser polarization as the
quantization axis in defining our m states.

It is convenient to introduce W~(u) (q = —1, 0, 1) de-
fined by [29]

where 4 = cuL, —~,~ is the laser detuning;

4 qs l(J II) IIJs)l'
3h 'g 2J, +1

and

Wq(~)—:W —,, = lim Re Tr~(e' p )
~

2m2h
~

p)-+0+

xR()q —i(~ —urL, )) p~
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(7)

ft.s —= &o(J.II~II Jg) /h

are, respectively, the spontaneous decay rate of the ex-
where eo ——z; eq ———(1/~2)(x+iy); e ) ——(1/~2)(x-
iy). They can be written as

Wq(re) = ' ) f f llm ReI(m(Bl & (ri —i(re —ree))~~m')(Jzm')pe ' )Z,m')
narn'

+(m~~B&~~I. ( —i(re —ree))(m')(J, m'~~pe
'

~

J,m') ), (8)

Wg((u) = ) h h Re((m(Bl l ( —i(re —ree))~m')(Jem'~pe '
~

J m')
fnTn'

+(m~B~&'I. ( —i(re —ere))~m')(Jm'~pe' ~J,m')I,
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and W q(ur) = Wq(ur) in the absence of any magnetic

field. Here (m~Rf&l &(s)~m') is defined by

(m(R & &(s)(m')—:((am, bm —l(R(s) ~cm', dm' —l)),
(10)

which can be calculated easily for any transition using
the method of paper I (see also Appendix A). And h is
defined by

p&
' is the steady-state solution of Eq. (2) for which a

simple analytic formula is available in paper I. m and
m' are summed from —Js to +Js in Eq. (8) and from
—Js + 1 to +Js in Eq. (9). In going from Eq. (7) to
Eqs. (8) and (9), we have used the fact that the rep-
resentation of the resolvent operator B in the Liouville
space

~
Jqmq, Jzmz)) is block diagonal in f—:mq —mz,

which is a direct consequence of the cylindrical symmetry
(paper I and Appendix A).

Wqs are introduced not only because it make sense
computationally (to take advantage of the cylindrical
symmetry), but also because they are associated sepa-
rately with processes in which the change of magnetic
quantum number b,m is —q, greatly facilitating physi-
cal interpretations (the minus sign arise because we are
dealing with emissions). For example, the Rayleigh scat-
tering, with b,m = 0, contributes only to Wp(ur), while
the spontaneous Raman scattering, with ~bm~ = 1, con-
tributes only to Wyq(~).

By expanding e in terms of eqs, the spectrum for emit-
ting a photon of an arbitrary polarization can be written
in terms of Wqs. Letting k be the unit k vector for the
emitted photon, the double difFerential rates for emit-
ting a photon with polarizations e~ ——k x s/~k x s~ and

e~~
——e~ x k are given, respectively, by

lim s((i, j~R(s))m, n)) = (i~p
~
j)h~„) (14)

and the analytic formula for the steady-state density ma-
trix p&

' (both of which are derived in paper I), we ob-
tain

Wp((u) = Wp „g((u) + Wp;, ((u),

with

Wp „g(ur) = (3/Sz)(2J, + 1)p g20~ /4

x b, '+ (p/2)' 6'+ (p/2)'

dependent of P because of the cylindrical symmetry.
We have kept both Wq(ur) and W q(u) [=Wq(tu)] in

Eqs. (11)—(13) so that they would remain valid even when
there is a magnetic field parallel to the direction of the
laser polarization, in which case we still have a cylindrical
symmetry, but Wq(u) and W q(tu) would no longer be
equal.

Wj~{u, 8, $), W~(u, 8, $), and W(u, 8, $) are what the
experiment can measure directly. From Eqs. (11)—(13),
it is clear that such measurements can be used to de-
termine both Wp(ur) and Wq(u) [=W q(u)]. This can
be accomplished either by measuring both Wj~(tu, 8, $)
and W~(tu, 8, P) at a single angle 8 g 0, e.g. , 8 = z'/2,
or by measuring W(ur, 8, P) at two difFerent angles, e.g. ,
8 = 0 and 8 = z /2. The motivation for determining both
Wp(ur) and Wq (u) is that it enables us to look at the con-
tributions to the resonance Buorescence &om Am = 0
and ~b,m~ = 1 types of processes separately.

The coherent part of the spectrum can be singled out
explicitly. Only Wp(u) has a coherent component since

as is shown in paper I, only RfsIss(s) has a 1/s pole.
Using the relation

d Wg =—Wg((u, 8, P)

= z[Wg(~) + W g(~)],
which is isotropic, and where [26]

- —2

+g, 02 /2 b((u —u)L, ),

d2W((

= Wp(ur) sin 8+ z[Wq(u) + W q(ur)]cos 8. (12)
m'= —J8

2~na'f~~ ) (i7)

Alla

The unit vectors ell e& and k are defined in such a

way that e~~ is parallel to the plane of k and x, e~ is

perpendicular to this plane, and e~~ x e~ ——k. The dou-
ble differential rate summed over photon polarization is,
therefore,

d W = W((u, 8, $)
= Wp((u) sin 8+ 2[Wg(~) + W q(u))](1+ cos 8) .

(i3)

The angular distributions of W~~, W~, and W are all in-

h

na'= —m+1 m" =m+1

(The definition. .of y can be changed by any multipli-
cation constanf, without afFecting m .) Wp;, (ur) is de-
termined by setting g = 0 in Eq. (8), which can then be
calculated following the procedure of Appendix A.

Equations (ll)—(13), along with Eqs. (15) and (16),
can also be written as
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Wjj(ai, 8, $) = W, i, (a), 8, $) + Wjj;, (ur, 8, $)

1+P, hP2(cos8)
W, h((u)

4'

1+Pjj;„,(a))P2(cos8)
Wjj;„,(~)

4m

W~(a), 8, $) = [1+P~(a))P2(cos 8)],Wi (a))
4m

W(~, 8, 4)) = W, h((u, 8, p) + W;„,(~, 8, p)

1 + /3 gP2(cos 8)
W, i, (ur)

4m

(20)

(21)

1+)9;,(u))P2(cos 8)
4x

(22)

W„h((u) = (2J, +1)p g, O, /4 6 + (p/2)

—2

x E + (p/2) + g, O, /2 b(~ —~L,),

oh= —&)

(23)

(24)

Wjj;, (a)) = (2z/3) 4Wp;„, (a)) + Wi((u) + W i(~)

where P2(z) = (3x$ —1)/2 is the second order Legendre
polynomial, and

w~„.(~) = f dow~ .(~, 0, g) = (31)

Similar relationships hold between W, h(o)) and
W«i, (u, 8, P), and between W~(m) and Wg(o), 8, P). We
will also use W(ur) defined by

W(ur):— = dOW(u), 8, Q)
de

= (Ss/3)[Wp(a)) + Wi((u) + W i(u)}]
= W, ),((u) + W;„,(~) . (32)

0.16
i

From Eqs. (12)—(13), (26) and (30), it is clear that the
angular distributions of TV~~ and S' are determined by
the relative contributions from 4m = 0 and [4m~ = 1
types of processes. As far as rates summed over pho-
ton polarizations (W, W, h, and W;, ) are concerned,
the generic angular distribution for Am = 0 type of pro-
cesses is (3/8') sin 8, corresponding to P = —1, and the
generic angular distribution for ~Am~ = 1 type of pro-
cesses is (3/16vr)(1+ cos28), corresponding to P = 1/2.
The angular distributions of W and W;, are generally
mixtures of these two weighted by the relative contri-
butions from b,m = 0 and ~b, m~ = 1 types of processes.
P, ),

———1 because only the processes of the type Am = 0
contribute to the coherent (Rayleigh) scattering.

Complete characterization of the resonance Buores-
cence spectrum has thus been reduced to calculat-
ing Wp;„,(u) [Eq. (8) with il set to zero] and Wi(ur)

Pjj;„,(ur) = 2 Wi((u) + W i(ur) —2Wp ' (cu)

(25) g$0.10—
L

x 4Wp;„, ((u) + Wi((u) + W, (~)

0.05-
V

(26) 0.00
-0.0008 -0.0004 -0.0002 0.0000 0.0002 0.0004 0.0006

W~((u) = 2vr Wi((u) + W i((u)

Pg =0,
W;, (~) = Wjj;„,(&u) + Wi(~)

= (Svr/3) Wp;„, (ur) + W&(~) + W i(~)

(27)

1.8 =

0.6—

0.4

0.$

0.2

(ro- ro,)/v

P;„,(ur) = (1/2) Wi(u)) + W i(ur) —Wp, ;„,(~)

0.1

-00 =

x Wp;, ((u) + Wi((u) + W i(~) . (30)

-6.1
-0-0006 -0.0004 -0.0002 0.0000 0.0002 0.0004 0.0008

The physical meanings of various quantities are quite
clear. For example, W;„,(u) is defined such that it is
related to W;„,(u, 8, P) by

FIG. l. (a)W;„,(u) for a Jg = 2 to J, = 3 transition with
A = —20' and 0 ~ = 1.01246' (8 = 10 ). (b) The corre-
sponding P parameter P;„,(&u).
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[W q(u) = Wq(ur)], which can be accomplished by us-

ing Eqs. (8) and (9) and the techniques presented in Ap-
pendix A for computing the resolvent operator. Figure 1
is the result for a J~ = 2 to J, = 3 transition with pa-
rameters 4 = —20', O,z ——1.01246'. Note that all
resonances in this figure have widths much smaller than
the spontaneous decay rate p. No such narrow resonance
exists in the spectrum of a TLS [24]. The questions are,
therefore, where do these resonances come &om and why
are they so narrow? Section IIB, along with Appen-
dices B and C, addresses these questions.

B. Sum rules

A number of sum rules are presented in this section.
They play an important role in our understanding of the
resonance Quorescence spectrum by providing a link be-
tween our results and the predictions of the usual wave
function perturbation theory. As noted in Ref. [21],
even though the laser-atom interaction becomes intrin-
sically nonperturbative for transitions with a degenerate
ground state (so that strictly speaking the wave func-
tion perturbation theory cannot be counted on to pre-
dict the line shapes no matter how weak the laser inten-
sity is), the wave function perturbation theory still works
for integrated rates as long as the laser-atom coupling is
weak. This is important because regardless of its limita-
tions, the traditional wave function perturbation theory
still provides the best way to visualize physical processes.
This section demonstrates how the wave function pertur-
bation theory can help us to understand the origins of
the narrow structures in the resonance Buorescence spec-
trum.

Using the relation

Jg

g4 =— ) ~mf~ .

Various sum rules can be easily derived &om these three.
For W(u), we obtain from Eq. (32)

W= ~W ~ =pP, , (38)

S = (g, O, /2) b + (p/2) (40)

With this definition, the total excited-state population is
simply

where P, is the total population in the excited state and
is given by [26]

P. =) (J,m~p'„'"~J.m)
m

= (g,O, /4) 6 + (p/2) + g, O, /2

in which g, [Eq. (17)] can be regarded as a parameter
characterizing the rigidity of a transition, in the sense
that for two transitions with the same decay rate and
reduced dipole moment (J,~~@~~Js), the one with smaller

g, requires a larger laser intensity to excite. A table for

g, can be found in paper I. More data are gathered in
Fig. 2 on two branches: one for b,J = 0 type of transi-
tions and one for AJ = 1 type of transitions [25]. We
can, therefore, say that AJ = 0 type of transitions are
more rigid (harder to excite) than b,J = 1 type of tran-
sitions, and the rigidity increases with Js for both types
of transitions. It then becomes obvious that O,s by it-
self is not an accurate representation of the laser-atom
coupling strength. A better parameter for this purpose
is the saturation parameter defined by

P, = ~~ S(1 + S) (41)
hm eke [g —x((u —(uL, ) —L~] = xI )g-+p+

(33)

where I is a unit operator in the Liouville space, and the
analytic formula for the steady-state density matrix [26],
it is straightforward to show from Eq. (7) that

And S = 1 corresponds to P, = 1/4. The importance of
the saturation parameter S lies in the fact that all inte-
grated rates [Eqs. (34)—(36), (38), (42)—(43), and (45)—
(46)], when scaled by p, depend on 6, O,s, and p only

Wp
—= ~Wp u

= (3/8~)(2J, +1)g p (O, /4)

x b, '+ (p/2)'+ g.Oz, /2 (34)

0A

O.S

Wg = du)Wg u)

= (3/16m) [g, —(2J, + 1)g ] p (O, /4)

x [A'+ (~/2)'+ g, O,' /2]

0.2

0.1

0.0
0

h,
I F I 4~ 4 ~k

~ \
~ ~

1 2 3 4 8 8 7 8 0 10

Wz =— d~Wq~

= Wg,

where we have defined

(36) FIG. 2. g, vs J~. Solid squares are for AJ = 1 type of
transitions. Triangles are for EJ = 0 type of transitions.
Lines are drawn to guide the eyes.
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through S [Appendix B].
The sum rule for the coherent part of the spectrum

comes directly &om Eq. (23),

R', h = d(uR', h u

= (2J, + 1)p g, n, /4 b, + (p/2)

0.9:— p--
0.8--

4'

0.7

0.6--

0.5--C

Oo4

0.3

x b, '+ (p/2)'+g, n.', /2

—2

(42)

0.1

0.0
6 1 2 3 4 5 8 7 8 9 40

The sum rule for the incoherent part of the spectrum is,
therefore,

~inc: ~~~inc

FIG. 3. p;„,(Js, J, ) vs Js. Solid squares are for EJ = 1

type of transitions. Triangles are for 4J = 0 type of transi-
tions. Lines are drawn to guide the eyes.

g, n, /4 1 —(2J, +1)g,

x B + (2/2)o +g,B. /2)

x 4 + (p/2) +g,n, /2 (43)

p;, (Js, J,)—:1 —(2J, + l)g, ,

we have in the limit of weak coupling (S ~ 0),

W;, /W = p;, (Jg, J,) + O(S) .

Here we see one of the major differences between a tran-
sition with a degenerate ground state (Js g 0) and a
TLS: in the limit of weak coupling S ~ 0 (due to either
weak field or large detuning), the resonance fiuorescence
of a degenerate transition (Js g 0) is not completely
coherent. In fact, defining

p;„,(Js, J,) is, therefore, the &action of incoherent scat-
tering in the limit of weak coupling. Table I lists this
parameter for all transitions of interest up to J~ = 4 to
J, = 5. More data are shown in Fig. 3 on two branches
with 6J = 0 and b,J = 1, respectively [25]. The incoher-
ent scattering in the limit of the weak coupling is clearly
very signi6cant for all transitions except the equivalent of
a TLS: Jg = 0 to J, = 1. This is especially true for tran-
sitions with J, = Jg and equal to a half integer, for which
the laser-atom scattering (even in the limit of weak cou-
pling) become almost 100% incoherent for large Js. For
J, = Jg + 1 type of transitions, the laser-atom scattering
in the limit of weak coupling is about 50% incoherent for
large J~.

The origin of this incoherent part can be understood by
writing out the contributions to R';„, &om Am = 0 type
of processes and imam~

= 1 type of processes separately
[see Eq. (29)]. From Eqs. (34) and (16), we obtain the
contribution to S;„,&om the Am = 0 type of processes:

W4. =':—(8x/8) f t(toWo, ; .(~)

= (8x/8) Wo —f t)toWo, . o(~)

(= (gg. + 4)2 B.' /4 4'+ (2/2)'+g. B.'/2 go —g.' I

4'+ (Z/2)' +g.goB. /2)

(46)

The cantributian to W;„, &am the ]Am~ = 1 type of
processes: W,„, is obtained &om Eqs. (35) and (36),

Wi„, = (8o/8) f 8 (Wo( )+W o( )]

= (82r/3)(Wg + W, )
= [g, —(2J. + 1)g4]p(n', /4)

x I~'+ (&/2)'+ g.n.', /2]
' .

]

jn the limit af weak coupling, Eqs. (45) and (46) became
[see Appendix B]

W,„.-=' = (2J, + 1) (g, —g,') ~ (n.', /4)

~ I~'+ (~/2)'] '+ o(S'),
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W, , = [g, —(2J, + l)g4] p (0, /4)

x 6 + (p/2) +O(S ) . (48)

We now recognize that W, , (in the limit S -+ 0) is
precisely the total rate of spontaneous Raman scatterings
(summed over photon polarizations and integrated over
angle). It could have been obtained by averaging the
spontaneous Raman scattering rate out of

~
Jsm), which

can be easily derived using conventional wave function
perturbation theory,

OAO .

Cl 0.20 .-

0.$0

F'

I
I

I
I

I
I

0.10 . I
I

I
I

~1
0.00

0 1 2 3

~ ~
a ~

e e ~ e a 10

= ~[1 —(» + 1)f-'](f II. /2)'[&'+ (~/2)'] '

(49)

over the ground-state population which is given in the
limit of weak coupling by ip [26]. The interpretation
of W, , = is also straightforward. It is simply the inco-
herent part of the Rayleigh scattering. The perturbative
rate for the Rayleigh scattering out of

~
Jam) is given by

~ = ~(2J. + 1)f'(f-fI.,/2)'[&'+ (~/2)'] ' (50)

(2J, + I)(g4 —g,')
g, —(2J, + 1)g2

(51)

We have from Eqs. (43) and (45):

W;„,
=

/W;„, = qp(Js, J,) + O(S) . (52)

The parameter qp( Js, J,), therefore, characterizes the rel-
ative contribution of the incoherent Rayleigh scattering

The first term in Eq. (47) is simply the average of this
rate over the ground-state population m . The second
term corresponds to the coherent Rayleigh scattering [see
Eq. (42)), and is substracted out of the total rate of
Rayleigh scattering to give us the incoherent part.

We have thus come to the conclusion that in the
limit of weak coupling (S ~ 0), the incoherent part
of the resonance Buorescence spectrum of a Zeeman-
degenerate transition (Js g 0) is completely accounted
for by the spontaneous Raman scattering and the in-
coherent Rayleigh scattering. The spontaneous Raman
scattering accounts for the ]Em] = 1 type of processes.
And the incoherent Rayleigh scattering accounts for the
b,m = 0 type of processes. Since both the spontaneous
Raman scattering and the incoherent Rayeigh scatter-
ing are processes among ground-state Zeeman sublevels
which involve only a single p»mp photon and a single
spontaneous photon, they show up as narrow structures
for weak laser-atom couplings. The widths of these struc-
tures are induced by the laser field itself and can theoret-
ically be infinitely small [see Appendix C]. The presence
of such narrow structures in the resonance Quorescence
spectrum is not entirely new. Polder and Schuurmans
found it a long time ago in their results for a Js = 1/2
to J, = 1/2 transition [22].

In terms of the relative importance of the incoherent
Rayleigh scattering, transitions with 4J = 0 and those
with b,J = 1 [25] are again very different. Defining

FIG. 4. qo(Js, J,) vs J~. Solid squares are for b,J = 1 type
of transitions. Triangles are for AJ = 0 type of transitions.
Lines are drawn to guide the eyes.

g4 —g, = ) ut (f —g, j & 0 .
m, =—J8

It describes the deviation of f2 Rom its averaged value

g, [Eq. (17)]. If ]f ] is independent of m, g4 —g, is
zero and there would be no incoherent Rayleigh scatter-
ing (transitions with Js = 0 and 1/2 are the examples).
It is, therefore, the fact that diferent m states can couple
to the laser field difFerently, that gives rise to the inco-
herent Rayleigh scattering. It should be emphasized that

TABLE I. Values for p;, (Jv, J,) and qo(J&, J,).
Jg
0

1/2
1

3/2

5/2

7/2
4

1/2
3/2
5/2
7/2

J,
1

3/2

5/2

7/2
4

9/2
5

1/2
3/2
5/2
7/2

p-(Ju J.)
0

0.333333
0.411765

0.44
0.453362
0.461224
0.466584
0.470566
0.473679
0.666667

0.88
0.925538
0.945804

qo(Ju J )

0
0.0285714
0.025974
0.0196704
0.0144811
0.0108133
0.00828744
0.006524

0
0.242424
0.279698
0.295132

to the incoherent part of the spectrum in the limit of
weak coupling. Some values of this parameter are given
in Table I. More data are gathered in Fig. 4. For 4J = 1
type of transitions, the incoherent Rayleigh scattering is
rather insignificant. The maximum value of qo, achieved
by a Js = 1 to J = 2 transition, is less than 3%. For
4J = 0 type of transitions, on the other hand, the inco-
herent Rayleigh scattering contributes significantly to the
spectrum for virtually all transitions, with the Js = 1/2
to J, = 1/2 transition being the only exception.

Notice that the factor g4 —g„which appears in
Eqs. (45), (47), and (51) can also be written as



4146 BO GAO

neither the coherent nor the incoherent Rayleigh scatter-
ing can be attributed to individual m states separately,
i.e., they cannot be written as sums of contributions &om
each m state, even though we can do so for the total rate
of Rayleigh scattering. All m states participate in decid-
ing how much Rayleigh scattering is scattered coherently
and how much is scattered incoherently.

III. RESULTS AND DISCUSSIONS

For the set of parameters used in Fig. 1, the saturation
parameter S is 10, which put us in the region of the
weak coupling (see Appendix B). With the discussions
in Sec. IIB, the interpretation of Fig. 1 is now straight-
forward. The little bump at u = ~L, is the incoherent
Rayleigh resonance. It is small because the incoherent
Rayleigh scattering is insigni6cant for AJ = 1 type of
transitions. The rest of the resonances in Fig. 1 are spon-
taneous Raman resonances. This interpretation becomes
more transparent by showing Wo;, (u) and WI(u) sep-
arately as in Fig. 5. From Sec. IIB, we already know
that in the limit of weak coupling, Wo;, (ai) is due to
the incoherent Rayleigh scattering and WI (ur) is due to
the spontaneous Raman scattering. We will come back
to this example momentarily to discuss its other features.

More results are presented in this section. All of
them are calculated by a single program which applies
to arbitrary angular momentum, detuning, and Rabi fre-
quency. The spectra shown will be Wo;, (Id) and WI (u)
[W I, (u) = Wq(or)], since they are in fact more closely re-
lated to experimental measurements through Eqs. (11)—
(13), and they can be determined separately. Other
spectra are related to Wo;„,(u) and WI (u) through
Eqs. (20)-(30).

A. Weak coupling

In the limit of weak coupling, Wo;, (u) comes from the
incoherent Rayleigh scattering, and Wq(oi) comes from
the spontaneous Raman scattering. As pointed out in

Sec. IIB, transitions with Jo = 1/2 (J, = 1/2 or 3/2)
do not have the incoherent Rayleigh resonance. This is
illustrated in Fig. 6 (see also Fig. 9) for a Jo ——— 1/2 to
J, = 3/2 transition with b, = —0.5p and S = 0.01 (B,o =—

0.244949'). We also pointed out that the contribution of
the incoherent Rayleigh scattering is very signi6cant for
all 4J = 0 type of transitions with the exception of the
Jo = 1/2 to J, = 1/2 transition. Figure 7 illustrates
this point using a Jo = 5/2 to J, = 5/2 transition with
6 = —0.5p and S = 0.01 (0, = 0.897651').

One might have noticed in Fig. 1 that spontaneous Ra-
man resonances are roughly equally spaced. . This turns
out to be a general characteristic of the weak-coupling
spectra in the limit of large detuning where spontaneous
Raman resonances are well separated. For a transition
with ground-state angular momentum J~, there are 2J~
spontaneous Raman resonances in WI(u). We show in
Appendix C that these resonances become well separated
for sufficiently large detunings (compare, for example,
Fig. 8 with Fig. 7), and in which case WI (w) can be rep-
resented by a simple analytic formula

WI ((u) = (3/87r) 5 u) u
m= —J,+X

(53)

where the frequency shift b and the (half) width Il are
given by Eqs. (C7) and (C8), respectively, and where

u = (2J, + 1)ph (f O,o/2) [4 + (p/2) ], (54)

is precisely the perturbative spontaneous Raman scatter-
ing rate from mo = m to mo = m —1 (summed over pho-
ton polarizations and integrated over angle). The wave
function perturbation theory is, therefore, not only able
to predict the integrated rates over all f'requencies, but
is also able to predict the integrated rates over individ-
ual resonances when they are well separated. (u divers
from r [Eq. (49)] in that r includes also the sponta-

0,010
Le
CO

0.008-

O.OOS

Ii Ii
II Ii
I I I

I

I I

i I

I I

I I

I I

I I

I
I I

I I
I

'I

I

I g 1
I /

0.004
KI-

0.002—
LU /y

Q
I

0.000 I I

%.0000 -0.0004 -0.0002 0.0000 0.0002 0.0004 0.0005

0.020
Isa

CO

0.015-

0.010

D 0.005-
K
Q oooo------
LU

-0.005
-0.020 %.015

l

I

1

I
I

-0.010 -0.005 0.000 0.005 0.010 0.016 0.020

(III-r1I,)/V

FIG. 5. The same as Fig. 1 except what is shown are
Wo, ;„,(ur) (solid line), and Wq(u) (dash line).

FIG. 6. The spectrum for a jg = 1/2 to J, = 3/2 transition
with A = —0.5p and S = 0.01. Solid line: Wo,;,(~). Dash
line: Wg(~).
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neous Raman scattering from mg = m to mg = m + 1).
By using the explicit expressions for f [30],

' 2i/~[(Jg + 1)2 —m~][(2Jg + 3)(2Jg + 2)
f~ = I x(2Jg+ 1)] i/ for J, = Jg+ 1,

, 2m[(2Jg+ 2)(2Jg+ 1)(2Jg)] / for J, = Jg

(55)

the frequency shifts 6 [Eq. (C7)] can be written as

' —(2m —1)g, i [(2Jg + 3)(2Jg + 2)
x(2Jg+ 1)] Sb, for J, = Jg+ 1

2(2m —1)g, i[(2Jg + 2)(2Jg + 1)(2Jg)] iSb,
for J, = Jg

(56)

The spontaneous Raman resonances are, therefore,
equally spaced for both LJ = 0 and AJ = 1 types of
transitions, with spacings given by

For the set of parameters in Fig. 1, v works out to be
2.44 x 10 4p. For Fig. 8, we obtain a spacing of 0.12'.
It should be emphasized that except for transitions with
Jg = 1/2 (J, = 1/2 or 3/2), Eq. (53) is valid only when
the det»~ing is sufficiently large that all 2Jg sponta-
neous Raman resonances are well separated. It fails for
small detunings where spontaneous Raman resonances
overlap and interact with each other, as is the case in
Fig. 7. Transitions with Jg = 1/2 are special because
they have only a single spontaneous Raman resonance.
Equation (53), which reduces for Jg = 1/2 to a single
term corresponding to m = 1/2, is then valid regardless
of detuning.

The most important characteristic of weak-coupling
spectra may be their scaling. From Appendix B, we al-
ready know that the integrated rates scaled by p depend
only on the saturation parameter S. This brings us nat-
urally to the question of which parameters determine the
shape of the spectrum. Just like the case for integrated
rates, the set of parameters b, /p and 0 g/p (or S) may
be overcomplete. In the limit of weak coupling, it can
be shown from Eqs. (8), (9), (A13)—(A16), (A19), (A24),
and (Cl)—(C4) that other than a frequency-scaling factor
Sp, Wo,;,(u) is determined solely by geometry (f s and
h s), and Wi(u) is determined, in addition to geometry,
by b, /p only. The validity of this statement does not re-
quire that the spontaneous Raman resonances to be well
separated. Figures 9—14 show, for di8'erent transitions,
some of the weak-coupling spectra with &equency scaled
by Sp. We will call them the generic weak-coupling spec-
tra (GWCS). For Wi(ur), the corresponding GWCS de-
pends generally on both b, /p and geometry. But for fixed
b, /p, it is valid for arbitrary S satisfying S « 1. For
Wo;„,(u), the corresponding GWCS is not only inde-
pendent of S, but also independent of 6/p. It is de-
termined solely by geometry (f s and h s) as long as
S « So is satisfied (So is defined in Appendix B). In
reading Figs. 9—14, particular attention should be paid
to the difFerences between the b,J = 0 and 6J = 1 types

' 2g. '[(2Jg+3)(2Jg+ 2)(2Jg+1)] 'Sl&I
for J, = Jg+1

4g, i [(2Jg + 2) (2Jg + 1)(2Jg )]
i S
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FIG. 12. The same as Fig. 9 except that it is for j' = 5/2
to J, = 5/2 transition with So ——1.4. See Figs. 7 and 8 for
the shape of the spectrum at larger detunings.

of transitions. For the 6J = 1 type of transitions, the
incoherent Rayleigh resonances (in Wo;„,) are not even
visible. They are so small that they can only been seen
on a much smaller y scale (see, e.g. , Fig. 5). Figure 14
shows the generic WD, ;„,for a 4 to 5 transition on a much
smaller y scale, along with the generic Wi for ~A~/p = 20.
For 6J = 0 type of transitions, on the other hand, the
incoherent Rayleigh scattering is very significant, as can
be seen in Figs. 10 and 12.

Even though the GWCS for Wi(~) does depend on
b, /p, this dependence is rather trivial in the limit of well-

separated resonances, in which case Wi(ur) is given by
Eq. (53), and the corresponding GWCS is easily recog-
nized by rewriting it as

where

u =(2g, ) '(2J, +1)f ~

= (2g. ) '(f' —f' i)(~/&)

Jg

Wi((u) = (3/8m. ) )
m, =—Jg+1

(58)
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Obviously, after rescaling ~ —uL, by Sp, the resulting
GWCS depends only on (b, /p) and geometric factors.
As long as we remain in the region of well-separated res-
onances, changing b, /p a8'ects only the positions of the
resonances in the GWCS. The shapes (both the widths
and the heights) of individual resonances are not affected
and are determined solely by geometry (f s and h s).

(~-~,)l(s'IJ')
FIG. 11. The same as Fig. S except that it is for J~ = 2

to J, = 3 transition with So ——1.66 x 10 . See Fig. 5 for
the shape of the spectrum at a much larger detuning. Simply
rescaling the x axis in Fig. 5 by S = 1 x 10 gives us the
GWCS at ~b, ]/p = 20. Notice that the y scales in two figures
are very different.
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B. Intermediate and strong couplings

As laser-atom coupling gets stronger (i.e., S gets big-

ger), broad structures with the width of the order of p
start to develop. This is shown in Fig. 15 for a Jo = 2
to J, = 3 transition at S = 0.5. These broad struc-
tures come from processes that involve multiple pump
and multiple spontaneous photons [31],corresponding to
the Sz and high order terms in the S expansions of the
integrated rates (Appendix B).With the arrival of these
broad structures, the dependence of the line shape on
the saturation parameter S is no longer through a sim-

ple scaling factor, as can be seen by comparing Fig. 16
with Fig. 7. Figure 17 is another intermediate-coupling
spectrum for a JI = 3/2 to J, = 3/2 transition with

~6~/p = 3 and S = 1. Figures 18—20 represent some typ-
ical strong-coupling spectra. Figure 18 is the spectrum
for a Jo = 1 to J, = 2 transition with ~6~/p = 2 and
S = 30. Figure 19 is the spectr»~ for a J~ = 2 to J, = 3
transition with ~b, ~/p = 2 and S = 30. Figure 20 is the

spectriim for a Jo ——3/2 to J, = 3/2 transition with
~b, ~/p = 3 and S = 10. The qualitative features of all
these spectra, including both the intermediate-coupling
spectra and the strong-coupling spectra, can be best un-

derstood using the dressed-state picture [31].For a tran-
sition arith a ground-state angular momentum J~, there
are 2J + 1 dressed-state manifolds, one for each mo.
Each manifold is coupled to its neighbors, ~b,m~ = 1, by
the spontaneous decay. Wo(~) is the result of intramani-
fold, i.e., ~b,m~ = 0, processes. It is, therefore, made up of
2J + 1 Mollow triplets. The center peak of these triplets
always overlap, and because of the degeneracy between

mo = m and mo = —m manifolds in the absence of any
magnetic Geld, the side bands of Wo(ru) can have at most

Jo + 1 peaks for integer Jos and Jo + 1/2 peaks for half
integer Jos. Of course, the peaks in the two side bands
may not be resolved depending on the values of b, /p and
S. Wq(~) is the result of intermanifold, i.e., b.m = —1,
processes. For an atom in a linearly polarized laser Beld,
the Rabi splitting of a dressed-state manifold depends
on ~mo~, i.e., it is different for manifolds with different

~mo~. It is then easy to see that Wl(ur) is made up of Jo
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FIG. 20. The spectrum for a Jg = 3/2 to J, = 3/2 tran-
sition with lb, l/p = 3 and S = 10 (A,g/p = 78.5281). Solid
line: Wp, ; (~). Dash line: Wi(~).

quadruplets for integer Jg and of Jg —1/2 quadruplets
and 1 triplet for half integer J~. The one triplet for half
integer Jg comes from processes from manifold m = 1/2
to manifold m = —1/2, both of which have the same Rabi
splitting. Again, depending on the specific values of b, /p
and S, we may not be able to resolve all the resonances.

The spectra for 4J = 0 and 6J = 1 types of transi-
tions look very different in the limit of large 8 (compare
for example Figs. 19 and 20). This difference comes from
the difFerent behavior of f as given by Eq. (55). In
the limit of large S, the Rabi splitting for the m~ = m
manifold is given by

lfmf~egl,

from which and Eq. (55) it is easy to show for exam-
ple that for b,J = 0 type of transitions [25] the spacing
between resonances is a multiple of

[( Jg+ )(»g+1)(»g)] "Ifi.gl

in the limit of large S. With the parameters used in
Fig. 20, this turns out to be 10.14'. The positioning of

O.01O
Le
CO

o.ooe-

o.ooe-

resonances for 6J = 1 type of transitions can be under-
stood in a similar fashion.

C. The cycling transition of Cs

It is a rather simple matter to put our spectra on an
absolute frequency scale. All we need to calculate is ba-
sically the reduced dipole matrix element, since the &e-

quency of a transition is usually known. For transitions
between hyperfine levels, the reduced dipole matrix ele-
ment can be obtained using [32]

((J'I)F'llvll(JI)F) = (-1)'+" "[(2F'+1)
x (2F + 1)] /

For the cycling transition of cesium, we have then

(( 63p/I 2—7/2)F, = 5I ]pl l(6si/2I = 7/2)Fg ——4)

1= -~ii(6p„,llpll6s„, ), (64)

where the value of (6ps/2llyll6si/2) can be taken either
from theory [33] or from experiment [34]. Using the ex-
perimental result of (6ps/2]lpl]6si/2) = 6.36 a.u. , we ob-
tain

O.ooa-
K

o.ooo—
LU lg

CL
I

O.ON
-20 -15 -10 -5

(co-coJly

10 16 20

(( 63pI/2= 7/2)F, = 5I I@II (6s,/2I = 7/2)Fg ——4)

= 10.55 a.u.

Substituting it into Eq. (5) and using A g
= 852 nm, we

arrive at p = 5.28 MHz. The reduced Rabi &equency can
be calculated from the electric field using Eq. (6), which

can also be written as
FIG. 19. The spectrum for a J~ = 2 to J, = 3 transition

with lb I/p = 2 and S = 30 (0 p/p = 57.1438). Solid line:
Wp, ;„((u). Dash line: Wi((u).

fi../(2~) = (IL,/I-)"'[(F.II~IIFg) (a u )]
x6.579 x 10 Hz, (65)
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where Il, refers to the laser intensity, and I» = 3.509 x
10~s W/cmz is the atomic unit of intensity.

In the experiment of Ref. [13], b, /(2z') = —10.6 MHz
and II, = 20 mW/cm, corresponding to 10 mW/cmz for
each of the two counterpropagating 0+ and o beams. In
this case O,s/(2z') = 52.4 MHz and S = 0.552585. The
spectra Wp,;,(v) = 2z Wo,;„,(~) and Wq(v) = 2z Wq(u)
for this set of parameters are shown in Fig. 21. Fig-
ure 22 is the spectrum for the same detuning but with
Q,s/(2z) = 104.8 MHz (S = 2.20193), corresponding to
I~ = 80 mW/cm2.

hv ( MHz)
FIG. 22. The same as Fig. 21 except Q,s/(2s)

= 104.8 MHz (S=2.20193).

Finally, I stress that effects of the atomic motion have
not been considered in this publication. Complexities
due to these effects arise not only in cases where the
atomic motion has to be treated quantum mechanically
[10,14,16,18]. Even in the traditional Doppler broaden-
ing region, subtleties raised recently by Wilkens [35] and
Baxter et al. [36] need to be better addressed.
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IV. CONCLUSIONS
APPENDIX A: CALCULATING THE

RESOLVENT OPERATOR

The resonance fiuorescence spectrum for a closed two-
level Zeeman-degenerate atom interacting with a linearly
polarized coherent laser field has been discussed in some
detail. The major surprises to me have been the in-
coherent Rayleigh resonance and the role of the inco-
herent Rayleigh scattering in determining the widths of
the spontaneous Raman resonances (Appendix C). My
expectation had been that the incoherent scattering in
the limit of weak coupling would come solely from spon-
taneous Raman processes. This turns out to be only
roughly correct for 6J = 1 type of transitions a,nd very
wrong for aQ 4J = 0 type of transitions with the excep-
tion of the Js = 1/2 to J, = 1/2 transition.

This appendix provides more details on how to calcu-
late the resolvent operator. We assume that readers are
familar with the Liouville space representation [37—39].

For a transition with ground-state angular moment~am

Js and excited-state angular momentum J„the Liouville
space has a dimension of [2(J, + Js + l)]z. The calcula-
tion of the resolvent operator R(s) = Z(s)] generally
requires the inversion of a [2(J,+Js+l)]z x [2(J,+Js+1)]
matrix. But as pointed out in paper I, the representa-
tion of the operator Z(s) = s —L&+ in the Liouville space
I J&m» Jlmi)) is block diagonal in l —= mz —m2 because
of the cylindrical symmetry. All nonzero matrix elements
of L&+ [defined by Eq. (2)] are given by

((J,m', Jsm' —l'IL&
I
J,m, Jsm —l) ) =

((Jsm', J,m' —l'IL&
I Jsm, J m —l)) =

((J,m', J,m' —l'I L& I J,m, J m —l) ) =
((J m', J m' —l'IL IJm, J m —l)) =

(—p/2+id, )b b( ),
(—p/2 —id, )b b) g,

P~m'no~i'l ~

((J,m', J m' —l'IL IJ m, J m —l))
((Jsm', J,m' —i'IL&l J,m, J m —l))

((J,m', J,m' —l'ILAI Jgm, J,m —l))
i(& s/2)f b

(A1)

(A2)

(A3)

(A4)
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((J, ', J, ' —l'iL„"iJ, , J. —l)) = ((J. ', J, ' —l'iL„"iJ, , J. —l))
= ((Jum', J m' —l'~L~~ Jum, Jum —l))
= ((J m', J,m' —l'~L~~ J,m, J m —l))

i—(A,u/2) f b b( (,

((Jum', Jum' —l'~Lz~ J,m, J,m —l), = p(Jum'1m —m'~ J,m}(Jum' —llm —m'~ J,m —l)b~ ~ .

We can, therefore, deal with each l manifold separately.
For J, = Ju type of transtions, there are 4(Ju +

1) l manifolds with dimensions 4(2Ju + 1 —~l[) (l
—2Ju, . . . , 2Ju). The representation of Z(u) in each l

manifold, 8(() (u), has the same form for all l,

(A13)R(') (8) = A(') —B(') —cdI A(') Y(') (8),eg~gg

R (s) = acI + A(') —B(') ac&I + aA( )
2 2) '(

2

r aI
(l) g( )()—

( 0

B(') C(') )
bI 0 B(')
0 cI

B(~) A(L) dI )
(A7)

dB(') + A( ) C( )B( ),A( ) Y( ) (u)A( )

(A14)
Here a, b, c, and d are defined by a = s, b = s —ib, +p/2,
c = a+i', + p/2, and d = u+ p. I represents a unit
matrix of dimension (2Ju + 1 —]l~). A('), B('), and C(()
are all matrices of dimension (2Ju+1 —~l~). Their matrix
elements are defined by

(A.15)

(l) (l) (l) (l)
f Ruu, uu Ruu ~u Ruu u~ Ruu « ~

(l) (l) (l) (l)
+eg, gg +eg, eg +eg,ge +eg, ee

(l) (l) (l) (l)
+ge, gg +ge, eg +ge, ge +ge, ee

(A11)

(l) (l) (l) (l)( Ree, uu Ree, eu Ree, ue Ree, ee )
where every element is again a matrix of dimension (2Ju+
1—]l~). It is easy to show that the inversion of the matrix
l:(')(s) can be obtained by inverting a single tridiagonal
matrix Z(') of dimension (2Ju + 1 —[l]),

(m'~A( )]m) = —((J,m', Jum' —l~L~] Jum, Jum —l)),
(A8)

(m'~B(') ~m):——((Jum', J,m' —l~L&~ Jum, Jum —l)),
(A9)

(m'~C( ) ~m)—:—((Jum', Jum' —l[L&~J,m, J,m —l)) .

(A10)

It is obvious from Eqs. (A4)—(A6 that both A(') and
B( ) are diagonal matrices, and C ) is tridiagonal. The
corresponding R(~) (s) = [l:(()(s)] ~ can be written as

and so on. Because all matrices other than Z(') are di-
agonal, their inversions are trivial.

For J, = Jg + 1 type of transitions, there are 4Jg + 5
/ manifolds. The l = 0 manifold has a dimension of
4(2Ju + 1) + 2. Manifolds l = +1, . . . , +(2Ju + 1) each
have 4(2Ju + 2 —

~l~) dimensions. Two other manifolds,
corresponding to l = +(2Ju + 2), each have a dimension
of l. The presence of the states

~
J,m, = —(Ju + 1))

and
~
J,m, = —(Ju + 1)) have, therefore, introduced

new manifolds and new dimensions into the problem.
These changes do not however bring with them much
extra work. The matrix elements of R( ) (s) among states

~
Jqm, J2m —l)) with both Iml + Ju and lm ll + Ju

which are all we would need for calculating the resonance
fiuorescence spectrum [Eqs. (8) and (9)], are again given
by Eqs. (A13)—(A16), as if states

~
J,m, = —(Ju+1)) and

~
J,m, = —(Ju + 1)) never existed. This is because in the

absence of collisions, the extra dimensions introduced by

~
J,m, = —(Ju + 1)) and

~
J,m, = —(Ju + 1)) are effec

tively decoupled &om other dimensions, in the sense that
the inversion of the matrix

rx zl
0 Y)

z(')(8) = (GCI+ A(') —B(') )(bdI+ A(') —B(') )

—( +d)(b+ )A(') + (b+ )C(')B(')A('

(A12)

is given by

r I-' -x-'ZY-')
0

Defining Y( )(s) = [Z(')(u)], we have [X would correspond to the right-hand side of Eq. (A7).
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Y would correspond the extra dimensions. ]
Equations (A13)—(A16) are all that is needed to cal-

culate the resonance Buorescence spectrum. For the
probe spectrum of a J = J~ + 1 type of transition

[21], we need also ((J,J„JsJs~R( )(s)~J,J„JsJs)) and

((J,J„JsJs~R(~)(s)~J,J„J,Js)). (Using the terminol-

ogy introduced earlier, these matrix elements belong to
what we called the extra manifolds for J~ = 0, and belong
to the extra dimensions in l = 1 manifold for Js g 0.)

They can be found by simply inverting a two by two ma-
trix,

~f
s+p/2 —ib, if' O,s/2 l

i fgAs/2 s+ p )

because states
~
J,J„JsJs)) and ~J,J„J,Js)) are effec-

tively only coupled among themselves [Eqs. (Al) —(A6)].
We obtain

((J.J. JsJslR("(s)lJ J JsJs)) = (s+ ~) (s+~)(s+ ~/2 —i&)+ (f~, ~ s/2)' (»7)
((J,J„JsJs(R( )(s)~J,J, ) J,Js)) = i(fg, A—,s/2) (s+ p)(s+ p/2 —ib) + (fg, A,s/2) . (A18)

The problem of calculating the resolvent operator has, therefore, been reduced to inverting tridiagonal matrices
Z(') (s). For resonance fiuorescence and probe spectra, we need only to be concerned about Z(o) (s) and Z(~) (s). They
are given explicitly by

Z(o) (s)

where

x~ )(s) = sf(s+p)[(s+ p/2) + 6 ]+ (s+p/2) f 0, ) + (p/2)(s+ p/2)f [1 —(2J, +1)f ]0,
y( )(s) = —(p/2)(s+ p/2)(2J, + 1)f h 0,

(A20)

(A21)

(A22)

Z(~)(s)

r
(~) (~)
—Jy+1 ~—Jg+1,(~) (~) (~)—Jg+1 —J~+2 ~—Jg+2

(~)
Jg+2

(~)
&J —i

(~) [~)
ZJ 1 ZJ

(A23)

*"(s)= s(s+ i&+ V/2) —(f' —f'-i) (fl.s/2)' (s+ ~)(s —i&+ ~/2) —(f' —f'-i) (fl s/2)

+( + ~/2)'f' fl.'s —(~/2)( + &/2)(2J. +1)f' f' fl's-
y( )(s) = —(p/2)(s+ p/2)(2J, + 1)f f~+gh h~+gO, s,."'()=y" ()

(A24)

(A25)

(A26)

For any finite Js, the inversion of Z( )(s) can in princi-
ple be carried out analytically. However, the resulting
analytic expressions for the spectra (valid for arbitrary
detaining and Rabi &equency} are usually so complicated
that they do not have much advantage over n»merical
results, which can be obtained very easily and eKciently.

For our goals in this paper,
~
Jqmq, J2m2)) turns out to

be the most convenient basis set for the Liouville space.
But there are definitely other options. One of them is
the basis set built out of the states which diagonalize
H& + H&&, i.e. the dressed states. Another one is the

irreducible tensor representation [9,23,40], which may be
useful in the presence of collisions [23].

APPENDIX 8: 8 EXPANSION OF INTEGRATED
RATES

An important characteristic of the integrated rates W,
W, ~, W;„„R;™=0,and W,-, is that when scaled
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by p, their dependences on 4, O,z, and p are through
the saturation parameter S only. From Eqs. (38), (42),
(43), (45), and (46), we have

0.026—

0.020-
{a)

W.oh/v

Wine/'Y

WKvn=p/

W/am/ =1/
inc

—,'S(1+S)-'
-'(S —S'+ . )

[(2J.+1)g./2]S(1+ S) '
[(2J, +1)g,/2](S —2S + . ), (B2)
—,'([1 —(2J.+ 1)g, ]S + S')(1+S) '
—,'([1 —(2J. + 1)g,]S
+[2(2J, + 1)g, —1]S + ),
[(2J, + 1)/(2g, )][(g, —g,')S
+g,S'](1+S) '
[(».+ 1)/(2g. )][(g.—g.')S
+(2g' —g4)S'+ "), (B4)

([g, —(2J, + 1)g4]/(2g, ))S(1+S)
{[g.—(». +1)g.]/(2g. ))
x(S —S +S — . ).

0015 I-

0.006

0.000
0 1 2 3 4 5 8 7 8 9 10

2.6

2.0-

1.0-

0.6-

Sg ——1,
So = (g4 g.')/(2g.' —g4) . —

(B6)
(B7)

The condition for Wi(u) to be dominated by sponta-
neous Raman scatterings is, therefore, S « S~ ——1. Fig-

For a TLS (Js = 0 and J, = 1), 1 —(2J, +1)g, = 0 and
the S expansion for W,'„, starts at S term. This is inti-
mately related to the fact that in the limit of weak cou-
pling, incoherent scatterings by a TLS can happen only
through multiple (pump) photon processes [31].For tran-
sitions with a degenerate ground state, the S expansion
for W;, starts with a S term which is the contribution
&om the spontaneous Raman scattering and the inco-
herent Rayleigh scattering, both involving only a single
pump photon.

Equations (Bl)—(B5) can also be expanded in power
series of 1/S, which can be useful in the limit of strong
coupling. We merely note that all integrated rates ap-
proach some constant values in the limit of S && 1. And
the spectrum becomes purely incoherent.

In Sec. IIB, the limit of weak coupling is character-
ized by S ~ 0. It is desirable to know more precisely
how small S has to be for Wp;„,(~) to be dominated by
the incoherent Rayleigh scattering and for Wi(ur) to be
dominated by the spontaneous Raman scattering. These
criteria can be obtained by comparing the magnitudes
of the S term and the S term in the S expansions of
W;+™=0/pand Wi, /p. Defining Sp and Si as the
values of S for which the S2 term and the S term in
WP™=0/pand W,„, /p, respectively, become equal,
we have

0.0
0 1 2 3 4 6 8 7 8 9 10

FIG. 23. So (de6ned in Appendix B) vs J~ for (a) 4J = 1

type of transitions and (b) b,J = 0 type of transitions.

APPENDIX C: THE LIMIT OF WEAK
COUPLING

In the limit of weak coupling, the resonance Buores-
cence is nonzero only in the region of ~u —wl,

~
(( p,

where Eqs. (A20) and (A21) and Eqs. (A24) and (A25)
become, respectively,

ures 23(a) and 23(b) show the values of Sp for 6J = 0
and b,J = 1 types of transitions respectively [25]. The
condition for Wp, ;,(u) to be dominated by incoherent
Rayleigh scatterings is S « So, which yields very difFer-
ent conditions depending on AJ. For AJ = 0 type of
transitions, S « So is roughly equivalent to So « 1. For
4J = 1 type of transitions, however, S has to be much
smaller to satisfy S « So. For example, for a 2 to 3 tran-
sition, S « So requires S « 1.66 x 10 . This condition
is however not as important as it seems if we recall that
Wp(~) is only a small fraction of W(u) for b,J = 1 type
of transitions. Taking this into account, the limit of weak
coupling corresponds roughly to S « 1.

*"'(s= —i(~ —~ )) = ~[(~/2)'+ &']s+ ~'[1 —(». + 1)&' l(&-~"/2)'

g"'(s = -~(~ ~~)) = -~'(2 J—.+ 1)h' (&-fl-./2)'
(C1)

(C2)
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and

+/~, (1 —(2J, + 1)f', ] + (2J. + 1)(f~ —f', )' l (B. /2)2, (C3)

p
' (s = —t((d —~1.)) = —p'(2J. + 1)f f +&h h +&(O.,/2) (C4)

so(:pO [b, +(p/2) ] (C5)

The determinant of Z(o)(a) has in this case (2Js + 1)
roots. One of them is a = 0 which corresponds to the co-
herent Rayleigh scattering. Other 2Js roots determine
the line shape for the incoherent Rayleigh scattering.
From Eqs. (Cl) and (C2), it is obvious that all these
roots obey

where

= «(I/2) I/» (I —(2J, i 1)/~ ]

The incoherent Rayleigh resonance is, therefore, much
narrower than p in the limit of either weak field or large
detuning. It is generally difBcult, for arbitrary J~, to sep-
arated the incoherent Rayleigh scattering into 2J~ terms
corresponding to each of the 2J~ roots. There is however
no good physical reason to do so anyway. They always

overlap, and as pointed out in Sec. IIB, we cannot as-

sign the incoherent Rayleigh scattering to individual m
states. It is something that belongs to all m states as a
whole.

The determinant of Z(i) (s) has, in the region is[ « p,
2 ' roots, corresponding to 2Jg spontaneous Raman res-
onances. From Eqs. (C3) and (C4) it is obvious that all

2J& roots, both their real and imaginary parts, are pro-
portional to 0, . It is also clear that spontaneous Ra-
man resonances can become well separated in the limit of
large detuning. In fact, since the difFerences between the
diagonal terms of Zli)(s) depend on 1/b, while the oK-

diagonal terms depend on 1/b, 2, the off-diagonal terms
can be completely ignored for sufEciently large detuning.
We have then (recall the definition Y(ii(a) = [Z(ii(a)] ~)

(m']Y ( —i(hl —4/g))]m)

+f [1 —(2J, +1)f ]

(CS)

Substituting Eq. (C6) into Eqs. (A13), (A14), and (9),
we obtain Eq. (53).

b' and ]7 are, respectively, the frequency shift and the
width of the spontaneous Raman transition from mg = m
to ms = m —1. b could have been derived from the
usual wave function perturbation theory. But the same
cannot be said about ]7 . The first two terms in Eq. (CS)
represent the average of spontaneous Raman scattering
rates out of m~ = m and m~ = m —1 states, which is the
linewidth I was originally anticipating for spontaneous
Raman resonances. It turns out however that Rayleigh
scattering can also contribute to the line width in a subtle
fashion. We attribute the last term in Eq. (CS) to the
incoherent Rayleigh scattering, since it would have been
be zero if

]f ] was independent of m.
For small detunings where spontaneous Raman reso-

nances overlap, writing the spectrum as the sum of the
terms corresponding to each individual roots is not very
meaningful, and is also much more difBcult.

[1] J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am.
B 8, 2023 (1989).

[2) P.J. Ungar, D.S. Weiss, E. Riis, and S. Chu, J. Opt. Soc.
Am. B 8, 2058 (1989).

[3] D.S. Weiss, E. Riis, Y. Shevy, P.J. Ungar, and S. Chu, J.
Opt. Soc. Am. B 8, 2072 (1989).

[4] E. Bonderup and K. Molmer, J. Opt. Soc. Am. B 6, 2125
(1989).

[5] C.I. Westbrook et a/. , Phys. Rev. Lett. 85, 33 (1990).
[6] G. Grynberg, M. Vallet, and M. Pinard, Phys. Rev. Lett.

65, 701 (1990).
[7] J.W.R. Tabosa, G. Chen, Z. Hu, R.B.Lee, and H.J. Kim-

ble, Phys. Rev. Lett. 86, 3245 (1991).
[8] D. Grison, B. Lounis, C. Salomon, J.Y. Courtois, and G.

Grynberg, Europhys. Lett. 15 149 (1991).
[9] P.R. Berman, Phys. Rev. A 4$, 1470 (1991).



4156 BO GAO

[1o]

[»]

[12]
[13]

[14]

[15]

[16]

[»]

[18]

[19]
[2o]

[21]
[22]

[23]

[24]
[25)

[26]

Y. Castin and J. Dalibard, Europhys. Lett. 14, 761
(1991).
P. Marte, P. Zoller, and J.L. Hall, Phys. Rev. A 44,
R4118 (1991).
P.S. Jessen et al. , Phys. Rev. Lett. 69, 49 (1992).
B. Lounis, J.Y. Courtois, P. Verkerk, C. Salomon, and
G. Grynberg, Phys. Rev. Lett. 69, 3029 (1992).
V. Finkelstein, P.R. Berman, and J. Guo, Phys. Rev. A
45, 1829 (1992).
J.Y. Courtois and G. Grynberg, Phys. Rev. A 46, 7060
(1992); 48, 1378 (1993).
P. Marte, R. Dum, R. Taieb, P.D. Lett, and P. Zoller,
Phys. Rev. A 4T, 1378 (1993).
J. Guo and P.R. Berman, Phys. Rev. A 4T, 4128 (1993);
48, 3225 (1993).
R. Taieb, P. Marte, R. Dum, and P. Zoller, Phys. Rev. A
47, 4986 (1993).
P. vsn der Straten et al. , Phys. Rev. A 4T, 4160 (1993).
P.R. Berman, G. Rogers, and B. Dubetsky, Phys. Rev. A
48, 1506 (1993).
B. Gao, Phys. Rev. A 49, 3391 (1994).
D. Polder and M.F.H. Schuurmans, Phys. Rev. A 14,
1468 (1976).
J. Cooper, R.J. Ballagh, and K. Burnett, Phys. Rev. A
22, 535 (1980).
B.R. Mollow, Phys. Rev. 188, 1969 (1969).
In the context of this paper, 4J = 0 type of transitions
refer to transitions with J, = Jg and equal to a half
integer; 4J = 1 type of transitions refer to transitions
with J, = Jg + 1. For linearly polarized laser Seld, there
is no steady-state resonance Buorescence in other cases.
B. Gso, Phys. Rev. A 48, 2443 (1993).

[27] M. Trippenbach, B. Gao, and J. Cooper, Phys. Rev. A
45, 6555 (1992).

[28] C. Cohen-Tannoudji, in Frontiers in Laser Spectroscopy,
edited by R. Balisn, S. Haroche, and S. Libermsn (North-
Holland, Amsterdam, 1977), p. 3.

[29] W (ur, 8, g) depends on the angles only through the polar-
ization vector e. For fixed e, W (u, 8, g) is independent
of the angles 8 and P.

[30] See e.g. , M. Rotenberg et al. , The 8jand 6 js-ymbols
(MIT, Cambridge, 1959).

[31] C. Cohen-Tannoudji, J. Dupont-Roc, snd G. Grynberg,
Atom Photo-n Interactions (John Wiley and Sons, New
York, 1992).

[32] See e.g. , I. Lindgren snd J. Morrison, Atomic Many Body-
Theory (Springer-Verlag, Berlin, 1982).

[33] W.R. Johnson, M. Idress, and J. Sapirstein, Phys. Rev.
A 42, 3218 (1987).

[34] L. Shsbsnova, Yu. Monukov, and A. Khlyustslov, Opt.
Spektrosk. 47, 3 (1979) [Opt. Spectrosc. (USSR) 4T, 1

(1979)].
[35] M. Wilkens, Phys. Rev. A 47, 671 (1993);49, 570 (1994).
[36] C. Baxter, M. Bsbiker, and R. Loudon, Phys. Rev. A 4T,

1278 (1993);V.E. Lembessis, M. Bsbiker, C. Baxter, and
R. Loudon, ibid. 48, 1594 (1993).

[37] K. Burnett, J. Cooper, R.J. Ballagh, snd E.W. Smith,
Phys. Rev. A 22, 2005 (1980).

[38] A. Ben-Reuven, Adv. Chem. Phys. 33, 235 (1975).
[39] U. Fsno, in Lecturea on the Many Body Prob-lem, Vol 2, .

edited by E.R. Caianiello (Academic Press, New York,
1964), p. 217.

[40] A. Omont, Prog. Quantum Electron. 5, 69 (1977).


