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Ion storage in the rf octupole trap
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Confinement of ion clouds in an rf octupole ion trap is investigated with particular emphasis on
the trapping stability, which is position dependent. Excitation spectra of trapped clouds of Ba+
ions are observed, and the kinetic energy of ion clouds is derived. The spatial extension of ion clouds
is measured, providing the basis for an experimental study of the trapping stability. For ion clouds
in an rf octupole trap the mean kinetic energy is smaller and the spatial extension is larger than in
comparable Paul traps.

PACS number(s): 32.80.Pj, 52.20.Dq

I. INTRODUCTION

Confinement of ions both in Paul and Penning traps
has proved to be a most valuable tool for precision spec-
troscopy, time and frequency standards [1,2], and for ex-
periments in quantum optics [3—5]. Unique features of ion
traps, including long interaction times, absence of pertur-
bations by collisions with confining walls and the possibil-
ity to localize particles to spatial extensions smaller than
an optical wavelength, led to striking demonstrations in
high resolution laser spectroscopy [6]. For ultimate ac-
curacy and resolution, laser cooling of ious is needed [7].
With ion clouds this is successfully accomplished only in
Penning traps, but the use of Penning traps is very often
restricted due to the required high magnetic Geld, espe-
cially for heavy ious. In Paul traps, Coulomb interaction
of trapped particles couples energy &om the trapping rf
field to the motion of particles. This rf heating [8] coun-
teracts laser cooling of ion clouds in Paul traps [9].

For many spectroscopic applications it would be desir-
able to employ rf traps and load them with as many parti-
cles as possible with an energy as low as can be achieved.
It has been suggested to use higher-order rf traps for stor-
ing higher particle numbers than possible in a Paul trap
[10]. A higher-order rf trap has the additional advantage
that the driven motion of trapped particles (micromo-
tion) for most of the trap's volume is smaller than for
Paul traps of comparable size. Hence it is expected that
rf heating plays a lesser role, allowing for lower energies
of trapped ion clouds. Since the trapping rf Geld of a
higher-order trap is nonlinear, the trapping stability will
be qualitatively diHerent from the motion of particles in
a Paul trap, governed by linear equations of motion. In
this paper we present investigations on the trapping sta-
bility, space charge eEects, and on the dynamics of ion
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clouds in a rf octupole trap. A brief account of work con-
cerning the stability of a nonlinear parametric oscillator
has been published elsewhere [11].

Multipole rf potentials have been used in ion sources
and beam-guiding devices for measurements of total cross
sections of ion-molecule reactions first by Teloy and Ger-
lich [12] and later by others [13—15]. Single-particle equa-
tions of motion in linear rf multipole fields have been
studied to some extent [16], and detailed investigations
of the transmission properties of linear rf octupole beam
guides have been performed [15]. To our knowledge spec-
troscopic features and the dynamics of ion clouds in oc-
tupole traps have not been investigated so far.

This paper is organized as follows: in Sec. II the elec-
trode structure and the electric potential of the rf oc-
tupole trap are given. The equations of motion are nu-

merically integrated in Sec. III for an investigation of
the trapping stability which is treated further with ana-
lytical arguments in Sec. IV. In Sec. V the space charge
distribution of an ion cloud in the anharmonic pseudopo-
tential is calculated. The experimental setup is described
in Sec. VI and in Sec. VII the line shapes of excitation
spectra are discussed. Measurements of the mean kinetic
energy and the stored particle number as a function of
the trapping parameters are presented in Sec. VIII. The
observed spatial distribution of an ion cloud is shown in
Sec. IX and, finally, the position dependence of the trap-
ping stability is discussed in Sec. X.

II. THE RF OCTUPOLE TRAP

The electrode structure of the rf octupole trap is de-

signed to generate the three-dimensional octupole poten-
tial (in spherical coordinates)

4(r, 6, (p) = Ar P4(cos8). (1)

Here, r, 6, and I4 denote the elongation kom the trap
center, the polar angle and the fourth Legendre polyno-
mial, respectively.
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Figure 1 shows the realized trap configuration consist-
ing of two endcaps and three ring electrodes (i.e. , two
intermediate rings and a central ring), where the rf po-
tential V~~ ——VQ cos Ot is applied between adjacent elec-
trodes.

In order to determine the constant factor A in Eq. (1)
consider: (i) zp denoting half the inner distance between
the endcaps, (ii) r;„denoting the closest distance of the
intermediate ring electrodes to the trap's center at the
polar angle 8 = arccos(/3/7), and (iii) po denoting
half the inner diameter of the central ring. Voltages
applied to the octupole trap can be written in a gen-
eral way as Vj ——4(endcap) —4(intermediate ring) and
V2 ——4(endcap) —4 (central ring). Taking the difference
Vq —V2 and evaluating the potential [Eq. (1)], the factor
A follows as

Vj —V2
'7s4

where s denotes a characteristic trap dimension, given by

Vocos Ot (3
4(p pz) =

i

—p —3p z +z

Note that only ac potentials are considered throughout
this paper. Added dc potentials merely complicate the
treatment, and in the experiment they proved to deteri-
orate the trap stability.

III. NUMERICAL INTECRATION OF THE
EQUATIONS OF MOTION

The equations of motion for a single particle of mass
m and charge q in the three-dimensional rf octupole are
given by

d p 3 pt'p z) 4M= 2q4 cos 2p —2—+
d~2 s ~2 s (2s2 s2) ~2Q2pss'

(8a)

4 3 4 3 4
PQ + —r;n8

(3)
d' '= z C p2 z21

—= 2q4cos(2v) ~2 —
~

3——2—~,Iv s s ( z' s2)' (8b)

For given trap dimensions pQ, r;, and zQ the voltages
Vj and V2 cannot be chosen arbitrarily to generate an
octupole potential. Taking the sum Vq+ V2 and inserting
Eqs. (2) and (3) gives

4 3Vj 4 3V2 4

8(Vj —V2) 7(Vg —V2)
™ (4)

If no voltage is applied between the endcaps and the (cen-
tral) ring electrode, i.e. , V2 ——0, the ratio po/zs follows
from Eq. (4),

—= (8/3) i 1.28.
zo

A convenient choice of the ratio r;„/zs follows from the
condition O(endcap) = —4(intermediate ring) which is
arbitrary in the sense that only potential differences have
physical reality, and is given by

Tin

zo
= (7/3) i = 1.24. (6)

FIG. 1. Electrode structure of the rf octupole trap.

This corresponds to the choice ps/zs ——~2 for the elec-
trodes of a quadrupole trap, there resulting from the con-
dition 4(endcap) = —4(ring) [17]. For V2 ——0, and for a
choice according to Eqs. (4), (5), and (6) the rf octupole
potential is eventually given in cylindrical coordinates by

where time t is scaled to the trap's driving &equency by
v = tQ/2. The rf voltage is scaled according to

m02s2

M, denotes the angular momentum of the particle with
respect to the z axis,

2 ~M, =mp p. (10)

The equations of motion (8) take the form of two nonlin-
ear, coupled, and explicitly time-dependent difFerential
equations. Hence it is not possible in a straightforward
way to give a general theory of motional stability and one
has to rely either on numerical integration of the equa-
tions of motion or approximate analytical arguments.

Figure 2 shows the radial projection of the motion of
a single particle in the rf octupole trap, obtained by nu-
merical integration of the equations of motion (8) for 70
periods of the driving frequency 0/2m. The initial condi-
tions were p/z = 0.1, z/s = 0.1, dp, /dz = 0, dz/dv = 0
at v = 0. The scaled rf voltage was set to q4

——6.0
and the angular momentum M, was assumed to be zero.
Near the center of the rf octupole trap the potential de-
pends only weakly on the spatial extension, hence the
ion motion is only weakly affected by the trapping field.
In Fig. 2 this leads to extended straight sections of the
ion motion around the center of the ion trap. For larger
elongation the octupole potential gets steep and the ion
experiences a strong ponderomotive restoring force which
shows up in Fig. 2 as a micromotion near the maximum
amplitude. The particular trajectory shown in Fig. 2
subsequently becomes unstable: after approximately 220
periods of the driving frequency 0, the maximum veloc-
ity increases quickly and the ion eventually is lost by a
collision with the trap electrodes.

It should be mentioned at this point that single ion
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FIG. 2. Radial projection of the motion of a single particle
in the rf octupole trap, obtained by numerical integration of
the equations of motion for 70 periods of the rf driving fre-

quency 0/2n. The initial conditions are p/z = 0.1, z/s = 0.1,
dp/dz = 0, dz/dv = 0 at v = 0, the scaled rf voltage was set
to q4

——6.0 and the angular momentum M, was assumed to
be zero.

motion may exhibit chaotic dynamics in the rf octupole
trap, but not in the Paul trap. (Motion of two and more
ions in the Paul trap may be chaotic due to Coulomb
interaction [9].) A detailed study of chaotic dynamics is
beyond the scope of this paper and is not pursued here.

To study the trapping stability for ions in the rf oc-
tupole trap, as a first approach we used the following
procedure: for a large number of single particle trajec-
tories the initial position is chosen &om a homogeneous
distribution over the trap volume and initial velocities are
raudomly determined according to a Maxwell-Boltzmann
distribution. The equations of motion are thea integrated
for a large (somehow arbitrary) number of periods of
the trap frequency 0/2vr and the fraction of trajectories
which do not leave the trapping volume is taken as a mea-
sure for the stability of ion confinement in the rf octupole
trap. Figure 3 shows the result of such a Monte Carlo
calculation for the stability of a single particle in the rf oc-
tupole trap. The parameters for these calculations were
chosen as realized in the experimental setup (cf. Sec. VI
below), and are given by s = 17.6 mm, 0/2x = 400 kHz.
The trapping volume is ellipsoidal with radial diameter
1.6s and axial diameter 2.26s. The mean temperature
for the Maxwell-Boltzmann distribution was set to 700
K and the motion of the particle was followed during 500
periods of the rf trapping voltage. The stability of the rf
octupole trap shows a maximum at values of the scaled
trapping voltage of about q4

——0.1. For higher rf voltages
the motion of the ions with large distances to the trap
center becomes increasingly unstable. Energy from the
driving field is coupled to the ion motion thus increasing
the size of the ion orbit and eventually the ion is lost
due to a collision with one of the electrodes. Hence the
acceptance of the rf octupole trap decreases for high rf
voltages. On the other hand, for very low rf voltages ious
may get lost if the pondermotive force at the border of
the trapping volume is too weak to reQect ions with ther-
rual energy back towards the center of the trap. Hence,
the acceptance of the rf octupole trap decreases for low rf

FIG. 3. Result of a Monte Carlo simulation of the trapping
stability. The parameters were chosen according to experi-
mental conditions and were set to s = 17.6 mm, 0/2m = 400
kHz, and the trapping volume is ellipsoidal with a radial di-
ameter of 1.6s and an axial diameter of 2.26s.

voltages. The foregoing interpretation of the numerical
results for the motional stability of ions in the rf octupole
trap is upheld by analytical arguments in the following
section.

IV. MOTIONAL STABILITY IN AN
ANHARMONIC RF POTENTIAL

For comparison, we consider first the stability analysis
for a Paul trap. The motion of charged particles in a
Paul trap is'described by linear, uncoupled, and explic-
itly time-dependent equations of motion (Mathieu equa-
tions). Using Floquet theory, the equations of motion
can be solved aaalytically. The stability of a particle's
motion depends only on the parameters a, and q„which
denote scaled dc and rf voltages, respectively. In the pa-
rameter plane (a„q,) distinct regions allowing for sta,ble
motion exist. Stability for the motion in a Paul trap
means that a trajectory with arbitrary initial conditions
does not leave a limited spatial region. (For real Paul
traps, initial conditions, of course, cannot be arbitrary,
since particles may get lost by hitting the trap's elec-
trodes. )

The motion of charged particles in a higher-order rf
trap is described by nonlinear, coupled, aud explicitly
time-dependent equations of motion. The only conserved
quantity is the angular momentum with respect to the
axis of an electrode structure having rotational syxaxae-

try. Aside &om singular periodic orbits, stability in the
same sense as in the stability-analysis for a Paul trap
does not exist. Instead, the time a particle is staying
in the trap's volume and the changing of it's energy is

considered, which is also xaore relevant for practical ap-
plications. It turns out that the stability of a particle's
motion depends strongly on it's initial energy. In the fol-

lowing, we describe the procedure to estimate motional
stability for higher-order rf traps, which has been success-
fully applied since the first experiments on this subject
[12].

A dimensionless stability function [12], which is pro-
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portional to the local quadrupole field strength, is defined
according to

Note that a similar approach employing the concept
of local quadrupole field strength has been pursued by
Wineland for proposed linear multipole rf traps [10].

In the case of the electric Geld of the Paul trap

Ep „~(r,8, P) = —V'
2 2r (1 —3cos 8)

TQ + 2zQ
(12)

the stability function g(r) is given in spherical coordi-
nates by

4qVQ 1+ 15cos 8
mO (r02 + 2z02) 1 + 3 cos 8

Fpseudo(r) = +@(r) (14)

Due to the linearity of the equations of motion the sta-
bility of a charged particle in the Paul trap does not
depend on the distance at which the particle is from the
trap's center. Correspondingly, gp „1does not depend on
r. The stability function gp „1 depends only on the po-
lar angle 8, since the slope of the electric field in a Paul
trap in axial direction is minus twice the slope in radial
direction. In the radial and in the axial direction, gp „~
equals the Mathieu parameters q„and q„respectively
[18]. These parameters are determined by the ratio of
the secular &equencies and the trapping &equency, i.e.,
q„,, = 2~2 (u, ,/A.

As an alternative to the concept of a local quadrupole
field strength, the stability function ri(r) can also be
viewed as characterizing the validity of the adiabatic
(pseudopotential) approximation [19,20], which has been
discussed in [11,12]. Yet another aspect of the stability
function rl(r) is obtained by evaluating the ratio of the
modulus of the efFective restoring force

q(r) is proportional to the force-conversion coefficient.
This again relates to the validity of the adiabatic approx-
imation, where the force-conversion coefBcient should be
small compared to unity.

Most important for practical trap design is that the
stability parameter rI(r) determines the amount of energy
coupled &om the driving field to the ion motion. This
can be obtained &om numerical calculations of particle
trajectories starting near the trap center in the follow-
ing way: Taking the difference AH between the initial
energy H and the energy after a re8ection by the trap
potential, the maximum energy gain max ]6,H/Hl can
be determined. The logarithm of max ]EH/Hl for any rf
multipole trapping configuration exhibits a characteristic
linear dependence on the inverse maxim@~ value of the
stability parameter [21]. This is shown in Fig. 4 for the
rf octupole trap. For large g, the maximum energy
transfer increases and the trap stability decreases.

In the adiabatic approximation the trajectories of par-
ticles can reach at most the surface where the pseudopo-
tential energy equals their initial energy. Hence the max-
imum of the stability function g(r) in the case of ro-
tationally symmetric rf multipole traps is taken at the
point, where the symmetry axis crosses this pseudopo-
tential surface. In the case of the rf octupole trap, the
dynamics even in the pseudopotential approximation ex-
hibits a mainly chaotic behavior, showing ergodicity and
mixing. Therefore, in the course of time each particle
will nearly reach this maximum value of ri(r) Thus .a
maximum value of g(r) can be assigned to the trap, con-
sidering the surface of g(rQ that touches the electrode
structure of the trap. For stable trapping conditions, first
the pseudopotential well depth should be high compared
to the energy of the ions. Second, it is found empiri-
cally that the stability function q(r") should not exceed

& 0.3.
We may consider the trapped particle in an rf multi-

pole trap undergoing sequences of uncorrelated collisions
with the strong rf field in the outer regions of the trap,
with all collisions changing the energy of the particle.

due to the trap's pseudopotential,

10

and the maximum force due to the trap's rf field,

F,r (r) = q E(r) (16) 10

which yields 10

Fpseudo (r)

Frr, mm(r)

Since the trap's pseudopotential is generated by the rf
field, this ratio might be viewed as a force-conversion co-
efficient. As evidenced by Eq. (17), the stability function

10
1 3 4

1/q

FIG. 4. Change of the kinetic energy of particles returning
after a re6ection in the outer region of an rf octupole trap
back to the trap's center, plotted as a function of the inverse
maximum value of the stability function along the particles
trajectories.
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The trajectory of a particle is then governed by a ran-

dom walk which results in an effective diffusion of the ini-

tial energy [21]. Therefore even particles with low initial
energies and corresponding low initial maximum values

of g can leave the trap after a sufficient long time.
This energy diffusion is the basic mechanism of rf heat-

ing which appears also as a consequence of space charge
of ion clouds in Paul traps [9,8,26]. As can be inferred

&om Fig. 4, the rate at which rf heating occurs can be
lowered by slightly increasing both the rf frequency and

the rf voltage, thus lowering the maximum value of rl(r).
For the rf octupole potential (7), the pseudopotential

(15) takes the following form in cylindrical coordinates:

~li(p, z, Ip) = (9p + 78p z —48p z + 64z ).QVp

and for the stability function rI(r) we obtain from Eq. (11)

1

3q+p 81p + 144Pp z + 480p z + 2560p z —3840p2z + 4{)96z
rl(p, z, p) =

m0284 9p + 76p z —48p2+ 64z

Contours of the pseudopotential 4' and the stability
function rI(r) are shown for Ba+ ions in Figs. 5(a)—5(c).
In each figure one quadrant of a p-z section through the rf
octupole trap is shown with the shape of electrodes indi-
cated by hatches. Dashed-dotted curves indicate equipo-
tential lines and the solid lines indicate values of the sta-
bility parameter g.

A close inspection of the figures as presented in
Figs. 5(a)—5(c) yields the following: optimum storage
conditions are achieved for the rf octupole trap if the
region with sufficient depth of the pseudopotential over-

laps well with that allowing for motional stability. Fig-
ure 5(b) represents this situation. For rf voltages too
small, the ion motion is stable over most of the trap's
volume but ions can reach the trap electrodes since the
pseudopotential well depth may be too small. This situ-
ation is shown in Fig. 5(a) and corresponds to the region
of small scaled voltages, i.e. , q4 & 0.1 in Fig. 3 with its
decreasing acceptance. By contrast, for rf voltages too
high, the effective trapping volume becomes small since
the motional stability of ions far from the trap center is
limiting the storage capacity of the trap. This is shown
in Fig. 5(c), corresponding to the region of high scaled
voltages q4 ) 0.1 in Fig. 3.

V. SPACE CHARGE DISTRIBUTION IN AN
ANHARMONIC PSEUDOPOTENTIAL

Before investigating the spatial distribution of ion
clouds in rf multipole traps, subsequently modeled by
the pseudopotential (15), we shall first give a heuristic
argument how the density distribution is expected to be.
The space charge potential Osc (r) of an ion cloud and
the distribution n(r) of ions in the trap are related to
each other by Poisson's equation, i.e.,
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(20)

Since the Laplacian basically denotes the second deriva-
tive with respect to position, it follows from Eq. (20) that
inside a constant-density distribution of charged particles

FIG. 5. Contours of the pseudopotential 4' and stability
function g for Ba+ ions for one quadrant of the octupole
potential, the electrodes are indicated by the hatches. (a)
Vo ——50 V, (b) Vp ——100 V, (c) Vo ——200 V.
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ge po en i is gener-a e ocusing harmonic space charge t t al
'

ate . ence, in order to confine a consta t-d 'tn — ensl y ion
s ri ution, a harmonic (effective) trapping potential is

sidering an initially constant density-distribution of an
ion cloud in a rf octupole trap, described by an anhar-
monic pseudopotential, the harmonic defocusing space

si y distribution which is small near the center of the trap

extension of the ion cloud is lim't d b b
' '

gimi e, e.g. , y beginning
motional instability [10].

In order to include effects due to the temperature of the
ion cloud, we now consider an equilibrium distribution of
the ion density given by

3.5

8 2+5

CO

1.5-z
Q
R0

0.5-

6-

(a)

n(r) = np exp — (4(r) + 4sc (r)) (21)

Here np denotes the ion density at the center of the trap.
y removing the space charge potential @pc(r) from the

system of Eqs. (20) and (21), we obtain a nonlinear par-
tial difFerential equation

kT n(r")
b, ln + 4(r) = —n(r),

q np 8'p
(22)

n(r) = b,4(r)—
Gp

(23)

g ion exnperatures,n contrast, for the limiting case of hi h
' t

t e ensity distribution of the ion cloud is given by [22,23]

n(rQ = np exp (24)

For temperatures in between these two limiting cases, the
ensity distribution of ion clouds has to be determined

numerically. We investigated the ion-density distribution
given by Eq. (22) numerically for two simple pseudo o-

tentials, i.e., for
pseu opo-

( )2k
4(r) = @(Rp)

~(Rp)
(25)

which ca bcan be used to obtain the density distribution of
t e ion cloud, provided the pseudopotential %(r) of the
ion trap, the temperature T, and the total number of
stored particles np are given [22—24]. Considering the

miting case of vanishing temperature, T + 0, the den-

sity distribution is readily obtained to be [22,23]
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zCh

4
z0
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0
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DISTANCE FROM TRAP Col 1ER (cm)

FIG. 6. Ion density distribution for a spherical dp erica pseu opo-
is o sn r quadrupole trap (a) and pseudopotentisl

trap. Parameters: T = 100 K lid li
K (dashed-dotted line), T = 5000 K ion' o g dashes), and

short dashes).

Ref. [23], i.e. , @(Rp = 10 mm) = 10.18 V and the total
igure a s ows the ion-number of ions N = 10 F' 6

ensity distribution for the spherical pseudopotential of
an rf qua upo e trap, essentially reproducin Fi . 1 f

. [ ], ig. 6(b) for the spherical pseudopotential,
proportional to r~ as an approximation of an rf octupole

'
g empera ure the ion density evolves &om a constant-

density distribution, as suggested b E . 23 t
sian ensity distribution, as suggested by Eq. (24) [23 25].

w
'

e or intermediate and low temperatures, the ion den-
si y becomes low near the trap center and has a maximum
at some distance to the trap's center.

with k = 1 and A: = 3= 3. The first case is related to the
spherical pseudopotential which c b
an r quadrupole tra withf dr

c can e generated using

while
p ith appropriate dc voltage [18],

w le the second case ives aw le g s a spherical pseudopotential
o e same power as the pseudopotential of the rf oc-
tupole trap, given by Eq. (18). That is for s'

c a e pseudopotential, as given by E . ~18~

depends on the olar a lp ar angle. For a comparison with re-
vious results for rf ua

pre-

chosen in a wa to
qua upole traps, parameters wwere

ay o reproduce the situation of Fig. 1 in

VI. EXPERIMENTAL SETUP

In our experiments, clouds of Ba+ ions were stored
in an rf octu ole trap p with a characteristic dimension

apping rf voltage at &equenciess = 17.6 mm. The tra
etween 300 kHz and 600 kHz was varied up to 2 kV~.

Since the experimental setu tho erwise is t e same as
used for investigations of the dynami fnamics o ion c ou s in rf
quadrupole traps (Paul traps) [26—29], it will be described



4128 J. %'ALZ et al.

here only brie8y.
Relevant to our experiment are the 62Sy/2 6 Py/2,

and the 5 D3/2 states of the Ba+ ion, forming a A-type
three-level scheme. Light &om a dye laser at 493 nm
excites the Ba+ ion from the 6 S~/2 ground state to the
6 Pzy2 state. The P state decays with a branching ratio
of about 2.85:1 either back to the ground state or to the
metastable 5 Ds/2 state. Light from a second dye laser
at 650 nm excites ions &om the D states, thus avoiding
optical pumping.

The laser beams collinearly cross the ion cloud via
holes drilled in the central ring and the resulting res-
onance fluorescence on the S-P transition is observed
through the upper endcap, which is formed &om a mesh.
A photomultiplier detects light at 493 nm, stray light as
well as resonance Huorescence at 650 nm is suppressed by
means of a colored glass filter. Stray light at 493 nm is
suppressed by lock-in detection. For that, the laser beam
at 650 nm is periodically chopped, which causes imme-
diate optical pumping to the D state. Thus resonance
Huorescence at 493 nm vanishes and lock-in detection
separates the periodically varying resonance Buorescence
from the continous stray-light background at 493 nm.

The rf octupole trap, an electron gun, and an atomic
beam source are placed in a vacuum chamber with back-
ground pressures smaller than 10 Pa. Inside the trap,
ions are created &om the atomic beam by electron im-

part ionization. A loading time of 20 s is sufFicient to
completely fill the ion trap. In our experiment, mechan-
ically blocking the atomic beam &om entering the trap-
ping volume after loading the trap proved to be essential
to obtain proper steady-state conditions for an ion cloud.

VII. LINE SHAPE OF OBSERVED EXCITATION
SPECTRA

Figure 7 shows an observed excitation spectrum of an
ion cloud in the rf octupole trap; the trapping voltage
was 500 V~ at 0/27r = 400 kHz. The red light field at
650 nm was tuned to the center &equency of the D-P
transition, while the green light field was tuned across
the S-P resonance. In the center of the spectrum, the
frequency diH'erence of the two laser light fields is reso-
nant with the energy spacing between the S and the D
levels. Thus two-photon transitions can form a coherent
superposition of the S and the D states, leaving the P
state without occupation and hence the resonance flu-
orescence at 493 nm decreases. This is the well known
"dark resonance" in A-type three-level systems due to co-
herent population trapping [4]. Due to the motion of Ba+
ions in the rf octupole trap the excitation spectrum is
strongly broadened compared with the natural linewidth
of the P state, which is I'~/2' = 20.4 MHz. Aside from
the dark resonance, excitation spectra observed on ion
clouds in. rf quadrupole traps are known to have a Gaus-
sian shape [26,27]. The line shapes observed from ion
clouds in the rf octupole trap exhibit as a characteris-
tic feature —especially for low rf voltages —a narrow
peak on a broader pedestal. This can be explained as fol-
lows: since motional &equencies of ions confined in the

rf octupole trap are always less or equal to the trap". ,

driving frequency (i.e., 300—650 kHz), emission and ab-
sorption of photons (with time scales of several ns) are
very fast processes on the time scale of the ion motion.
Hence characteristic features of observed excitation spec-
tra mirror simply the ion motion in the trap. Since the
pseudopotential of the rf octupole trap corresponds to
that of a hardening spring, ion trajectories between re-
versions show extended straight sections (cf. also Fig. 2}.
The trapping field then has little influence on the ion mo-

tion, and both laser &equencies have to coincide with the
ionic transition frequencies within a width given by the
natural linewidth and saturation broadening to provide
sufBcient occupation in the P state. For free particles
this is achieved only for a few velocity classes, resulting
in excitation spectra with linewidths much smaller than
the Doppler width (cross saturation) [27]. Consequently
we refer to particles near the trap center as quasifrec
particles. On the other hand, while the ion motion re-

verses, the micromotion amplitude is large since the ion
is maximally elongated with respect to the trap center
(cf. Fig. 2), resulting in a broad Gaussian pedestal of the
line shape, as is observed. in the case of an rf quadrupole
trap [27]. Therefore the observed spectra, as e.g. , shown
in Fig. 7, result &om an ion. ensemble which shows in

parts a &ee-particle behavior and also shows the trapped-
particle behavior indicated by the broad background.

Figure 8 shows observed excitation spectra of ion
clouds in the rf octupole trap as a function of the trapping
voltage, the dark resonances being not resolved. It can
be seen from Fig. 8 that the narrow central peak disap-
pears for high trapping voltages. Increasing the rf voltage
causes an overall increase of the micromotion thus redur. -

ing the quasi&ee sections of the ion motion. According to
the discussion above, for high rf voltages the narrow cen-
tral peak is dominated by the Gaussian pedestal, with a
linewidth corresponding to the full Doppler width of the
ion motion [27].

The following investigation of the dynamics of ion
clouds in the rf octupole trap in Sec. VIII below relies on
information obtained from observed excitation spectra as
follows: the mean kinetic energy of an ion cloud is deter-
mined &om the Doppler width of the Gaussian pedestal,

-i
-3 -2 -1 0 1 2 3 4
LASER DETUNING AT 493 nm (GHz)

FIC. 7. Excitation spectrum of a trapped cloud of Ba
ions.
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FIG. 8. Excitation spectra as a function of the trapping rf
voltage at a driving frequency 0/2z = 400 kHz. The spectra
were taken about 3 min after filling the trap.

since the linewidth of the central peak is narrowed by
cross-saturation efFects [27]. Further, as a measure for
the mean total number of ions in the rf octupole trap, we

determined the area covered by the observed excitation
spectra. This procedure neglects that optical pumping
to the D level and coherence effects, as e.g. , dark res-
onances, may reduce the resonance Buorescence during
the straight sections of the ion motion (quasifree mo-

tion), which occurs predominantly for low rf voltages. To
correct this systematic error, however, one would have to
know the occupation probability of the D state as a func-
tion of the ion motion, which is not easily accessible for
the case of an ion cloud. Thus the height of the central
narrow peak is at worst underestimated and hence the
derived features, as e.g. , the (quasifree) ion number, are
conservatively determined and present at worst a lower
limit.

20
8

18-
c' 16-

14-

Xl 12-

d
ddd ~ ~

~ ~ ~ ~

'

(a)

ages increase primarily the pseudopotential well depth in-
creases while motional stability is still preserved for most
of the trap's volume. The total n»mber of trapped parti-
cles hence increases [cf. Fig. 9(a)] and so does the mean
kinetic energy. With rf voltages increasing further, the
spatial region allowing for motional stability diminishes.
Accordingly, the height of the pseudopotential useful for
confinement of ions decreases [cf. Fig. 5(c)], and so does
the mean kinetic energy, since the most energetic ions
evaporate from the ion cloud first.

At this point, it might be interesting to compare rf
and dc voltages and search for optimum parameters as
is done in the case of the rf quadrupole trap [30]. The
stability diagram for the rf quadrupole trap (Paul trap)
does not contain the point of zero rf trapping voltage
due to space charge efFects [31). To our opinion, a similar
space charge shift prevents that we obtain quantitative
agreement between the theoretical analysis of Sec. IV
(where single ion trajectories were calculated) and the
observed experimental results.

By comparing the storage properties of the rf octupole
trap with that of an rf quadrupole trap [26] of the same
size (i.e. , the same ring diameter) and similar volume,
we are led to the following conclusion: optimum storage
conditions for ion clouds in the rf quadrupole trap (i.e.,
maximum total number of ions) are achieved at scaled
voltages of about a, = —0.03 and q, = 0.55 [30]. The

VIII. MEAN KINETIC ENERGY' AND
RELATIVE PARTICLE NUMBER AS A

FUNCTION OF THE TRAPPING PARAMETERS
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~ d
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Figures 9(a) and 9(b) display the relative number and
the mean kinetic energy of trapped ion clouds as a func-
tion of the trapping rf voltage at 0/2x = 400 kHz. As
can be seen from Fig. 9(a), the relative number of trapped
particles is nearly constant in time for low rf voltages.
This corresponds to motional stability over most of the
trap's volume according to Fig. 5(a). However, since the
pseudopotential is fairly low, maximum particle numbers
are not stored for these (low) rf voltages but for voltages
in the range of 400 to 600 V„„at 0/2m. =400 kHz. For
rf voltages higher than 600 V~, more than 10%%uo of the
ions are lost within 2 min. This instability of ion con-
finement in time corresponds to the small spatial region
of motional stability in Fig. 5(c). The overall shape of
Fig. 9(a) agrees well with transmission curves obtained
experimentally from a linear rf octupole beam guide [15].

Figure 9(b) shows the mean kinetic energy of an ion
cloud 2.5 min after the ions were loaded to the trap as
a function of the rf voltage at 400 kHz. Again, impor-
tant features of the curve can be explained qualitatively
by following the analysis of Sec. IV. When the rf volt-
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FIG. 9. Relative ion number (a) and mean kinetic energy
(b) as a function of the ac trapping voltage Vo. The relative
number in (a) is shown for times of two minutes (Slled circles)
and four minutes (triangles) after loading a new ion cloud to
the trap.
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range of scaled rf voltages q„where clouds of Ba+ ions
have been detected with rf quadrupole traps used in [26]
extends &om q, 0.37—0.98 at zero dc voltage [32]. For
our rf octupole trap, the range of scaled rf voltages q4 ex-
tends &om q4 0.1 —0.81, with signi6cant losses of ions
beginning at q4 0.3. Compared to the rf quadrupole
trap, the total range of rf voltages, allowing for con6ne-
ment of ions in the rf octupole trap, is larger and centered
at lower rf voltages.

Note that the pseudopotential of an rf octupole trap is
proportional to r, while a dc octupole potential is pro-
portional to r . A dc octupole potential, if added to the
rf octupole potential deforms the trap's pseudopotential
in a complicated manner of no evident advantage. Exper-
imentally, nonzero dc octupole potentials were observed
not to improve the trapping stability, but to reduce the
number of stored ions. By contrast, for the rf quadrupole
trap, both the pseudopotential and the dc potential are
proportional to r2, but have diB'erent dependencies on the
polar angle. Therefore, the dc voltage can be adjusted to
form a total pseudopotential of spherical symmetry [18)
which may be of advantage for ion con6nement. This is
not possible in the rf octupole trap and all subsequent
measurements were taken for zero dc potentials.

Figures 10(a) and 10(b) show the relative number of
trapped ions and the mean kinetic energy of ion clouds
in the rf octupole trap as a function of the squared &e-
quency 0/2x For th. ese curves, both the trap's driving
ft. equency and the trapping rf voltage were varied such
that the ratio Vo/A2 remained constant. Hence the sta-

bility function g is kept at a fixed value, while the depth
of the pseudopotential increases with increasing 0 [26].
All measurements indicated in Figs. 10(a) and 10(b) were
taken 2.5 min after loading the trap, which ensured that
quasistationary conditions are reached. As is seen fron~

Figs. 10(a) and 10(b), both the total number of ious and
the mean kinetic energy of ion clouds increase linearly
with the square of the trapping frequency 0/2vr. Such a
behavior has been similiarly observed for rf quadrupolI.
traps, provided the stability function {in this case q„, q,, )

is kept constant [26].

IX. OBSERVED SPATIAL DISTRIBUTION OF
TRAPPED ION CLOUDS

For a measurement of the spatial distribution of the
Quorescence intensity of stored ion clouds in the rf oc-
tupole trap, we took photographs of the Quorescing ion
cloud [28]. The photographs have been evaluated using a
microdensitometer and by employing a calibration curve
which allowed us to obtain the Quorescence intensity from
the optical density of the 61m. Figure 11 shows a mea-
surement of the spatially resolved Quorescence intensity
of a stored ion cloud at an rf voltage of 1125 kV&z at
0/2z = 600 kHz. Both lasers were tuned to resonance.
The two distinct maxima correspond to maxima of the
ion density caused by Coulomb repulsion in the anhar-
monic pseudopotential of the octupole trap, as discussed
in Sec. V. The asymmetry of Fig. 11 with respect to the
trap center is due to unintentionally focusing the laser
beams to the right hand side of the trap. This produces
a spatially varying light intensity of the laser beam and
causes the higher peak on the right. At the trap center,
the Quorescence intensity shows a minimum correspond-
ing to a dark zone orthogonal to the direction of prop-
agation of the light fields [26] due to spatially localized
optical pumping [28]. All the spatially resolved measure-
ments show a similar shape as shown in Fig. 11. Hence,
as a measure for the spatial extension of the ion clouds,
the separation of the two distinct maxima was evaluated
from the observed Quorescence distribution. Note that

z
z
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0.35 0.4

FIG. 10. Mean kinetic energy and relative ion number as a
function of the square of the driving frequency 0/2s'.

RADIAL DISTANCE (mm')

FIG. 11. Spatially resolved Huorescence of an ion cloud in
the rf octupole trap. Parameters: trapping voltage Vo ——1125
V„~, 0/2s = 600 kHz.
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an ion cloud in a Paul trap has a Gaussian spatial dis-
tribution with an extension which is much smaller than
the distance between the two distinct maxima observed
in the octupole trap [26].

X. POSITION DEPENDENCE OF THE
TRAPPING STABILITY

Figure 12 shows the spatial extension of ion clouds in
the rf octupole trap as a function of the rf voltage at
0/2m = 400 kHz with both lasers tuned to resonance.
The observed spatial extension may be compared to twice
the maximum extension &om the center of the trap al-
lowing for stable ion motion. This is shown in Fig. 12 by
dashed curves for different values of the stability func-
tion g in radial direction, as given by Eq. (19). As dis-
cussed in Sec. IV, the value of g should not exceed 0.3
[12]. From Fig. 12 it can be seen that the observed spa-
tial diameter of the Quorescing part of the ion cloud —as
obtained &om measurements with both lasers tuned to
resonance —is lower than the limit posed by the condition

g & 0.3 for stable ion motion. This behavior is especially
pronounced for the lower rf voltages in Fig. 12 where the
Qatness of the trap's pseudopotential but not the mo-
tional instability is limiting the storage capacity of the rf
octupole trap [cf. Figs. 5(a)—5(c)]. For higher rf voltages,
the observed maximum extension of the Quorescing part
of the ion cloud agrees better with the limit posed by

g & 0.3, indicating that for higher rf voltages motional
instability is limiting the storage capacity of the trap, as
discussed in Sec. IV. However, all the observed spatial
extensions in Fig. 12 are systematically lower than the
limit set by g & 0.3 due to the following effect: with
both lasers tuned to resonance, only ions with velocities
around zero may be effectively excited by the laser-light
fields and contribute to the observed Quorescence. Due
to the large distance from the trap center, ions at the
outer side of the ion cloud have high velocities (due to
their strong micromotion). For the lasers tuned to res-
onance, those ions contribute very little to the observed
Quorescence. Consequently, the spatial extension of the
ion clouds are systematically underestimated in a mea-
surement with both lasers tuned to resonance.
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FIG. 13. Diameter of the Suorescing part of an ion cloud
as a function of the laser detuning at 493 nm. Three curves
are shown for different rf voltages at 0/2s' = 400 kHz. Solid
lines, resulting from linear regression, are drawn to guide the
eye. Dashed lines indicate the limit for motional stability.

Figure 13 shows the spatial extension of ion clouds
in the rf octupole trap as a function of the detuning of
the laser at 493 nm. With increasing detuning, those
ions which have higher velocity amplitudes and corre-
spondingly have the highest distance &om the trap center
now can contribute to the observed Quorescence inten-
sity [28]. Hence the spatial extension of the Huorescing
part of the ion cloud increases with the detuning of the
light field. With increasing rf voltage, the pseudopoten-
tial becomes steeper and the spatial extension of an ion
cloud decreases, as shown in Fig. 13 by the three differ-
ent curves. Also indicated in Fig. 13 is twice the distance
&om the trap center, for which the stability function g,
as given by Eq. (19), equals 0.3 in the radial direction.
The observed maximum extension of the ion cloud is in
reasonable agreement with the limit posed by the require-
ment for motional stability. This agreement is especially
good for the higher trapping rf voltages (i.e., the lower
curve in Fig. 13), where motional instability is limiting
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FIG. 12. Diameter of the ion cloud as a function of the ac
trapping voltage. The dashed lines indicate values of constant
q values.

FIG. 14. Diameter of the ion cloud as a function of the
squared driving frequency 0/2s'. The dashed lines indicate
values of the stability parameter q.
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the storage capacity of the trap.
Figure 14 shows the observed spatial extension of ion

clouds in the rf octupole trap as a function of the square
of the frequency 0/2rr. Both light fields were tuned
to resonance. Again, both the trap's driving frequency
and the trapping voltage were varied such that the ratio
Vo/Az remained constant. As discussed in Sec. VIII, this
procedure keeps the stability function g fixed and varies
the depth of the pseudopotential. As expected, Fig. 14
shows that the observed spatial extension of ion clouds
in the rf octupole trap does not depend on the depth of
the pseudopotential, similar to the quadrupole case [29j.
Also shown in Fig. 14 is twice the maximum extension
Rom the trap center for three diferent limiting values of
rl (cf. dashed lines in Fig. 14). As discussed above, for
both light fields tuned to resonance the observed spatial
extension of the Buorescing part of the clouds is lower
than the limit posed by the condition q & 0.3 for mo-
tional stability.

XI. CONCLUSION

Con6nement and dynamics of ion clouds in an rf oc-
tupole trap have been investigated. The stability of

a nonlinear parametric oscillator was investigated both
theoretically by numerical integration of the equations
of motion together with analytical arguments and ex-
perimentally by spatially resolved measurements of the
Huorescence intensity. It was found that ions in an rf
octupole trap should move near the center of the trap es-
sentially as an ion gas unperturbed by the trapping field.
Thus it should be possible to apply cooling techniques as
they are known for atoms. %e perceive the possibility
to cool at least parts of such an ion cloud (near the cen-
ter of the trap) using optical molasses techniques. This
would give access to both a confined, laser-cooled, and
weakly interacting ensemble as it is desirable for many
spectroscopic experiments in the optical as well as in the
microwave domain.
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