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We have implemented nonlocal exchange effects rigorously in the first-order nondegenerate adiabatic

(FONDA) theory. This implementation requires solving integrodifferential equations that involve dou-

ble integrals. Separable and model exchange approximations that simplify the inclusion of exchange in

the scattering calculations have been previously implemented in the FONDA theory. The discrepancy

between the exact exchange FONDA cross sections and the separable and model exchange results sug-

gests that one needs to include exchange rigorously to obtain accurate results over a wide range of ener-

gies. Specifically, a difference of up to 30% is observed between the exact and separable exchange

FONDA cross sections at near-threshold energies. At higher energies the FONDA results from the

rigorous and model exchange implementations disagree by as much as 10%.

PACS number(s): 34.80.Gs, 03.65.Nk

I. INTRODUCTION

The problem of accurately calculating near-threshold
inelastic electron-molecule cross sections is becoming in-
creasingly important in such areas as gas discharge de-
vices and pollution control [1,2]. The discrepancy be-
tween the existing experimental and theoretical results
[3,4] makes this problem even more noticeable [5—8].

Two widely used methods for calculating electron-
molecule cross sections are laboratory-frame close cou-
pling (LFCC) [9—11] and adiabatic nuclei (AN) [12—19].
The LFCC method, which takes into account the full in-
teraction between the nuclei and the scattering electron,
gives accurate cross sections [20]. In this method the
electron-molecule wave function is expanded in complete
sets of rotational and vibrational eigenfunctions of the
target and angular momentum eigenfunctions of the pro-
jectile. In scattering calculations, this expansion has to
be truncated to a manageable size and still maintain the
desired level of accuracy. This makes the LFCC method
not applicable to any but the simplest molecules (e.g.,
Hz). In the AN theory, one can simplify the LFCC equa-
tions via two approximations: (i) separation of target and
projectile variables in the system wave function [21];and
(ii) target state degeneracy, i.e., equating the energies of
the projectile in the entrance and exit channels. These
simplifications makes the AN theory applicable to sys-
tems far more complicated than those to which LFCC
can be applied [22,23]. The AN method, however, breaks
down near the threshold energy range [19].

An alternative method that is much more reliable near
threshold and is not as demanding as LFCC was devised
by Morrison and Abdolsalami [24,25]. This method,

which is called first-order nondegenerate adiabatic (FON-
DA), is based on the radial scattering functions of con-
ventional body-frame fixed-nuclei (BF-FN) theory. The
target state degeneracy assumption, however, is lifted
which makes this method more accurate near threshold
energy compared to the AN theory [25—27].

II. THEORY

Irrespective of the method used, three types of interac-
tion will take place between the scattering electron and
the target molecule [28,29]. These interactions are static,
exchange, and induced polarization. Static and polariza-
tion effects in scattering calculations are discussed else-
where [30—33]. In this paper, we briefly discuss model
and separable exchange [34] in the context of the FON-
DA theory [35] and give a detailed discussion on the
rigorous implementation of the exchange effect in this
theory.

Treating exchange exactly amounts to explicit con-
sideration of the pairwise interchange of the scattering
electron with each of the target electrons. Consequently,
the exchange interaction is a nonlocal effect that causes
the coupled scattering equations to be of integro-
differential type. Fortunately, the exchange interaction is
short range which makes it significant only when the
scattering electron is close to the target mo1ecule.

To simplify its inclusion in the scattering calculations,
several models have been devised for the exchange effect
[36]. One such model, which has been used in the previ-
ous FONDA calculations [26], is based on the free-
electron-gas (FEG) approximation [37]. In this model
potential, we approximate the exchange effect via a local
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and

potential-energy term [36] that can be simply added to
the other components of the interaction potential. Mak-

ing the FEG approximation for the bound orbitals
amounts to treating the target electrons as noninteracting
fermions [38] occupying a volume V moving in an identi-
cal potential field with no mutual forces between them.

The particular model exchange used in our previous
calculations treats the ionization potential of the neutral
target I as a parameter that is tuned —hence the name
tuned free-electron-gas exchange (TFEGE}—to give ac-
curate cross sections and eigenphase sums. The tuning
procedure is carried out in the BF-FN formulation within
the static-exchange approximation, in which the induced
polarization potential is neglected. In this particular im-

plementation, the eigenphase sum in one symmetry at one

energy is used from exact exchange calculations to adjust
the parameter I so that the corresponding model ex-

change calculations yield the same value of the eigen-

phase sum [39].
Using model exchange, the laboratory-frame FONDA

(LF-FONDA) K matrix becomes [26]

gz(ll', A) =
' 1/2

C(l'Al;AO)C(l'l l;00) .
2l+1 (3)

Here, Wli (r, ko) represents the BF-FN radial wave func-
p

tion and u&(r) is the expansion coefficient of the interac-
tion potential in terms of Legendre polynomials, with
2 A,j l(kir), and C(I'll;AO) being the frame transforma-
tion matrix, Ricatti Bessel function, and Clebsch Gordan
coefficients, respectively. In these equations, ko and k.
represent the initial and final energy of the scattering
electron. It should be noted that in (1) the rigid-rotor ap-
proximation is made; i.e., the vibrational motion of the
target molecule is ignored. The radial wave function is
obtained by solving the following coupled radial equa-
tion:

+k W" (rk )
d
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r 0ar r

(4)

which is the standard BF-FN radial equation. Here, I
corresponds to the orbital angular momentum of the
scattering electron, 10 designates a particular linearly in-

dependent solution, and A represents the projection of
the orbital angular momentum of the scattering electron
on the internuclear axis.

It is advantageous to present the appropriate equations
for exact exchange FONDA theory before discussing se-
parable exchange in the context of this theory. With ex-
change treated exactly, within the static-exchange ap-
proximation [40,41], the LF-FONDA K matrix is given
by [26]

g ~ 'A ggz(II A}rl'x(IIO k') + g f j l(kiri )f Kli ("i rz }Wi'i, (rz ko)dridrz
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where

Kll'(ri rz) =rirz f Yl

is the BF-FN exchange kernel and K (r, , rz) is given by

(6)

OCC

K(r, ,r, )= g P„(r, ) gati„'(rz) .
r) r2

In these equations, Yi (r, ) are the spherical harmonics
with P„(r) representing the molecular orbitals, and the
sum in Eq. (7) runs over all occupied target orbitals. The
radial wave functions Wii (r, ko } can be found by solving

0
the BF-FN radial equations [34] K(r„rz }=+Xi(ri)Ki, [X"(rz)]',

jk
(9)

I

Note that the first and second terms on the right-hand
side of Eqs. (5) and (8) represent the static-polarization
and the exchange efFects, respectively. Now, we can dis-
cuss the FONDA theory assuming separable exchange.

The variables r, and rz in (7) can be decoupled, result-
ing in the breakdown of the double integral in (5}into the
product of two integrals by using the separable represen-
tation of the exchange kernel [26]. To this end, we ex-
pand the exchange kernel K(r„rz } in terms of an ortho-
normal basis set [X (r )]. Making this expansion on both
r, and r2, we get

d2

dr
l(1+1) 2 A

(
r p

where

K.k= f f [Xi(ri)] K(ri, rz)X"(rz)dridrz . (10)
=2+V@(r)WrAi (r, ko)

I'

+ Kll (r ri ) Wi i (ri, ko)dr, .
0 0

The angular dependence in Eq. (9) can be removed by ex-
panding the basis functions in terms of spherical harmon-
ics as
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Xl(r}=+X/ (r)Yl (r) .
l

Substituting (11) into (9) and integrating over the angular
variables, we obtain [26]

U KU=E,
where

Ejk ~j~jk

(13)

(14)

Kll (r, ,r2)=+X/ (r, )K l, [Xl.". (ri)]*
jk

=Xi~ (r i )K[Xl (r2 ) ] (12)
X, (r, )=X, (r, )U,

we obtain

(15)

with [e ] being the eigenvalues of K. Substituting (13)
into (12) and introducing

In (12), Xl (r, ) and K represent a row matrix containing
the elements Xt (r, ) and a full matrix containing the ele-

ments Kji„respectively. The double sum in Eq. (12) can
be simplified to a single sum if the matrix K is replaced
by its diagonal form. Hence we can introduce a unitary
transformation U such that

Kll. (ri, r2)=+Xi (ri)e [X/ (r2)]*
J

(ri)E[Xl ~(r2)] (16)

Using (16) and (5), we can write the LF-FONDA IC ma-
trix as [26]

, &2 QAJA' ggl (ll', A)Il i (llo;k, ) +g ge~M' (l, k, }N/ (lo, k ) (17)

Here

M~ (I, kl )= 1 jl(kjri )Xj (ri )dr, ,
0

and

(18)

N/~(lo, kj )= Wl".l (r2, ko)[X/~(r2)]"dr2 . (19)
o

In our previous FONDA calculations of the electron-
Hz cross sections assuming separable exchange, we used
the occupied and unoccupied (virtual) orbitals of Hz as
the basis for the expansion of the exchange kernel. These
orbitals were expanded in terms of a Gaussian basis set
containing 35 functions of s, p„, p, and p, type [26].
Now, we discuss the implementation of the exact
(rigorous) exchange in the FONDA theory.

The BF-FN radial wave functions can be found by
solving Eq. (8) using the linear-algebraic (LA) method
[34]. This method uses a Gaussian quadrature to convert

I

I

the integrals in this equation into sums. As a result, the
set of coupled equations is converted into a set of linear
algebraic equations which can easily be solved. Next, we
find the FONDA K matrix by transforming Eq. (5) into a
form suitable for the LA method. To simplify the
analysis, we break the FONDA j:matrix into its static-
polarization and exchange components as follows:

K l, , =K l
., l, (static+polarization)+K l,'l, (exchange),

(20)

where K,l 'l.(static+polarization) and K,l 'l (exchange)
represent the first and second terms in (5}, respectively.
As far as the static-polarization part is concerned, we can
easily use a Gaussian quadrature to transform the radial
integral (2} into a sum. For the exchange part, however,
we can write

Kill'l (exchange)= —
i&zg&JA ggji(k r )Kll (r, rp)Wil (rp, ko)ct) ct)p AJ

(k, ko}'" ~
'

l .p
where r and co are a set of points and weights for a given quadrature. This equation can be written as

(21)

K l l(exchan'ge)= —,gA.A g QWi l (rp, ko)copXll. (rp)J A Jlo

{k,ko)
(22)

where

Xll'(rp ) =gj I( kj r )Kll'(r rp )~

The exchange kernel in (23) can be expressed as [34]

(23)

I

where gl(ll'1"1'"~mm;) is a product of four vector-

coupling coefficients [42] and r & (r & ) the minimum

(maximum) of r and rp. Substituting (24) into (23} and

splitting the gi factor, we get [34,42]

]m, [

Xil,(rp) = g g +PI (rp)C,' ".(~1'A ~mmmm), —
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(24)
where

X Yl„(rp), (25)
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Y&&(rp)=QC,' "(l&~ m—m +@}9&'(rp), (26) 0.233

and 0.198—

(27)

In Eq. (25) the sum over projections of the symmetry of
the bound orbitals m, is explicitly shown. Equation (27}
can be divided into two sums; one for 1 & a &P and one
for P & a & N~, where N~ is the number of points used in
the Gaussian quadrature. This equation then becomes

0.159

0

g 0.122

U

0.085—

where

(28) 0.048

0.047
I

0.058 0.068 0.079
Energy (eV)

0.089 0.100

and

(29)

FIG. 1. Integrated LF-FONDA cross sections for rotational
excitation j0=0 to j=2 of H&, using exact (nonseparable) ex-
change (solid curve), separable exchange (dashed curve), and X„
tuned TFEG model exchange (pluses).

N

yI= geo pI- (r )r 'ji(k r ) .
a=P

(30)

A computer program based on the LA method is uti-
lized to find the FONDA K matrix. The original version
of this program, which was developed by Collins and
Schneider, finds the exact exchange BF-FN radial wave
functions. As a result, this code had to be modified for
the FONDA theory.

III. RESULTS AND DISCUSSIONS

Before discussing the results, it is important to com-
ment on Eqs. (16) and (24), which give the exchange ker-
nel in rigorous and separable forms, respectively. From
these equations, it is clear that the number of sums that
must be performed in (16) is smaller than in (24). This
reduction, however, is not as dramatic as it might seem,
because the summations in (24) extend only over the oc-
cupied molecular orbitals. The expansions of the bound
orbitals usually require only a few terms since the ex-
change interaction depends on the diffuse electronic
charge density and not on the nuclear potential, which is

strongly singular (in the rigid-rotor approximation).
This, however, does not apply to the expansion in Eq.
(16). This equation forms an approximate representation
of the exchange kernel, the accuracy of which improves
as more basis functions are added. Consequently, using
the separable form of the exchange kernel will be compo-
sitionally more efBcient only if the number of basis func-
tions needed to get accurate results is smaller than the to-
tal number of terms that appear in Eq. (24).

In this paper, we present exact exchange FONDA re-
sults for the electron-Hz system. The static part of the in-
teraction potentia1 has been included in the scattering
calculations by averaging the Coulomb potential energy
over the X 'X+ electronic target wave function. This po-
tential has been expanded in terms of Legendre polyno-
mials in which four terms Q, =0,2,4, 6) have been re-
tained. For induced polarization, we have used Morrison
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m 2.9
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0.5 1.4
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Energy (eV)
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FIG. 2. Integrated LF-FONDA cross sections for rotational
excitation j0=0 to j=2 of H2, using exact (nonseparable) ex-
change (solid curve), separable exchange (dashed curve), and X„
tuned TFEG model exchange (pluses).

and Gibson's BTAD (better than adiabatic} potential
[33], which incorporates the effects due to the distortion
of probability density of the target electrons caused by
the scattering electron in the calculations. The equilibri-
um internuclear distance is R =1.4ao with spherical and
nonspherical polarizabilities equal to 5.1937a0 and
1.3053ao, respectively. The quadrupole moment of H2
has been set to 0.451 74ao with rotational constant equal
to 0.277 27 X 10 EI, .

The radial equation has been integrated to r,„=600ao
to ensure convergence of the cross sections and eigen-
phase sums for X, II symmetries to within 1%o [43]. The
LA method has been used throughout the whole region
(r =0.0—600.0ao) [44]. It consists of 95 points for all 9
channels used in these calculations. The points are divid-
ed between these regions as follows: 9 points from 0.0 to
0.7, 26 points form 0.7 to 1.5, 10 points from 1.5 to 2.5,
10 points from 2.5 to 10.0, 20 points from 10.0 to 130.0,
and 20 points from 130.0 to 600.0. This arrangement of
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FIG. 3. Total integrated elastic, j0 =0 to j =0, cross sections
of H& using LF-FONDA method (solid curve) and Henry and
Lane results (dashed curve).

FIG. 4. Total integrated cross sections of H2 for rotational
excitation j0=0 to j =2 using LF-FONDA method (solid
curve) and Henry and Lane results (dashed curve).

regions and points has been obtained after extensive con-
vergence tests on the cross sections. Finally, five terms
have been retained in the expansion of the occupied orbit-
als in terms of spherical harmonics [34].

The integrated LF-FONDA cross sections for jo =0 to

j=2 rotational excitation are shown in Figs. 1 and 2.
Figure 1 shows these cross sections in the low energy
range. From this figure, it is clear that the cross sections
obtained using exact (rigorous) and model (TFEG) ex-
change are in excellent agreement. This is because of
strong influence ofp (l =1)waves on these cross sections;
the tuning of the TFEG exchange potential used in these
calculations is performed in the X„symmetry [45]. At
higher energies, however, there could be noticeable
differences between the exact and model exchange
FONDA results, as is obvious from Fig. 2 which shows
the jo=0 to j =2 cross sections at these energies. This is

due to the fact that the tuning of the TFEG exchange po-
tential is performed at one energy, which makes this po-
tential inaccurate for energies far from the tuning energy.
The difference between the results obtained from separ-
able exchange and exact (rigorous) exchange near thresh-
old and high energies indicates that the basis used to ex-

pand the exchange kernel needs improvement. Finally, in

Figs. 3 and 4, the exact exchange LF-FONDA results are
compared to the elastic and rotational excitation cross
sections calculated by Henry and Lane [11]. These
figures indicate that there is a significant difference be-

tween the results of these two studies especially for elastic
scattering cross sections. For j0=0 to j =2 rotational
excitation cross sections, the results obtained from LF-
FONDA theory is lower than the results from Henry and

Lane, except very near threshold.

IV. CONCLUSION

The results discussed above reveal that the method
used to implement the exchange effect in the FONDA
theory could noticeably affect the cross sections. Some of
these implementations simplify the procedure for calcu-
lating the cross sections, but the results may not be as ac-
curate as desired. Treating exchange rigorously gives the
most accurate cross sections at the cost of requiring solu-

tion of integrodifferential equations involving double in-

tegrals. However, because of recent advances in numeri-

cal techniques and computer technology, this is not a
significant problem especially for small systems.
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