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Phonon-induced quantum pair correlation in the difFraction of an ultracold atomic beam
by a crystalline solid surface

Weiping Zhang" and D. F. Walls
School ofMathematics, Physics, Computing and Electronics, Macquarie University, New South S'ales 2109, Australia

Physics Department, University ofAuckland, Auckland, New Zealand
(Received 4 May 1994)

In this paper, a quantum-field theory is employed to study the diffraction of an ultracold atomic beam

by a crystalline solid surface. We show that the crystalline solid surface acts as a nonlinear atomic grat-

ing for an ultracold atomic beam with a Bose condensate. The nonlinearity in such a mechanical atomic
grating is due to the phonon exchange between the atoms in the ultracold atomic beam via the surface
lattice vibration. Such a phonon exchange leads to an attractive interatom interaction in the ultracold
atomic beam, which results in the generation of correlated atomic pairs in momentum space. Such
correlated atomic pairs have similar properties to the conjugate photon pairs in nonclassical light.

PACS number(s): 03.75.Be, 42.50.Vk, 32.80.Pj, 03.80.+r

I. INTRODUCTION

Surface scattering of atomic and molecular beams has
been an active topic in surface science over the past de-

cade [1—3]. By detecting the trajectories of the scattered
particles, one can study the realistic surface structures
and the motion of lattice atoms in the surface. Hence the
surface scattering provides a useful tool to "observe"
atoms or molecules by themselves. However, the existing
experiments and theory on surface scattering of atoms
and molecules only concern the thermal beams with a
suSciently low density and a relatively short thermal de

Broglie wavelength A,~a=+2srth I kmTa. In this case,
the information of some weak surface processes such as

the lattice vibrations and superelastic scattering could be

missed in the scattering beam since the thermal collisions

between the atoms or molecules in the incident beam

could be stronger than these surface processes.
Recently, laser cooling and trapping of neutral atoms

has made great progress with the recoil limit broken
[4-7]. By the current atomic-cooling techniques, a tem-
perature on the order of microkelvin is achievable. In
principle, lower temperatures in the nanokelvin and sub-
nanokelvin ranges are also possible. Due to the long
thermal de Broglie wavelength, such cold atoms have
opened a window to study ultracold atomic collisions
[6,8], wavelike behaviors of atoms in atom optics [9],
quantum statistics of ultracold atoms in a light wave
[10,11], and nonlinear atom optics [12—15]. In this pa-
per, we consider a natural combination between two ac-
tive topics, surface scattering and ultracold atoms, by re-
placing the thermal atomic beam with an ultracold atom-
ic beam in surface scattering. To include the effects of
quantum statistics on the surface scattering of ultracold
atoms, a quantum field theory is employed to study the
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surface scattering processes. For simplicity, we assume
that the surface under consideration is very "clean" with
a perfectly periodic lattice structure and ignore all the
competing processes from suiface roughness. In this
case, the interaction of the incident ultracold atomic
beam with the surface could be understood as two parts:
one is the interaction of the atoms in the incident atomic
beam with the surface atoms in their thermal equilibrium
positions. Under appropriate conditions, that part of the
interaction determines the diffraction of the incident
beam because of the spatially periodic structure of the
surface lattice. The other part of the interaction is due to
the thermal vibration of atoms in the surface lattice from
their equilibrium positions, which leads to a coupling be-
tween atoms in the incident ultracold beam via surface
phonon exchange. The main purpose of this paper is to
study the collective quantum effect in the surface scatter-
ing of the ultracold atomic beam which is caused by the
phonon exchange.

The paper is organized as follows. Section II is devot-
ed to the derivations of a formal nonlinear Schrodinger
equation for the surface scattering of atoms. Both the
atomic beam and the surface lattice vibrations are treated
in the quantum-field-theoretic framework. In Sec. III, we
discuss the realistic structure of the surface potential. A
series of coupled wave equations for the possible
difFraction eigenstates are derived by solving the single-
atom Schrodinger equation without the phonon-exchange
effect. In terms of the single-atom diffraction eigenstates,
the quantum pair correlation due to the phonon-
exchange nonlinearity in atomic surface scattering is ana-
lyzed in Sec. IV. The incident atomic beam is assumed to
be composed of a plane-wave Bose condensate with a
high atomic density. We show that if there is no phonon
nonlinearity or the atomic density of the condensate is so
low that the phonon exchange nonlinearity is very weak,
the condensate only results in a resonant excitation of
diffraction eigenstates. However, when the phonon ex-
change nonlinearity is strong, further excitation of atoms
toward other diffraction eigenstates happens because of
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the nonlinear multiwave mixing. We analyze the forma-
tion of correlated atomic pairs in such a rnultiwave mix-

ing and study its effect on the surface scattering of ul-

tracold atomic beams. The conclusions are included in

Sec. V.

II. FORMAL THEORY
OF ATOM-SURFACE INTERACTION

In this section, we develop a theoretical formalism for
the atom-surface interaction in the framework of
quantum-field theory. The motion of the atoms in the
surface is mainly the thermal vibrations from the equilib-
rium positions. Hence the systematic Hamiltonian of an
atom in the incident beam interacting with the atoms in
the surface lattice can be expressed as

BV(r;q, , . . . , q, , . . . )
u;

0

X [Pjez(W)Bwexp(i W q; )+H. c ], .
' ]/2

Us

2Sa(W)

X [fez(W)Bwexp(iW .q;)( iW )+H —c ], . .

where p =%0M; /LS is the density of atoms in the crystal,
S the surface area, L the thickness of the crystal, U, the
sound velocity of surface waves, eJ(W) the polarization
vector of the surface waves, and W =(8'„,W, i W, } the
wave vector of the surface waves. The imaginary com-
ponent of the wave vector W in the direction normal to
the crystal surface describes the localization of the sur-
face sound waves. The numerical factor PJ is chosen to
satisfy the boundary condition of zero stress at the crystal
surface x-y plane and determines an amplitude normali-
zation constant

where r is the position vector of the atom in the incident
beam and q; =q; +u; is that of the ith atom in the surface
lattice. The ith atom in the surface lattice vibrates
thermally in the vicinity of the equilibrium position q,.

with the displacement u;, the momentum
P; =M, (Bu; jBt), and the modulus f;. The averaged in-
teraction potential V(r)=g,. V, (~r —q;~) is the contribu-
tion of all surface atoms at the equilibrium positions.
The last term of Eq. (1) describes the correction from the
thermal vibrations of surface lattice. Generally, the po-
tential correction term due to the thermal vibrations of
surface lattice is small compared to the surface potential
V(r) and is treated as a perturbation in this paper. The
displacernent field and the momentum of the surface
atoms in Eq. (1) can be expanded in terms of the surface
waves [16—18]

1/2

u;=g
2pSu, a(W }

&ph =g ~w(BwBw+ —,
' )

and the fourth term can be expressed as

H, ~h=g ri(r, W)Bw+H. c. ,
W

where the subscript a-ph denotes the coupling of atom
and phonon, cow = u, Q W„+W denotes the surface
phonon frequency, and

' 1/2

2pSu, a(W }

BV(r, . . . , q, , . . . )
Xgq

Bq;
eq(W)

X exp(iW q, ) (5)

is the phonon-induced potential function of the atom in
the incident ultracold atomic beam.

In the above discussions, we only consider a single
atom in the incident beam interacting with the crystalline
solid surface. For an ultracold atomic beam composed of
degenerate Bose condensate, the quantum statistics is of
crucial importance in the diffractio of ultracold atoms

by the surface lattice, which has not yet been studied in

the literature of atom-surface scattering. In order to in-

corporate the quantum statistics into the atom-surface
scattering, we adopt the quantum-field-theoretic descrip-
tion of the ultracold atomic ensemble. In terms of the
field-theoretic language, the total Hamiltonian of the sys-

tern composed of the ultracold atoms in the incident
beam and the atoms in the crystalline solid surface can be
expressed as

AV
H,„,= f d r g (r) — + V(r) g(r)+H~h2'

+f d r gt(r) g ri(r, W)Bw+H. c. P(r),

where the operator p(r) and its Hermitian conjugate

g (r) describe the annihilation and creation of the atoms
at the position r. Hamiltonian (6) determines the follow-

ing Heisenberg equations of motion for the surface pho-
nons and the atoms in the ultracold atomic beam:

dBw(t)i' =AcowBw+ f d r q(r, W)'Pt(r, t)P(r, t),

PqP~.eq( W )*.eJ (W )
a(W)=g

8', —8;
In the second quantization description of surface sound
waves, Bw and its Hermitian conjugate Sw are the an-

nihilation and creation operators of surface phonons.
Substituting Eq. (2) into Eq. (1), the second term of Ham-
iltonian (1) is reduced into
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+g g(r, W)8w+H. c. P(r, t) .
W

(7b)

In Eqs. (7), we see that the surface phonons and the

atoms in the ultracold beam are coupled by the potential
function g(r, W), which is due to the thermal vibrations
of the surface atoms. Solving Eq. (7a) and substituting
the solution into Eq. (7b), one can eliminate the phonon
annihilation and creation operators Bw and Bw in Eq.
(7b). This leads to a nonlinear stochastic Schrodinger
equation for the atomic field operator of the incident
atomic beam

+ r' gr Wgr'W' ~e r't —v r't —~+Hc. r t
1 0

(8a}

where Va (r, t )—=gw rl(r, W )Bw (0)e +H. c. gives a
random potential which is induced by the thermal vibra-
tion phonons. The statistical correlation function of the
random potential has the form

( Vx(r, t) Va(r', t') }

l(rr, W)' j(rr', W}n (wT )0e

W

(
I

+gg(r, W)q(r', W)' [1+nw( To }]e

(8b)

where nw(TO) is the number of phonons in the surface
wave with wave vector W and T0 is the temperature of
the crystal surface. The nonlinear term in Eq. (8a) results
from the exchange of phonons between the atoms in the
ultracold atomic beam, which leads to a direct interac-
tion of atoms in this beam. This case is similar to the
photon exchanges between atoms which leads to a
ground —excited-state atomic nonlinearity [11-15]. The
only difFerence between phonon exchange and photon ex-
change is that the phonons can be exchanged directly be-
tween ground-state atoms and the photon exchange only
happens between ground- and excited-state atoms. In
this paper, no electromagnetic interaction is involved and
hence no atom in the atomic beam will be excited. As a
result, the dipole-dipole interaction due to atomic excita-
tion will not have any efFect on the surface scattering pro-
cesses. In addition, some other many-body effects which
possibly afFect the scattering processes are the short-
range ground —ground-state atomic collisions. However,
if we assume that the incident atomic beam is prepared in
a macroscopic single quantum state with a Bose conden-
sate, these many-body effects have been incorporated into
the formation of such a stable condensate in advance.
Hence the dominant atomic nonlinearity in the present
problem is the interatom interaction due to phonon ex-
change. On the other hand, in terms of Eq. (8b), the

incident ultracold
atomic beam

Detector

z

0 9 yeti
~ OO ~

FIG. 1. Schematic diagram for the difFraction of an ultracold
atomic beam by a crystalline solid surface atomic grating.

eff'ects from the random potential Va(r, t) depend on the
temperature of the crystal surface. The random potential
causes incoherent scattering of atoms which can destroy
the coherence of the atomic beam. To reduce the in-
coherent scattering, a "cold" surface is required. This
can be realized by cooling the crystal in a low-
temperature liquid, for example, liquid He. For a cold
crystal surface, only few surface phonon modes are excit-
ed and a large number of phonons are left in vacuum
states. In this case, the random potential Va (r, t) is negli-
gible compared to the averaged surface potential V(r).
Further we assume that the thermal vibration of surface
lattice atoms has a large phonon bandwidth hcow so that
the energy change of atoms in the atomic beam due to
phonon exchange satisfies the relation E„.—E„«Meow.
Then the integral over time w in Eq. (8a) can be approxi-
mated by adiabatically removing the atomic field opera-
tors from within the integral. Such an assumption can be
valid for the interaction of atoms (or other heavy parti-
cles) with wideband phonons. But it is invalid for the in-

teraction of light particles such as electrons with phonons
[19]. By these above assumptions, Eq. (8a) can be finally

reduced to the form
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/2+2.&Bg fi V

Bt 2m

+ fd r'g (r, r')gt(r')P(r') 1((r),

Q (r, r') = — g i)(r, W)il(r', W)'/iiicow+ H. c. . (9b)

The negative sign in expression (9b) indicates that the
phonon exchanges induce an attractive force between
atoms in the beam. Equations (9) determine the dynamic
scattering processes of ultracold atomic beams by a crys-
talline solid surface. A schematic diagram for such a
scattering is shown in Fig. 1.

III. SURFACE POTENTIALS
AND MFFRACTION EIGKNSTATES

The basic formalism given in Sec. II is only forrnal.
The exact forms of the surface potential V(r) and the
nonlinear correlation coefficient Q(r, r') depend on the
practical structure of the crystal surface, which is chosen
as the atomic grating. So far there is no good theory to
describe the realistic surface structure and the relevant
surface potential. In the literature of surface scattering,
the often used models for some solid surfaces can basical-
ly be divided into three types. The first type was initiated
by Lennard-Jones [20]. This theory is based on a first-
order distorted-wave Born approximation. In the theory,
the surface potential is presented by a Morse potential.
Experiments show that the Lennard-Jones approach is
inadequate for a useful description of elastic scattering
data. However, because of the simplicity in the theoretic
analysis of surface scattering, it is still widely adopted.
Another typical model is to simplify the surface potential
as a hard wall with a periodic variation [2]. The third
type of model is to expand the surface potential in the
Fourier transformation in terms of the surface reciprocal
lattice vector. In such an expansion, each order Fourier
component can be modeled in terms of the realistic ex-
perimental data of surface scattering. The model is suit-
able for arbitrary surface structure, but usually no analyt-
ic function is available for the surface potential. In this

paper, we employed the general Fourier expansion for the
surface potential and the phonon-induced potential in
terms of the periodicity of the crystal surface as

the Fourier components of the surface potential can be

approximated by the analytic functions
r 1

~z„1 i

V Iz)=d —- --4
z l z

~l 1'
,;j4

I z, ',

V (z)=d6 G

where d =80 cal/mol, zo 2 65 A d l,o do, ]

cal/mol, and d» =5 cal/mol. The higher-order com-

ponents in G have very small values and can be ignored.
Figure 2 shows the surface potential and its equipotential
curves in terms of Eq. (10a) and the parameters given in

Eqs. (11). The Fourier components of the phonon-
induced potential should have forms similar to Eqs. (11).
But so far there has not yet been any analytic functions
available to describe them.

In this paper, our purpose is to study the quantum pair
correlation induced by the phonon-exchange nonlineari-

ty. At this stage, the exact function forms of these
Fourier components of the phonon-induced potential are
not important to discuss the quantum correlation in the
surface scattering and we can leave them as the adjust-
able parameters in our discussions. As the beginning of
our discussions, we solve the Schrodinger equations
without the phonon exchange nonlinearity and find all

possible di6'raction states determined by the surface po-
tential V(r). If these diffraction states are denoted as Pit
with eigenvalues Ez, we have the following Schrodinger
equation:

AV -+ V~{z)+ 2 Vo, {z)[cos(Gx)+cos(Gy) ]
2m

+2 V» (z)cos(Gx +Gy) Pit=Eitgx, (12)

V(r) =g Vo(z)exp(iG p),
G

i)(r, W) =g i)o(z, W)exp(iG p), . (10b)

where p=(x,y) denotes the position vector in the plane
parallel to the crystal surface and G is a reciprocal lattice
vector of the surface. The Fourier components Vo{z)
and i)o(z, W) in expressions (10) depends on the individu-

al interaction of the atom in the atomic beam and the
atom in the surface. For a realistic surface, a reasonable
choice for the individual interaction is to model it by a
van der Waals potential. The scattering experiments on
the He-LiF surface interaction and numerical analysis of
the scattering data in terms of expansion (10a) show that

IE0'-
'f

x/1
FIG. 2. (a) The surface potential V(r) at z =2 A and (b) the

equipotential curves in the x-y plane. The calculation is per-
formed in terms of expressions (10a) and (11).
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where we have ignored the higher-order Fourier com-
ponents of the surface potential and only consider the
(0,0), (0,1), and (1,1) components. The reciprocal vector
is chosen to have the same project in the x and y direc-
tion, i.e., G„=G~=G=2m. /l with l the project of the
translation vector in the x and y directions. In terms of
the periodicity of the surface potential, the diffraction
eigenstates will include the same periodic information as
the surface structure. Hence the diffraction states can be
expanded into the forms

IV. QUANTUM PAIR CORRELATION
IN SURFACE SCAITERING
OF ULTRACOLD ATOMS

In this section, we consider the exact Schrodinger
equation (9) with the phonon-exchange nonlinearity. The
Schrodinger equation (9) determines an effective Hamil-
tonian for the ultracold atomic beam with the form

f2+2
H,fr= f d3r P (r) — + V(r) g(r)

1yK(r)= —exp(iK r)uK(r),v'V

u~(r) =g y„(z)exp(inGx +imGy),
(13)

+ ,' fd—rfd3r'Q(r, r')f (r)P (r')P(r')g(r) .

(16)

where the wave vector K= (k„,k, k, ) is the carrier wave
vector of the diffraction states. The physics implicit in
Eq. (13) is evident: a plane atomic wave impinging on a
crystal surface is modulated by the periodic structure of
the surface with the modulation wave function uK(r).
The modulation sideband wave vector is identical to the
reciprocal lattice vector of the surface. The case is simi-
lar to that of a light wave transmitting a light modulator
or refiected by a refiecting grating. Substituting Eq. (13)
into (12), the scattering waves in the z direction satisfy
the coupled wave equation

In terms of the diffraction states (13}, we expand the
atomic-quantum-field operator in Eq. (16) in the form
f(r)=gzaKP~. The operator aK and its Hermitian

conjugate aK describe the annihilation and creation of
atoms in the diffraction states Pz. For an incident ul-
tracold atomic beam composed of bosonic atoms, the
operators aK and aK obey the Bose commutation. By
employing the operators aK and aK, Hamiltonian (16}
can be expressed as

H, fr
=g EKa Kax

K

2m Vo(z}
+2ik, + k'—

dz dz
q"„(z)

2mVO ((z) [P—t, ~(z)+% +t, (z)

+e.", -i(»+m"., +i«)]
2mVi i(z)

—i(z)+p +i, +t(z)]

(14)

+ g g g g U(K), K2, K3, K4)
1

K1 K2 K3 K4

XaK aKaK aK
1 2 3 4

where

U(K), K2, K3,K4)

1 1

VX ~ ['yw(K„K4}yw(K3,K2)'
w

(17a)

(z) ==xp( —ik,z) +k,' ' R„exp[ik,'z] . (15)

where k,'—:(2mE~/fi )—(k„+nG) (k +mG)——k, .
Equation (14) determines two types of eigenstates: bound
states and reflection states. The bound states correspond
to the eigenenergy EK (0 and localize at the crystal sur-
face with an imaginary wave vector i~k,'~. The refiection
states are the positive eigenenergy states with wave vec-
tor k,' as a real number which connects to the diffraction
states of the crystal surface. Here we assume that the in-
cident atomic beam has a kinetic energy E which is large
enough to allow the reflection states. In this case, Eq.
(14) can be solved by the standard scattering theory with
the boundary condition

+yw(K4, K, )'yw(Kz, K3)],
yw(K, ,K )=f d r ri(r, W)uz (r)'uK (r)

J

Xexp[ i(K; —K—, } r] .

(17b)

The function yw(K;, K ) is the general Fourier transfor-
mation of the phonon-induced potential. In terms of Eq.
(17b), the significant nonlinear terms in Hamiltonian
(17a) are approximately determined by the carrier-wave
resonance condition K&

—K4=K3 —K2=K in the
diffraction. The other terms off resonance can be neglect-
ed since the functions yw(K„K4)and yw(K3, K2) do not
overlap in the momentum space in this case. Therefore,
we further have

In terms of Eqs. (13)—(15) and (11), numerically one can
work out the practical spatial patterns of the diffraction
states (13). However, this is not the main task of this pa-
per. Comparing Eq. (13) with the surface potential (10a),
one can conclude that the shapes of the diffraction pat-
terns have similar properties to those of the surface po-
tential shown in Fig. 2.

H,fr= +EKa KaK
t

K

+ g g gU(K„K~,K~+K, K, —K)1

K1 K2 K

XaK aK aK +KaK
1 2 2 1
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Evidently, if the diffractio processes are initially excited
by an incident single-atom or low-density atomic beam,
the nonlinear terms in (18) can be ignored. In this case,
for an incident monochromatic beam with the wave vec-
tor Ko, the diffraction pattern is determined by lPK (r) l

.

In this paper, we consider the nonlinear case where the
diffraction is excited by an incident ultracold atomic
beam. For simplicity, we assume that the ultracold atom-
ic beam is a plane-wave coherent Bose condensate with
wave vector Kp. When the coherent Bose condensate im-

pinges on the crystal surface, a diffraction mode Pz (r) is
0

excited. Hence the initial state of the system described

by Hamiltonian (18) has the form

le, &=l „,&e g l0 &,
KAK0

where laK & is the quantum state of the initially excited
0

diffraction mode and for a coherent condensate

az lax &=ax la& &. The other diffraction modes are
0 0 0 0

initially in vacuum state +K~K lOK & without excitation.

The time evolution of this initial quantum state in the
diffraction process is given by the Schrodinger equation

(19)
8t

Equation (19) can be solved by employing the standard
technique developed by Bogoliubov [21]. The basic idea
in this treatment is to evaluate the nonlinear interaction
term in Hamiltonian (18) by limiting the sum over the
momentum space near the condensate wave vector Kp.
Such a treatment is valid if there are a large number of
atoms coherently condensing in the condensate. By the
above assumption, Hamiltonian (18) can be rewritten as

H,~=H, +H, +HI,
H, =(E~ +PoUo)a~ ax

(20)

+, = y (EK —K+poUQ)&~ —K&/ —K
K&0

+ y (EK +K+POUO)~K +KuK +K
K&0

Up
+I ( K ) g +K+K+K —K

K&o

+ aK& g +Ko+K+Ko —K2V KoK 0
0

where H„H„andHI are, respectively, the Hamiltonians
for the condensate, the sideband diffraction modes, and
the interaction of the condensate with the sideband
diffraction modes. The parameters
Uo =—U(Ko, Ko, Ko, Ko) and po=Nx /V=aK aK /V are

the atomic densities in the diffraction mode initially excit-
ed by the coherent condensate. Hamiltonians (20) have
similar forms to that of optical multiwave mixing or
parametric interaction in quantum optics. By analogy to
quantum optics, we conclude that Hamiltomans (20) de-

scribe the multiwave mixing of atomic waves in the sur-
face scattering. In terms of Eqs. (19) and (20), at time r,
the quantum state for the diffraction modes of the crystal
surface has the form in the interaction picture

l~( ) & =Sl~, &
= la„,&e lo, &,

lo, &=s g lo„&,
0

S = g exp((~a~ +rcax K
—(Kax +~a~ rc),

K&0

polUol .
~ = 2SE„""

hEK
Xexp i 28o+ v+3m/2

~EK (EKo+K+EKo—K )/ EKO

where ~ is the interaction time of the condensate with the
crystal surface, 80 the initial phase of the condensate, and
ASK the averaged energy of the sideband diffraction
mode. From (21), we see that the quantum state of the
diffraction mode initially excited by the coherent conden-
sate remains unchanged in the time evolution. The result
is due to the assumption of a large number of atoms in
this mode, which is equivalent to the nondepletion ap-
proximation in the multiwave mixing. The vacuum state
of the initially unexcited diffraction modes evolves into
the well-known multimode squeezed vacuum state [22].
Such an evolution is due to the nonlinear multiwave mix-
ing in the diffraction induced by the phonon exchanges
between atoms. This case is similar to the generation of
squeezed state of light in the nonlinear optical parametric
interaction and four-wave mixing where the nonlinear
optical interaction results in the pairing of conjugate pho-
tons [23]. In this paper, the bosonic atoms take the role
of the photons in the conventional quantum optics and
the phonon exchanges produce an attractive interaction
which leads to the pairing of correlated atoms. In this
sense, the phonon-exchange-induced nonlinearity for bo-
sonie atoms plays a similar role to optical nonlinearity for
photons in quantum optics. We can further show the
quantum pair correlation by de6ning the transformations

K,+K =8K K.,+K K K0—K

b K =S aK KS =pKaK
(22)

polUol . ~E
pK =cosh sm

K

polUol .
vK =sinh s~n

hEK
X exp & 26jo+ ++3m /2

Equation (22) is the well-known Bogoliubov transforma-
tion which shows that the annihilation (creation) of an
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atom in the sideband mode Ko+K is always accom-
panied by the creation (annihilation) of an atom in the
conjugate sideband mode K~—K. Such an annihilation
and creation of atoms in conjugate mode pairs results in
the quantum pair correlation in the surface diffraction,
which is due to the nonlinear excitation of the atoms in
the condensate into the sideband diffraction modes in the
atomic momentum space by multiwave mixing induced
by phonon exchanges. To study the effect of the quan-
tum pair correlation on the surface scattering, we can
compare the diffraction pattern of the atomic beam in the
case of a weak phonon-induced nonlinearity and a strong
phonon-induced nonlinearity. For a weak nonlinearity,
the quantum state of the sideband diffraction modes
around the condensate keeps unchanged except a time-
dependent phase factor. In this case, we have the aver-
aged density distribution of the atomic beam

p«) = &@'«)l
0'«) @«)I@(r)&

= I~» I'Ip» «) I' .

For a strong phonon-induced nonlinearity, we have

p(r) =
& & ( ) I yt(r)1((r) I

@(7-)&

=Itr», l'Ip», «)l'+ g &»Ip», »«)I'
K&0

+ g &»Ik», +»(r)l'
K&0

(24)

'(d)
I3-

1Vg
2-... (c) ',

'~1- (b) '. ''.
,

()
-(a1

0 0.2 0.4 0.6

FIG. 3. The dependence of the atomic number NK in the
sideband difi'raction modes on the nonlinearity poI Uo I and aver-
aged sideband energy EEK for (a) pp Up =0 06EK

ppUp =0.12E&, (c) ppUp =0.18E&, and (d) ppUp =0.24EK
The interaction time is chosen as ~=4+%/E in all cases.Kp

where the atomic number excited into the sideband
difFraction modes from the condensate is given by
&» —= Iv»l'. In Fig. 3, we show the dependence of the
atomic number in the excited sideband diffraction modes
on the nonlinearity and the sideband averaged energy
hEK. Evidently the stronger the atomic nonlinearity, the
larger the excited atomic number in the sideband
diffraction modes. The atomic nonlinearity depends on
two important factors: the atomic density of the incident
condensate po and the coefficient Uo, which is determined
by the strength of the phonon-induced potential. Hence
we conclude that there is an evident difference between
the diffraction patterns of the ultacold atomic beam and

that of the low-density atomic beam. Such a difference
can be employed to detect the characteristics of the sur-
face sound waves, which includes the complete informa-
tion of the motion of the atoms in the surface lattice. On
the other hand, compared to the research on generation
of nonclassical light in quantum optics, the results
presented in this paper show that the crystalline-surface
atomic grating can change the properties of quantum
statistics of the incident atomic beam and is useful in gen-
erating atomic beams with different quantum states.

V. CONCLUSIONS

In this paper, we develop a general quantum-Seld-
theoretic description for the surface scattering of atoms.
The many-body quantum collective effect in the surface
scattering due to surface phonon exchanges is analyzed.
We show that the phonon-exchange-induced atomic non-
linearity can result in the multiwave mixing of diffracted
atomic waves by the surface. Such a multiwave mixing
for atoms is analogous to the multiwave mixing for pho-
tons in nonlinear optics. By the nonlinear multiwave
mixing, the atoms in the incident beam can be paired to
form correlated atomic pairs in the momentum space.
Such correlated atomic pairs have similar behaviors to
the correlated photon pairs in squeezed light.

Experimental observation for the atomic quantum pair
correlation in the diffraction of ultracold atoms by a crys-
talline solid surface requires a strict condition. A
mechanically clean surface is basically important to avoid
the atom sticking on the surface and to achieve a high
reQection coeScient. In addition, a low surface tempera-
ture should be satisfied to avoid the incoherent scattering
due to phonon thermal fluctuations. An ideal surface,
which is made available by current low-temperature tech-
niques, is the liquid-He coating surface. On the other
hand, an ideal ultracold atomic source composed of Bose
condensate is required for such a diffraction experiment.
For the current techniques, this is not yet available.
However, the results presented in this paper are valuable
for pedagogical reasons, as they show another source of
atomic nonlinearity besides the photon-induced atomic
nonlinearity [11—15]. Specially the quantum-field theory
provides a simple way to study surface scattering with
thermal lattice vibrations considered. In addition, the
general formalism developed here for the surface scatter-
ing of ultracold atomic beams also provides possible ap-
plications to other topics in studying the many-body col-
lective effect of ultracold atomic ensembles.
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