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Creating and probing subwavelength atomic gratings using spatially separated fields
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The interaction of an atomic beam with three spatially separated linearly polarized standing-wave

fields is considered, taking into account the magnetic degeneracy and hyperfine splitting of the atomic
levels. A spatial modulation of the ground-state density matrix occurs, and is not washed out as a result

of spontaneous decay from the upper states. The interaction with fields separated by a distance L results

in a focusing of harmonics at distances L'=(m/n)L, where m and n are integers; the period of the

matter gratings is A, /2n, where A, is the wavelength of the radiation field. For a beam having angular

divergence 8, one can observe these higher harmonics independently from each other if L &&A,/8. The

gratings can be probed using a third standing-wave laser field in the focal plane of the harmonic under

investigation. General expressions that allow one to calculate the probe absorption for atoms having ar-

bitrary fine and hyperfine structure are derived. Explicit calculations for the alkali metals are presented.
It is predicted that spatial modulations having periods 30-500 nm and modulation depths 2.5-50% can

be produced in this manner. The focusing of the spatial harmonics is interpreted in terms of a shadow

effect.

PACS number(s): 03.75.Dg, 32.80.Wr, 42.50.Hz, 42.50.Vk

I. INTRODUCTION

The spatial degrees of freedom of neutral atoms can be
modified by allowing the atoms to interact with resonant
optical fields. The use of counterpropagating waves al-
lows one to cool atoms below the Doppler limit of laser
cooling [1], construct atom matter-wave interferometers
[2—5], focus an atomic beam [6—8], etc. At the heart of
these phenomena is the atomic recoil accompanying the
absorption or emission of the resonant radiation. To de-
scribe the recoil process, one needs an entirely quantum
treatment of the atomic spatial motion.

There are, however, other means for optically manipu-
lating the atoms' spatial degrees of freedom which do not
relay on atomic recoil for their existence. For instance,
interaction with a resonant standing-wave field results in
spatial modulation of the atomic levels' populations with
periods equal to A, /2s, where A, is the optical wavelength
and s is an integer greater than 0. These higher harmon-
ics of the atomic density could, in principle, be deposited
on a solid surface to form diffraction gratings having
spacings of order 10-100 nm. Unfortunately, all the
gratings are superposed and some method for separation
of the individual gratings is needed.

The shadow effect, proposed earlier [3], allows one to
achieve this goal. The action of a standing wave on a
given level population can be simulated qualitatively by
the action of a grating with period A, /2. Consider the
passage of an atomic beam through the grating (see Fig.
1). The beam is spatially modulated just after passage
through the grating, but this modulation is destroyed
rapidly as a result of atomic motion. Indeed, for an
atomic beam having angular divergence 0, the transverse
atomic motion results in a washing out of the grating in a
longitudinal distance of order A, /0. This decay of the
spatial modulation is similar to that observed in the free

induction decay of an inhomogeneously broadened atom-
ic ensemble excited by a resonant pulse. The decay is not
irreversible, however, and the spatial modulation can be
restored using echo techniques. Superposition of the two
shadows created by the atomic beam passing through two
gratings separated from each other by a distance
L »A, /8 results in the recovering of the spatial harmonic
at the distance 2L (see Fig. 1).

To demonstrate this shadow effect one can use in-
coherent light [9] instead of an atomic beam. By passing
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FIG. 1. "Shadow" effect. Microfabricated structures with

period d simulate action of separated standing waves with wave-

length A, =2d. An atomic density grating, i.e., a periodical spa-
tial distribution with period A, /2, appears just after the first
structure. Overlapping of the trajectories of atoms passing
through the different slits results in the rapid destruction of the
grating in a distance A, /0. An atomic beam with angular diver-

gence 0-1 is assumed here. The trajectories of the particles
passing through the centers of slits are shown after the second
microfabricated structure. Superposition of the "shadows"
from the first and second structures leads to grating reconstruc-
tion exactly at the distance 2L.
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where m and n are integers. Localization of the higher
harmonics of the density matrix was predicted in [12] for
temporally separated standing-wave fields. There is no
physical difference between time- and space-separated
fields since, in the atomic rest frame, fields separated by
distance L appear as pulses delayed in time by T=L/u,
where u is the atomic velocity. Backward scattering of a
probe traveling-wave pulse was used to monitor the
second harmonic of the levels populations localized at the
time T'= ,'T [12]. Th—is method is inappropriate for
probing harmonics with period less than A. /2. To probe
the higher-order gratings one can use a third, strong
standing-wave field [13]. Interaction with the strong
field, applied at the point of localization of the grating
with period A, /2s (i.e., harmonic 2s), results in an absorp-
tion signal from which information concerning the spatial
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FIG. 2. "Shadow" e8'ect using two microfabricated struc-
tures of 20 slits each; n th arrow shows point of localization for
harmonic n. The gratings appearing at distance between the
structures are washed out by trajectories (not shown) which do
not pass through the second set of slits.

light through spatially separated gratings, one observes a
spatial modulation of the light intensity similar to that
shown in Fig. 1. The use of gratings having variable
periods allows one to observe the harmonics in different
focal planes [10]. If microfabricated gratings [11]having
variable period are used, an analogous effect will occur
for an atomic beam having large angular divergence. %e
consider only gratings have equal periods in this paper.

As is evident from Fig. 2, harmonics other than the
second can also be produced, the fourth harmonic at dis-
tance L'=

—,'L, the sixth at distance L'= —', L, and so on.
Thus, the "interaction" with two gratings results in a
spatial separation of the focal planes of the different har-
monics. The "rephasing" of the spatial modulation in
space is analogous to the rephasing of atomic dipoles in
time to produce a photon echo.

The separation of the higher-order gratings also occurs
under the action of resonant standing-wave fields. One
can conclude from Fig. 2 that higher harmonics are fo-
cused at all distances L' such that the ratio L'/L is ra-
tional, i.e.,

L'/L =m/n

modulation of the medium can be extracted.
The shadow effect was considered previously for a

weak forbidden transition [12,13] and for an allowed
transition in which the probability of radiative decay
from the upper to lower level was negligible [3]. An im-

portant class of optical transitions, strong transitions be-
tween ground and first excited states, necessitates a
different analysis. The decay between levels plays such
an essential role in this case that the two-level model,
used previously, becomes inapplicable. For the two-level
model, the ground-state gratings vanish, canceled by the
combined action of stimulated processes and spontaneous
decay [14]. When the magnetic degeneracy of the levels
as well as their hyperfine structure is included, however,
one finds that it is possible to generate nonvanishing
ground-state gratings. The physical origin of this effect is
discussed in detail in Refs. [14—17].

It is necessary to underline the fact that the shadow
effect occurs at the same echo points as matter-wave in-
terference. In any interference experiments both phe-
nomena play a role. One may want to distinguish the en-
tirely quantum matter-wave interference from the entire-
ly classical shadow effect. Since the sum of populations
(atonuc beam density f) is conserved for each velocity
subgroup for particles moving classically, no spatial har-
monic of the total density can be induced [15]. The grat-
ings of the density f appear only after taking into ac-
count the recoil effect for situations in which time of
flight between fields becomes comparable with the inverse
recoil frequency cok '=(A'k /ZM) ', where M is atomic
mass. It was proved previously [2,3] that, however, no
gratings of density can be observed on an allowed transi-
tion exactly at the echo point. This result can be genera1-
ized to the case of multilevel atoms. To observe the
rnatter-wave interference, one has to consider the signal
in the vicinity of the echo points, where nonvanishing
gratings of the total density appear following strong satu-
ration of the transition by the first standing-wave field

[2,3],
Even though we consider the shadow effect as arising

from motion along classical trajectories, observable
modifications of the shadow effect can result from phe-
nomena related to quantization of the atomic motion.
Such effects result in recoil splitting of the Lamb dip
[18,19] and Ramsey fringes [20—22], and are responsible
for the appearance of recoil-induced resonances in
pump-probe spectroscopy and four-wave mixing [23,24].
For the shadow effect, the same process leads to an oscil-
lating dependence of the amplitudes of the atomic grat-
ings as a function of the time T=L/u, with a period of
order of the inverse recoil frequency cok '. Observation of
this oscillation permits one to measure cok on an allowed
transition without a need for high-frequency resolution.

We plan to analyze the interplay of the shadow effect
and matter-wavy interference in the future. In this paper,
it is assumed that cok T «1, consequently effects related
to quantization of the atoms' center-of-mass motion can
be ignored. Note that the condition ~kT&&1 can be
rewritten as (haik /M )T (&k ' =A, /2m. , implying that
atomic recoil on the absorption or emission of radiation
is negligible if cok T « 1.
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An atomic beam interacts with three, spatially separat-
ed standing-wave fields resonant on an allowed transition.
We assume that the excited-state lifetime of the atoms is
smaller than the time of interaction with each field. It is
then possible to adiabatically eliminate the ground-
excited state optical coherence and excited-state popula-
tions and use rate equations for the multilevel, ground-
state density matrix elements [25]. In Sec. II these equa-
tions are solved for linearly polarized standing waves and
general expressions for absorption by the third field are
obtained. Section III is devoted to a discussion of the re-
sults. It is shown that it is possible to create high-order
spatial gratings using low to moderate laser power.
Specific values for the optimum field powers are given for
the alkali-metal elements.

II. SIGNAL CALCULATION

A schematic picture of the system under consideration
is shown in Fig. 3. An atomic beam having angular
divergence 8 passes through three standing-wave optical
fields. The absorption of the third field is monitored as a
function of the fields' powers, frequencies and phases.

The electric-field vector of the linearly polarized stand-
ing waves is taken as

3

E(r, t)= g E (r, t),
j=1

(2)
EJ(r, t) =eE~f(x Lj,y )—

y =0, where L, =0, L2=L, L3=L'. The function
f (x,y) specifies the transverse spatial profile of the field;
it is centered at (x,y) =(0,0}and has apertures w„and w
in the x andy directions, respectively.

Atomic ground and excited states, having electronic
angular momenta J and J', respectively, are split into
hyperfine sublevels having total angular momenta
~J I~ —G J+I and ~J' I~ —H~ J'+I, where I is the
nuclear spin. We assume that the hyperfine splitting is
resolved so that field (2) is resonant with a particular
6—+H transition. It is furthermore assumed that dura-
tion of the interaction with each field, r=w„/u, is
suSciently large to ensure that

7 maxI r, ~a~ ] && 1 (3)

where I' is an excited state lifetime and 5=Q —
coHG is

an atom-field detuning, and that the incident fields are
sufBciently weak to ensure that the Rabi frequencies gj
satisfy

x,. =p, .,E,.i(2~3') «r, (4)

where pJ.J is the reduced matrix element of the dipole
moment operator between states J' and J.

Under these assumptions, one can use equations for
ground-state density-matrix elements derived in [25] (see
also [26]) in which terms involving the excited states have
been adiabatically eliminated. It is convenient to expand
the density-matrix elements in an irreducible tensor basis,
defined by

Xcos(kz+y )exp( iQt )+c.—c.,

where Q, k, and e are the frequency, propagation con-
stant and unit polarization vector of the field. Field j has
amplitude EJ, spatial phase y~, and is centered at x =L., where

X(G, m ~P~G', m'&,

6 6' E
pg(G, G')=( —1) [E]

(5)

/
7

Atomic

beam

/

L, L3
= X

FIG. 3. Schematic diagram of the problem under considera-
tion. An atomic beam having angular divergence 8 and aper-
ture b propagates along the x axis and is illuminated by three
resonant, spatially separated standing-wave fields, which propa-
gate along the z direction and have different apertures
w„&(A,/8 and w~ &)b. The first field induces a spatial modula-
tion of the beam which dephases rapidly for the ensemble, the
second-Seld starts the rephasing process and the third Seld
probes the higher-order harmonic focused at the distance I-'. A
trajectory of atom passing through the field zones at the points
having z coordinates z &, z&, z3 is shown. where

x ~SJ(t')~'~u px( (ga)

IXI ' X, ']=[(2Xi+1) ' (2X, +1) ']'

(6)
and (''') is a 3-J symbol. A summation convention is
used in Eq. (5) and all subsequent equations in which re-
peated indices and symbols appearing on the rhs (right-
hand side) of an equation are to be summed over, except if
they also appear on lhs (left-hand side} of the equation.
Ground-state coherence between different hyperfine lev-
els can be neglected on the assumption that the hyperfine
intervals of the ground and excited states satisfy
~coGG. ~

&&I' (6%6') and ~coH~ ~

&&I' (HAH') and, that
for any 6, 6', H, K', ~coGG.

—co» ~
&&I', except if 6 =6'

and H =H'.
If the quantization axis is taken in the direction of the

polarization vector e, it follows that only those mul-
tipoles of p with zero magnetic quantum number Q

PK(6) =Po(6 6) (7)

and created by the fields. After adiabatic elimination of
the density-matrix elements involving excited states, one
finds that the ground-states elements evolve as [25,26]

, px(6)=g [1+cos[qz(t')+2'. ]]
d

d~' ~
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K K' K J' H I
&xx =3( —1) (&go+ —,

' —5g v 2/3) [KK'KH G j
'

K K' K 1 1 K
G G G 6 G H

J' H I
1 )26[ G 2H2Ji2

j 6 J
K K K
H G 1

H G 1

q =2k,

g, =2IX, I'1 I(y'+~'),

f,{t')=f(x (t') —L, ,O),

y=1 /2 is the homogeneous width of the G~H transi-

tion, and [:::j and [::j are 6-J and 9-Jsymbols, respec-

tively. Equations (8) are written in the atomic rest frame.
To transform to the laboratory frame (r, t ), one sets

r(t') =r —u(t t'), — (9)

The further simplify Eqs. (8), we adopt the following
additional assumptions: (1) the beam's angular diver-
gence 8 is small enough to neglect atomic motion in the y
direction for the entire time of interaction, i.e.,

OL'/w ((1;
(2) the field aperture w„ is sufficiently small to allow all
atomic velocity subgroups to contribute to the shadow
signal, i.e.,

kur —ku Hw„/u =kw„e(&1, (12)

where U is the z component of the atomic velocity
(U-Ou &(u); (3) the angular divergence is sufficiently
large to ensure that the spatially modulated ground-state
Zeeman coherence undergoes the proper dephasing-
rephasing cycle associated with echo production,

kv (L /u) -L OIL, )&1; (13)

(4) the radial dimension b of the atomic beam is smaller
than w and smaller than the confocal parameter w /k
(so that all atoms in the beam see the same field ampli-
tude in each field region), but larger than the wavelength
k (so that the atoms see many spatial cycles of the field):

where u is an atomic velocity. For the absorption of the
third field, we are interested only in those values of x
satisfying

(10)

Each location z in the final interaction region correlates
with specific z components in each of the first two in-
teraction zones as shown in Fig. 3.

The power absorbed from the third standing wave by
the atomic beam is given by

8'= I d rd u E(r, t) BP(r, u, t)IBt, (17)

where P(r, u, t ) = [P(r,u)exp( i Qt—)+c c] i.s th. e polar-
ization density. The polarization density is equal to the
average value of the dipole moment operator, which, in
turn, is proportional to off-diagonal density-matrix ele-
ments involving ground and excited states [14]. These
density-matrix elements can be reexpressed in terms of
the ground-state density matrix via the adiabatic elimina-
tion procedure referred to previously [25]. As a result,
the circular components of the polarization Pq, defined

by

P(r, u)=( —1)~P (r, u)e

with

e+, =+(x'+iy')IV2, eo=z',

can be written in terms of ground-state density-matrix
elements as [25,26]

8 (r, u)=i( —1)H+ +'(F., IA)f(x —L',y)

Xcos(kz+q, )~pHG ~'eq (y ib )—
1 1 K 1 1 KX[Kj, 0 G G H p+(G

where e are the circular components of the vector e ex-
panded in the basis (19). The polarization components e'q

are defined in a coordinate system whose z' axis is taken
along the direction of e, implying that

k«b ((min[w, tc„/A, j . {14) (21)

Condition (12) permits one to neglect atomic motion
along the z axis during each atom-Seld interaction. Con-
sequently, for interaction with field j, one can set

Combining Eqs. (17)—(21) and assuming a monoener-
getic beam with speed u, one arrives at the expression

m=3( —1) +'+ rnXS
z(t') =z, =z —u( T3 —T ), .

in Eq. (8), where

T- =I.-/u .

(15)

(16)

J'HI 1 1K
G J I G G H

X/3([1+cos(qz+2y3)] I dx eopx(G))
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where

1 1
eo=( —1)'IKj. .. 0 e,(e,.)'

is a component of a coupled basis polarization tensor
[25], N and S-b are the atomic beam density and cross
section, respectively, and ( ) indicates an average over u

and z, which is equivalent to averaging over all atoms
passing through the three-field regions. For linearly po-
larized fields (21},it follows that

px(6)= 'exp RI dr'g (1+cosIq[z —u(r —r'}]j}

X
if .(u ~' —L,O) i

' px.(6),
KK'

(26)

which is independent of t. It is also follow from (26} that
px(6) satisfies the differential equations (8), (9), (15}if the

replacements

+0 ( V 3fiKO+V~YSK2) ' (23)
t ~7,t'~v', (27)

are made in these equations. Substituting Eq. (26} in (22)
one finds

In principle, pa(6) can depend on t since it is a solu-

tion of Eq. (8a). To prove that there is actually no such
dependence in the case of spatially separated fields, one
can formally solve Eq. (Sa) to obtain

px(6)= 'exp RJ dt'g (1+cos[q[z—u(t —t')]j)

X if [x —u(t t')—
—L,O] I

'

pit «),
KK'

(24}

where px.(6}is initial density matrix and R is a matrix

having elements Rxx, given by (Sb}. Introducing vari-

ables

J' H I 1 1 K
IV=3( 1) + f1QNQS[H 6 j

'

g J 1
' '

g g
I

X/3([1+cos(qz+2y3)] I dreppx(G)) .

Equation (Sa) is solved subject to the initial condition

(28)

Px«) =Po«}fitto

where

po(6}=[GJ I j .

(29a)

(29b)

Open transition

The interaction with the fields can induce higher mul-
tipoles px( 6), where 0 &K &E and E is an even integer
satisfying 26 —1&k ~26. The atomic response differs
for open and closed systems, which are treated separately
below.

'r=x IQ

7' = 7—(t —t'}

one finds that Eq. (24} is reduced to

(25)

An open transition is one in which the excited state can
decay to ground-state levels that are decoupled from the
fields. The prototype open system is one in which the
field drives a G~H transition and the excited state can
decay to a difFerent ground-state hyperfine level 6'%6.

The matrix Rxx has a tridiagonal form

Roo

R20

R02

I

0
I

0

0 0 . . . 0

R~4 0 . . . 0

0 ~ ~ o Rg 2g 4

0 0

Rk —2,k —2

kE —2

Rg-2 g

(30}

and couples multipoles having

5K=+2 . (31)

Matrix elements of R, for J=J'= —,', are given in Table I.
For open transitions, the matrix R has negative or zero
eigenvalues only, since the field action results asymptoti-
cally in optical pumping out of the hyperfine manifold G
resonantly coupled to the field, except for those initial

pz(6)=a, (r)U", (32)

which satisfy the equations Rzz'Uz'= —A,;U&', where
—

A, ; is eigenvalue i, one finds that the a; (r) satisfy

sublevels of G for which any excitation on the transition
G ~H are forbidden.

Expanding the density matrix in terms of eigenvectors
U(0
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TABLE I. Values of the matrix R given by (8b), modulus of the eigenvalues k; and the eigenvector matrix % for various nuclear
spins I and ground- and first-excited-state total angular momenta 6 and H, respectively. The data are presented for total ground- and
excited-state electronic angular momenta J=J'=

~ only.

I G~H

1 1

2 2

1 3
2 2

3 1

2 2

3 3
2 2

—0.025

0.222
—0.123
—0.198

(
—0.049}

( —0.247}

0.025
—0.222
—0.099
—0.247

0.049

0.247

0.247

0.032

0.338

0.707

0.707

0.736

I

—0.678

(1)
—0.141

1.273

0.440

—0.069
—0.063
—0.208

—0.049
—0.045

0.029

0.115

0.215

—0.736
—0.677

0.974

0.582
—0.823
—0.164

—0.044
—0.042

—0.406

0.035

0.399 —0.225 1.064
—0.632 —0.233 —0.037

0.192 —0.144 —0.071 —0.756 1.158 0.384

0
—0.125
—0.157

0

0.096
—0.105
—0.228

-0.128

—0.429

0
—0.072
—0.095

0.399
0.341

0.107

—0.169

0.395

0.815

0.424

0.520

0.448
—0.535

0.718

1.265
—0.521

0.090
0.986

2—+2 —0.086
—0.083

—0.072
—0.120 —0.038

0.190

0.053

—0.555
—0.793

0.572

0.264

0.453
—0.542

0
—0.173

—0.049

0.041

—0.036
0 0.190

—0.253

0.923

0.781

0.717
0.727

0.032
—0.031 —0.259

—0.044

0.033
—0.440

0.250

0.432 0.067 0.313 1.080

—0.380 —1.347 —0.201

5
2

3~2 —0.062 0.043 0.535 0.252 0.190 —0.007

3~3

0.150

0
0

—0.08S

0.124

—0.043
—0.271

0.062
—0.123 —0.107
—0.128 —0.206 —0.086

—0.064
—0.455

0.342 0.343

0.702

0.190 0.772

0.250 0.342

0.432 . 0.047

0.3060.436

—0.754 —0.837
—0.970 —2.568
—0.227 —0.778
—0.378 —0.447

0.057

0.441

1.215

0.457

0.257
—0.119 —0.186 —O.OS7

-—0.082 —0.061

0.050
0.183

0.599

0.175

—0.483

0.658

0.112 —0.7S1
—0.903 —0.504

—0.094 —0.081 0.230 —0.453 —0.378 0.486 —0.488
—0.088 —0.141

0 0.070
0 0

3—+4 —0.156 0.045
—0.116 —0.198

0 —0.045

0 0
4~ 3 —0.073 0.046

0.126 —0.067

0 0.120

0

—0.059
—0.108
—0.041

0.050
—0.312
—0.041

—0.020
—0.185

0.096

—0.758 0.436 —0.381 —0.121
—0.033
—0.030

0.030 —0.460 —0.483

0.114 —0.095 0.658

—0.005

0.807

0.78S

0.388

0.202 0.367 1.617 0.626 0.045

0.030
—0.457

0.298 —0.117 —0.639 —1.323 —0.231

1.1040.344
—0.350

0.449 0.104

0.178
—0.395
—0.999
—0.583
—0.091

0.017
0.4710 t 0 0.021

—0.10S
—1.085
—2.189
—0.595

0.9910.174 0.752

0.202 0.442

0
4.5160—0.062
3.149

0.54S

—0.332 —0.054 0.298 0.127

0.449 . 0.0120.046 —0.467 .

0.174 —0.923 —1.586 —0.198 —0.007

—0.001

0.107

0.469
1.201
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I G~H

TABLE I (Conti, nued)

U

4~4 ' —0.122 —0.107
—0.118 —0.197 —0.068

0 0.342 0.302

0.226 0.624

0.391

0.383 0.3570.0450.380

—0.333 —0.409 —0.411

0 0
0 0

—0.101 —0.154 —0.047
—0.061 —0.044

0 —0.108 —0.190 —0.078 0 0.624

0.110 0.353

0.029 . 0.072

—0.396 —0.402 0.502 —0.130
—0.715 0.449 —0.574 —0.226

0.888—0.240 —0.617 —0.536

a;(r) — A,;pa, (1 ), (33a} where the matrix '9 is composed of the eigenvectors

with

j 1 +cos Qzj +2lpj j 7 (33b)

U(0) U(2) U()

U(0) U(2) U(t)
(34)

Note that tp contains information on the interaction in all
three-field zones. The initial conditions are given by

U(0) U(2) U(~)

a;( —~)=IJ I G}(Q ');0, (33c)

I

Solving Eqs. (33) and substituting a;(r) in (32) and then
(28), one obtains

J' H I 1 1 K
%=3( 1) + A'QNQS[H G J I }

'

g J 1

' '

g g

Xep, , 'Qx;(Q ')ur(exp( —
A,;I8,[1+cos(qz, +2tpz}]+8z[1+cos(qz2+2p2}1})

X(1—exp[ —A,;83[1+cos(qz3+2q&3)]})), (35)

where

(37)0 —1

is of interest here.
The expression in brackets in (35) oscillates as a func-

8, =2~q, ~'1() '+b, ')-' f f'(x, o) . (36)

We refer to the 8 's as pulse areas since they play a role
for ground-state —ground-state transitions analogous to
that played by pulse areas for ground-state —excited-
state transitions. Different echolike responses arising
from the solution (35}were considered previously [26,27]
for arbitrarily polarized pulses in a perturbation-theory
limit (8;« 1). The strong field limit,

A, «bz «b, A/T «hu «u8 . (3g)

In each region the distribution function in v and z is ap-
proximately constant and can be removed from the in-

tegrals. When the contributions from each region are
resummed, the result no longer depends on the specific
form of the distribution function in v and z. One finds

that the expression in brackets in Eq. (35}is equal to

tion of u and z on scales of order of A, /T and A, , respec-
tively. Conditions (13) and (14) allow one to average over
these oscillations before averaging over the particles' dis-
tribution function. To carry out the integrations over v

and z needed in the average in Eq. (35), one can break up
the integrals into domains of order huh', where

( }=g ( —1) ' ' 'w„ (A.;8, )w„(A,;8 )[5„—w„ (A,;8 )]

where

dz dv
exp f iqz(n, +n2+n3) —iqu[n, T'+n2(T' T)]+2i[n&y, +n2y—2+n3y3] },bu

(39)
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and I,(x) is a modified Bessel function of order s. To arrive at (39}we used a Bessel function expansion for the exponen-

tial factors in (35).
The integration over v and z is nonvanishing only if

T'/T=L'/L =nz/(ni+nz),

n&+n2+n3=0 . (411)

Thus, one concludes that the ratio of the distances between fields has to be rational. If m and n integers containing no
common factors and

L'/L =m/n,

then one finds from Eqs. (41) that the only terms which contribute to the sum (39) are those for which

n, = —(m n)s,—

n2 =mS (43)

n3= nS

where s is an integer. As a consequence for given m and n the absorption can be written as

W =fiQNuS g W, cos {2s [n y3
—m p2

—( n —m )y, ]],
s=0

(44a)

J' H I
W =6( —1)tt+G{H~G3J

S 6 J 1

1 1 K
G g H (V 340 V 3 »2)

XA, , 'Q», (Q ');ow,
~

„~(A,;8, )w, (A, , 8z)w, „(A,, 83), s+0,
J' H I 1 1 E

Wo= —3( —1) + {HG'J I ] G J 1 G G H (+3»o

(44b)

XA, , "M», ('9 '),owo(X, 8, )wo(A, , 8z)[1—wo(k;83)] . (44c)

Equations (44) are discussed below.

Closed transition

For a closed transition G~H, in which the decay
H~G' of the upper hyperfine sublevel to ground-state
sublevels with total angular moment O'AG is forbidden

by selection rules, the system of equations for the
ground-state density-matrix elements becomes linearly
dependent, allowing one to decrease the dimension of the
matrices R and U. The final result for the probe absorp-
tion takes on a simplified form.

The physical origin of the linear dependence is the con-
servation of the zeroth multipole of the ground-state den-

sity matrix, given by Eq. (29} with X=0. Since only
E =0 and 2 multipoles contribute to the absorption (22}
in the case of a linearly polarized fields and since the zero
multipole po(G) is not affected by the field, the shadow
effect on the closed transition can appear only owing to
the second multipole p2(G). To obtain p2(G) as a solution

l

2J' 0 I
W=Nfinsu {H g J I 6 J 1

, p»(G)=gj {1+cos[qz(t')+2yj]]~g (t')~
dt'

X [R»» p» ( )+ »opo( )) (45)

where 2 & K &E,2 &E' &k The matrix R is the dashed
part of the matrix (30). Expanding the density matrix in

terms of eigenvectors of R, U' ', . . . , U' ', and solving
the equations for the coeScients of the expansion, one
gets

p2(G) A Q2'(+ ) 2(1 e )R2opo(g)

where matrix elements of Vl are given by

(46)

Substituting this expression and Eq. (29b} in (28) after in-

tegrating over ~ one finds

of Eqs. (8) one separates off terms involving po(G) and
treats them as inhomogeneous driving terms, i.e.,

1 1 2
X 03+ —1

+ 6 6 ' 'R20A N2; S
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X [8,—k, ' exp( —
A, , [8,[1+cos(qz]+2%2)]+82[1+cos(gz2+2(p2)] j )

X((—exp[ —1;qe[(+cce(qxe+2q, []][] )
. (48)

Averaging over v and z as above, one finds the probe-field absorption for closed transitions is given by

W=AQNuS g W, cos[2s[n(p3 —m(p2 —(n m—)qr]] j,
s=0

where

(49a)

g 2 3 2 2
J H I 1 1 2

W, =2W6( —1) t(H G J I j
'

G J 1 G G H 'RzpA, ] 'll2((Q )(2

Xw, [ „](A,;8;}w, (A,;8z)w,„(iL,83}, sAO,

J H I
Wp=tH 6 J I j

'

g
I

1 1 2
83+( —1)H+ V'6[g] 'g g H 'R2pA( 'Mz;(Q ) 2

(49b)

X [ 8Z e][( Wp(e](]8] )Wp(A(8Z)[ 1 Wp(A
&
83)]j (49c)

III. DISCUSSION L'/L =m/n . (51)

Equations (44), (49) represent the sought after solutions
to the problem for open and closed systems, respectively.
The absorption of the third standing wave is expressed as
a function of pulse areas 8 (which depend on the field in-
tensities and atom-field detunings) as well as on the spa-
tial phases (p . Since the factor NuS in Eqs. (44a), (49a)
gives the total Sow of atoms, one can interpret the sums
in these equations as the energy absorbed by one atom
during its passage through the third-field zone in units of
the photon energy fiQ.

The power absorbed from the third field can be used as
a measure of the modulation depth of the various grat-
ings contributing to the signal. The signal depends on
the phases of the fields through the factor
cos[2s [np3 —mqr2+(m —n)(]v]] j. If the phase of any of
the fields is varied, a Fourier decomposition of the signal
yields information on the harmonics that are present in
the signal. Harmonic s in the Fourier decomposition,
having amplitude W„canbe associated with the atomic
grating having period A/2sn, focus, ed in the plane x =L'.
Moreover, the relative weight of the different Fourier
components rejects the relative magnitude of the corre-
sponding atomic gratings.

Before the interaction with the third field, the ground-
state Zeeman coherence varies as

exp[2i(n, +nz)kz]exp[2ikv[n, T'+n2(T' T)]j-
=exp(2inskz )exp [2iskv ( n T' mT) ], —

For example, when m =2 and n =1 (L'/L =2), gratings
of order A, /2, A, /4, A, /6, etc. are focused. When m =3
and n =2 (L'/L =1.5), gratings of order A, /4, A, /8, A, /12
are focused. For a given n, the lowest order grating is
A, /2n. Each of these gratings is probed by the third field,
placed at the appropriate L'. One can interpret the ratio
W, /Wp as a measure of the modulation depth of the
grating having period A, /2sn.

An aim of this paper is to determine the optimum con-
ditions with respect to the fields and atomic beam param-
eters for the shadow effect's observation. Let us start
from the requirements on the atomic beam. At this stage
of our calculations we simplify matters by choosing a
monovelocity beam. One can anticipate a decrease of the
signal for beams with some distribution over longitudinal
velocity u, since the fields' areas 8, given by Eq. (36},de-
pend on u, and it is impossible to maintain the same op-
timal areas simultaneously for atoms with different veloc-
ities. In a subsequent paper, we plan to generalize our re-
sults for thermal beams and for beams having a narrow
velocity distribution in order to determine how large the
relative width of the velocity distribution in the beam can
be without leading to a significant decrease of the shadow
effect signal. The angular divergence of the beam and
beam aperture b are taken equal to 0=10 rad and
b =0. 1 cm, respectively.

Consider now the requirements for the field parame-
ters. For fields having Gaussian profiles

where the n; have to satisfy Eqs. (43). As a consequence,
the focusing of the grating having period

f (x,y)=exp( —x /w„—y /w~) (52)

A. ) =A, /2n, A,2=A, /4n, A,3=k/6n, . . . ,

occurs at a distance

(5O) the field intensity is related to the field power by

2
+J- —I6 CE) W~ Wy (53)
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'RCQ MyP =(2~')' (1+4 / )8J
A, (2J'+1)

or
[P (mW)]=1.009X10 3[[T„(K)/A}'/ [A[p]]

X(2J'+ I) '[w~ (cm)]

X(l+b, /y )&1,

(54a)

(54b)

From Eq. (36) it then follows that the power is related to
the field area 8. by

where k&Tb and A are the beam kinetic energy and
atomic number, respectively. It is interesting to note that
there is no dependence on the transition oscillator
strength, i.e., on the matrix element pJ J of the dipole-
moment operator appearing in Eqs. (54).

One could have anticipated the result (54) using simple
qualitative arguments. Indeed, it is well known that
ground-state amplitudes are coupled by terms of order
vj -y~ /b, for

~
5

~
)&I . In the resonance case considered

here, one has to replace A~I
„
i.e.,

TABLE II. Contribution 't(l) to the third-field s absorption caused by focusing of the atomic grat-
ing having period A /2! (harmonic 2!) in the focal plane x =2' = [(!+ I )/! ]I.. [W(l) represents the con-
tribution per atom in units of the photon energy]. For given values of angular moments shown, %V(l) is
optimized for the ratios of field powers to field aperature w~ given in the last three columns. Only those
value of G, H giving an optimum signal are displayed. One can interpret SV(l)/%'(0) as a depth of
modulation for the grating having period A. /21. The ratio %V(nl)/%(l) gives the relative contributions
of higher-order grating, having period A, /2nl, at each focal plane L'.

Na

Rb85 1

2

Rbss
2

Cs

3~2

3~4

3~2

2

4
6
8

10
12
14
16
2

6
8

10
12
14
16
2

¹
6
8

10
12
14
16
2

4
6
8

10
12
14
16

6
8

12
14
16

Transition Harmonic

Atom J' 6~H 21

0.008 59
0.003 13
0.001 59
0.000 96
0.000 64
0.00046
0.000 35
0.000 27
0.010 85

0.003 95
0.002 01
0.001 21
0.000 81
0.000 S8
0.00044
0.000 34
0.00900
0.003 29
0.001 68
0.001 01
0.000 68
0.000 49
0.000 36
0.000 28
0.012 12

0.00442
0.002 25
0.001 36
0.000 91
0.000 65
0.00049
0.000 38
0.012 88

0.004 69
0.002 39
0.001 44
0.000 96
0.000 69
0.000 52
0.00040

'N(l)
'N(0)

0.257

0.109
0.068
0.050
0.039
0.032
0.027
0.024
0.258
0.110
0.069
0.050
0.039
0.032
0.027
0.024
0.246
0.104
0.06S
0.047
0.037
0.030
0.026
0.022
0.258

0.110
0.069
0.050
0.039
0.032
0.027
0.024
0.519
0.221
0.139
0.100
0.078
0.064
0.054
0.046

0.010

I'& /m
'N(21 ) %(31)
%'( 1) %V( I)

0.0307 0.0001 0.065
Q.0203 0.0001
0.0179 0.0001
0.0170 0.0001
0.0166 0.0001
0.0164 0.0000
0.0163 0.0000
0.0162 0.0000
0.0285 0.0000 0.016
0.0183 0.0002
0.0159 0.0000
0.0151 0.0000
0.0147 0.0000
0.0145 0.0000
0.0144 0.0000
0.0143 0.0000
0.0549 0.0048 0.022
0.0440 0.0036
0.0412 0.0032
0.0402 0.0031
0.0398 0.0030
0.0395 0.0030
0.0394 0.0030
0.0393 0.0030
0.0292 0.0001
0.0189 0.0000
0.0166 0,0000
0.0157 0.0000
0.0153 O.0000
0.0151 0.0000
0.0150 0.0000
0.0149 0.0000
0.0246 0.0005 0.012
0.0145 0.0005
0.0122 0.0004
0.0114 0.0004
0.0110 0.0004
0.0108 0.0000
0.0107 0.0000
0.0107 0.0000

0.192

0.400
0.694
1.072
1.534
2.080
2.710
3.424
0.048
0.101
0.17¹
0.270
0.386
0.523
0.682
0.861
0.067
0.138
0.239
0.369
0.528
0.716
0.933
1.179
0.030
0.063
0.109
0.169
0.241
0.327
0.426
0.539
0.036
0.075
0.130
0.201
0.288
O.391
0.509
0.644

0.065
0.192
0.400
0.694
1.072
1.534
2.080
2.710
0.016
0.048
0.101
0.174
0.270
0.386
0.523
0.682
0.022
0.066
0.138
0.239
0.369
0.528
0.716
0.933
0.010
0.030
0.063
0.109
0.169
0.241
0.327
0.426
0.012
0.036
0.075
0.130
0.201
0.288
0.391
0.509

I'2/m I'3/~

mW/cm m%'/cm



50 CREATING AND PROBING SUBWAVELENGTH ATOMIC GRATINGS. . .

(55)

Since both yj and I are proportional to the square ofpz*z
any dependence on oscillator strength cancels in the
rhs of Eqs. (55). Moreover, taking 8~

—
v~ w„/u,g.

(p~~EIIA) Pjp~~l(ck w wy) I p~~I[(2J +1)AA ]
and 6=0, one arrives at Eq. (54a), except for an overall
numerical factor.

For a given atomic element, we determine the optimum
fields' areas to maximize the contribution to the signal of
a given grating. For 6=0, these quantities can be ex-
pressed in terms of the ratio of the field power P~ to field
aperture w in the direction perpendicular to both and
fields and beam propagation directions (see Fig. 3}. The
results of the calculations are summarized in Table II.
Since we are interested in the maximum value of the con-
tribution to the absorption from the grating with period

A=A, /21, (56)
one needs first to choose the appropriate m and n in the
ratio (51). This can be accomplished in the following
manner. Even though the absorption (44), (49) contains
an infinite set of contributions from the different harmon-
ics, the calculations show that dominant role is played by
the first term Wi. From Eqs. (44b), (49b) one concludes
that 8'& is larger for smaller values of the indices of the w

functions. Since m & n, the maximum contribution to the
absorption from the grating having period A, /21 is found
by setting m =n +1,n =I, implying that the third field
should be located at

We set s =1, n =1, m =1+1 in Eqs. (44), (49) and evalu-
ate 8'& as a function of the total angular momenta, G and
H, and field areas 8. For a given J~J' manifold we
determine the values of these quantities for which 8'&
reaches a maximum. This maximum is denoted '}V(l).
The contributions to the absorbed power from the grat-
ing having spatial period A, /(2sl) are denoted "}V(sl).

In Table II the results for Na, Rb, and Cs are
presented. The optimum values of the power were calcu-
lated for Tb =300 K. The absolute value of '}V(l) is given
in the fifth column. The sixth column contains the ratio
'}V(l)/ }V(0),which can be treated as a modulation depth
of the medium, as explained above. The relative ampli-
tudes of the higher harmonics '}V(sl)/}V(l) are shown in
the columns 7 and 8 for s =1 and 2, respectively. The
small values of these ratios (not more than 6%), confirms
our assumption, that at the distance (57), the grating hav-
ing period A, /2l plays a dominant role under the optimum
conditions. The question can be raised as to whether or
not a different optimization procedure can result in a re-
versal of the weights of the various harmonics at a given
ratio of L'/L. This does not appear to be the case. For
example if the fourth order harmonic rather than the
second is optimized for L '/L =2, the ratio
W(2}/W(1)=0.2. This is an increase over the value
0.06 in Table II, but is still less than unity. The optimum
values for the ratios P /w are presented in the last three
columns. They were obtained from the optimum fields

areas using Eq. (54b).
For alkali-metal atoms such as K and Rb which have

the same nuclear spin I=—', as Na, one needs only to
change the data for P. /w by factors of 0.344 and 0.209
for K and Rb, respectively, if the excited-state angular
momentum is J'= —,', and by factors 0.35 and 0.222 for
J'=

—,'. Results for the D2 line of Na are omitted since
they coincide with those for the D, line. This coin-
cidence is caused by the fact that, for both values of the
excited-state electronic angular moment, the optimum
hyperfine component of the manifold is the
G =1~H =2 transition. For this particular transition,
the matrix R for the D, line and its eigenvalues are twice
as larger as those for D2 line, while the eigenvectors U"
coincide. As a consequence, the optimum fields areas for
the D, line are half as small as those for the D2 line, but
this difFerence is canceled by the factors (2J'+1) ' in
Eqs. (54) when one calculates the optimum powers.

The optimum power P& for the first field is the same
for all transitions. Moreover, the optimum power of the
second-field power P2 for grating 2l coincides with the
optimum value of the third-field power P3 for grating
2(l +1}.This result would suggest that the expression of
8'& factors as

Wi =F, (8i)Fi+ i(82)Fi(83 (58)

In fact, this expression can be derived from previous re-
sults on the shadow effect [3] in two-level systems whose
levels are not coupled by spontaneous decay. We
checked the validity of Eq. (58}and found that it does not
hold in the whole three-dimensiona1 space of the fields'
areas (8i, 82, 83), but was approximately correct in some
vicinity of the optimum points.

As an application, consider the D line in Na A, =0.59@,,
for a Na beam having angular divergence 8=10, aper-
ture b =0.1 cm and velocity u =5X 10 cm/s. For such
a beam to participate entirely in the shadow effect, condi-
tions (12) and (14) must hold. Condition (14) (b/w„« 1)
ensures that entire beam in the y direction is illuminated

by the field. (Corrections to Eq. (36) can be shown to be
of order exp[ 2(b/w ) ].—) On the other hand, condi-
tion (12) (kw„8«1)ensures that all velocity groups are
excited by the field. [Corrections to the arguments of the
Bessel functions in Eq. (40) can be shown to be of order
exp[ —(k8w„) ]. We choose w„=0.4 cm and w„=30@
for which exp[ 2(b/w~) ]=0.8—8 and exp[ —(k8w„) ]
=0.91. For this value of w, the optimum fields powers
are in the range 0.026 mW~P. 1.37 mW and the
modulation depth changes from 26% for the second-
order grating with period 0.3p to 2.4% for 16th order
grating with period 37 nm.
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