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Coherences in the decay of autoionizing states in photoionization.
I. Exchange effect between photo- and Auger electrons
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An interference effect on angular correlation patterns due to exchange of Auger and photoelectrons
of the same energy is discussed. The detection in coincidence of the Auger and photoelectrons may
reveal a striking angular correlation pattern when a synchrotron light source is tuned so that the
Auger and photoelectron energies are nearly equal. This efFect is present even when only one electron
is detected, but is strongly reduced by the averaging over the direction of the undetected electron.

PACS number(s): 32.80.Fb, 32.80.Hd

I. INTRODUCTION

In both photoionization and electroionization the avail-
ability of incident beams with well defined energy makes
the study of nearly monoenergetic ejected electrons pos-
sible. Then the effect of electron exchange between the
directly ionized electron and another electron of about
the same energy can be investigated. Many (e, 2e) ex-
periments have been done in which both final electrons
were detected at the same energy and analyzed with
a model containing an antisymmetrized &ee electron-
electron cross section as a factor.

Doering et al. [1]have reported a striking angular cor-
relation between two electrons of equal energy resulting
&om the double ionization of argon by electron impact
at threshold incident electron energies. The two 205-eV
electrons are produced by the knockout of an argon 2p
electron followed by 205-eV LMM Auger decay of the
2p vacancy. The two electrons are emitted preferentially
at a large angle to each other. Since the energy of the
knocked-out electron is the same as the Auger energy,
the distinction between the two electrons is lost; thus
due to the antisymmetry of the final-state wave function
a relevant interference effect should occur in the angular
correlation pattern [2]. If the spin-dependent interactions
can be neglected and the two electrons participating in
the Auger process are in a triplet state before the decay
then the knocked-out and autoionized electrons are in a
triplet state, too. In this case the orbital state must be
antisymmetric and therefore the angular correlation be-
tween the two electrons expresses a strong enhancement
for the electrons ejected antiparallel to each other.

This effect may explain the behavior of the angular cor-
relation measured by Doering et al. [1],since the 205-eV
Auger lines correspond to the decay of P states [3). To
quantitatively compare with the experiment [1], the for-
malism of Berezhko and Kabachnik [4], which describes
the angular correlation between the ejected and Auger
electrons, may be used. This formalism [4] applies only

if we add all terms which become relevant when the ener-
gies of the two electrons are nearly equal. The extension
of the model of Berezhko and Kabachnik [4] is a rather in-
volved task since there are a number of amplitudes which
could give relevant contributions to the cross section. For
that reason we examine the coherent addition of ampli-
tudes for the simpler photoionization process.

The photoionization process followed by autoionization
provides a good possibility to study the electron exchange
effect. Both final electrons have sharp energy distribu-
tions and well defined orbital momenta. Generally the
effect of electron exchange is negligible because, due to
the sharp energy distributions of both electron peaks, the
Auger electron and photoelectron can be distinguished.
But if the photoelectron has approximately the same en-

ergy as the autoionized electron, pronounced electron ex-
change effects may appear. In this paper we consider the
exchange effects in the final state of photoinduced reac-
tions. We discuss the process within the framework of
the time-independent description.

The width I' (or the lifetime r = h/I') of the autoion-
izing state is an important parameter of the effect. The
indistinguishability of the two emitted electrons becomes
relevant when the incident photon beam is tuned such
that the energy of the photoelectron coincides with the
energy of the Auger peak within the width I'. To fulfill
this condition photon beams consisting of wave packets
having energy spreads smaller than or equal to I' are
needed. The energy spread of the Schrodinger wave cor-
responding to the photoelectron is thus less than or equal
to I', which is the energy spread of the Auger electron.
Owing to the time-energy uncertainty relation I'At & h,
the wave packets for both the direct and Auger elec-
trons overlap in the time domain and the time delay
between the two emitted electrons does not distinguish
them. Therefore, in principle, the interference pattern
can be realized even in the case of a long-lived autoion-
izing state if photon wave packets having the required
energy spread are used.
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II. THE AMPLITUDE

To describe the amplitude of the Auger-electron emis-
sion following photoionization we use the treatment of
Aberg and Howat [5]. Let P denote the quantum num-
bers of the final state with two continuum electrons and
a doubly charged ion, while x~, j = 1, 2 are the spin
and momentum coordinates of the two continuum elec-
trons. The quantization axis is chosen along the direc-
tion of the incident photon. Neglecting the nonresonant
double-ionization contribution, the T matrix element of
the transition induced by the hu photon with helicity
A absorbed by an atom being in its initial state a with
ground-state energy E takes the form

(@p i~~(zi z2)IH &14' )(0' 0IHi~zlz, her, A)d7
Pn 1+E2 E~ —7 +12

where c1 and c2 represent the kinetic energies of the out-
going electrons in the final state so that

si + s2 ——h(u —(Ep —E~)

and ~„= F„—Ep. The complex energy &, —~2»
the position and width of the resonance corresponding
to the autoionizing state P, and Ep refers to the double-
ionization threshold for channel P. H; & and H, ~ are the
operators of the photon-electron and electrostatic inter-
actions, respectively, and P are the intermediate states.

If h~ && Ep —E, it is reasonable to approximate
[5] the intermediate state P by product wave functions
lnL JM) lw) where nL JM are the quantum numbers of
the autoionizing state P and lv') describes the continuum
electron. If the final state is approximated in the same
way, then

(@p..., (» *2)IH.il&-) = (&21~)(@p., lH.~lnLJM) (8)

When the wave functions lsd ) and
l r) are orthogonal we

have (si lw) = h(s~. —w). This assumption involves neglect
of postcollision interactions. In this case the integration
over 7 in (2) can be performed.

I et JfMf be the angular momentum quantum num-
bers of the final state of the doubly ionized atom.
Representing the continuum electrons by the momenta
k1, k2 and the spin projections 01, o2, respectively, T&
is expressed as

(kioi JfMflH ilnLJM)(k2o2nLJMlH;„zlz, hu), A)
pcs

e1 —C„+i2
~ r

For the sake of simplicity we shall consider only the ionization of closed shell atoms. Using the dipole approximation
and expanding the final state into partial waves, the amplitude of the photoionization can be written in the form

(k2o'2nLJMIH zli h~ ~) = ) (~im1202ljlP1)(JM jipil&&)&i, , (02)(k2 J(l-')j; lllDll0).
$1P1~1~1

(5)

Here j1p1 and l1m1 are the total and orbital angular momenta of the photoelectron, and the reduced matrix element
(k2 J(l z)g; lllDll0) is proportional to the dipole radial integral.

Using the partial-wave expansion, the amplitude of the Auger decay of the JM state reads

(k101JfMf lH llnL JM) ) (t2m2 2 0 ilj2p'2)( Jy Myj 2+2 l
JM)Yl (Al)(kl Jf (l2 2)j2 JIIH ~ll J).

(ki Jy(l2 2)j2, JllH, ill J) is the reduced matrix element of the Auger decay from the initial state with a hole in the shell
with total angular momentum J and orbital momentum L to a final state of the ion with total angular momentum
Jf and a continuum electron with quantum numbers l2 j2 and momentum k1 .

III. THE AMPLITUDE WITH EXCHANGE

Now using the antisymmetry of the final two-electron wave function, the amplitude (1) is written as the difFerence
between the direct and exchange amplitudes

1 &(kicri JgMylH(lnLJM)(k2o2nLJMlH;„zlz, h(u, A)

G1 —E'~ + Z2

(k2%2 JyMy lH, ilnL JM) (kio inL JMlHi~zlz, h(u, A) )
6'2 —6'~ + Z 2

.r

According to Eq. (7) the probability of a
photoionization-autoionization process is large only if at
least one of the energies e1 or e2 is close enough to c„. If
si is fixed by this requirement, s2 is determined by (2),

The second term of the amplitude (7) is of comparable
magnitude when

E2 ~ 8'1 ~ E'~.

s2 = h(u —(E„—E ). (8) Under these conditions the two amplitudes in Eq. (7)



50 COHERENCES IN THE DECAY OF. . . . I. . . . 4033

add coherently. Condition (9) requires the tuning of the
synchrotron light source to the frequency determined by
relations (8) and (9) within the accuracy of the resonance
width I'.

In our coordinate system where the quantization axis
is chosen along the direction of the incident photon,
pi, ~(1, 1) = 0 with q = +1. Using Eqs. (10) and (12), for
the nonvanishing components of psq(1, 1) we obtain

IV. CROSS SECTIONS

For specifying the polarization of the incident light
beam we use the density matrix of the photon beam
which is expressed by the Stokes parameters Sq, S2, and
S3 as follows:

1 f 1+S3 Si +RS2)
2 (-Si —iS2 1 —S3

The cross section for the double-ionization process is
given in terms of the density matrix p as

0pa —~pa pA' %~pa
A'+

Cross sections obtained by substituting (7) into (11)
are expressed in terms of the state multipoles pi, ~(1, 1)
(see, for example, the textbooks [6]). These dipole pho-
ton statistical tensors are defined by the elements of the
density matrix p,

1 S3 1 Sg +iS2
POO ~ i P10 —~ & P20 ~ i P2+2

A. Angular correlation

Hbz, = l2j 2 (k„Jy (l2 2 )j2, J
~ ~
H, i

~ [ J),

Di, &,
=—li ji(k J(li 2)ji; 1~[D[~0),

(14)

Now we substitute the expressions of the amplitude
given in (7) and the matrix elements (5) and (6) into
formula (11). At the derivation of (11) we summed up
the product of Clebsch-Gordan coefficients and spherical
harmonics by using vector coupling coefficient relations
f'rom [7]. Introducing the shorthand notations

ps'(1, 1) = ) (—1) " (1%1—A'~kq) pp p. (12)
where a = /2a + 1, we obtain

do 3(2J + 1) . B(kik2~) (—1)"B(k2ki~)+ rq kxkae 1 2
dsidAidO2 4z „„- (s2 s )2+ — (s, —s )2+—

leg kg]c

—2 Re '"~
~ g~g, „Og02B;„,(k, k2~)

(si —s„+a 2)(s2 —s„—i —,

where As, s,„(OiO2) is a suin of the products of bipolar spherical harmonics and state multipoles

Ai„i„„(AiO2) = ) [Ys, (Oi) x Yi„(O2)]~p„~(1,1)

(15)

(16)

and the bipolar spherical harmonics are defined as usual (see, for example, in [7]):

[Yi„(Ai) x Yi, (O2)]q = ).(kiqik2q2l~q)Yi. ~ (Ai)Yi.~. (O2).
qiq~

(17)

The coefficients B(kik2+) and B; t(kik2+) depend upon geometrical factors and the dynamics of the double-ionization
process. The first two terms in (15) with B(kik2z) give the sum of the photoelectron and Auger-electron intensities
in the absence of interference. B(kik2+) is represented in the form

B(kik2~) = ) ) ( 1) '+"'+ ~+ Hi„—,K)'i, Di, ~ ,Di'i, (li. 0liO(ki0)(. l20l20(k20)
j1lyjyly j~l&j~l~

k2 J j,' j,'ky li j2k2 l2
(18)

Here the values of ki and k2 are even due to parity conservation in photoionization and Auger decay. In (15) the
term with B;~t is the interference term which is the product of the direct and exchange amplitudes from Eq. (7). It
is given by
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B;„t(kgkz~) = ) ) (—1) + ~+"+" "+ 'H(„,H;i, i D(„,D;I, (l20t', Olk20)(lg0120lkgO)
j1ll j1l1 jPlP j2l&

C is a normalization constant which is chosen so that the
photoionization cross section in the absence of exchange
is expressed as

3(2J + 1)) B(kOk) Yj,q(k) psq(1, 1)
do kq

).I(k J/(I-.')~ JIIH.~II»l'
(2o)

Considering that in the cross section formula (15) the
energy dependence of the radial matrix elements is small
compared to those of the Lorentzian denominators, the
radial matrix elements of the Auger decay and photoion-
ization are approximated by their values taken at mo-
mentum I|:„corresponding to the resonance energy e„,
see Eqs. (14).

When the participating Auger electrons are in sub-
shells of the same parity before the Auger decay the in-
dices kq and kq in B;„t(kqk2+) are odd, owing to the
opposite parities of the Auger and photoelectron partial
waves. The angular correlation pattern is asymmetric,
owing to the mixture of even and odd spherical harmon-
ics. If the condition (9) does not hold, the interference
term is negligible and formula (15) becomes identical to
Eq. (6) of formalism [8].

As the cross section formula (15) shows, the relevant
parameter of the exchange eKect is the width of the au-
toionizing state. If I' is narrow then the interference pat-
tern is restricted to a narrow region of the incident pho-
ton energy h~, see Eqs. (2) and (15). If les —s„l becomes
larger than I' then the indistinguishability of electron 6
and electron a with energy c = e„becomes irrelevant
since we can assume that now b is the photoelectron and
a is the Auger electron.

B. Angular distributions

Now we consider the angular distribution of one of the
two electrons when the second one is not detected. The
fixed energy of the photoelectron defines only the sum
of energies of the Auger electron and the doubly ion-
ized final state of the target atom. In a noncoincidence
arrangement we measure the incoherent sum of contri-
butions corresponding to doubly ionized final states of
diferent energies.

If we calculate the contribution to the cross section
where s2 s'q —e„, after squaring the amplitude (7) we
integrate over the angles of the second electron. One ob-
tains a nonvanishing interference term in the cross section
only if the equivelocity Auger and photoelectron partial
waves have the same parity. This happens if the elec-
trons participating in the Auger process are in subshells

of opposite parities before the decay. The branching ra-
tio for these channels may be rather small. Therefore the
electron exchange for noncoincidence measurements may
result in only a slight effect.

V. RESULTS

In an experimental study of the exchange effect
Schwarzkopf, Kammerling, and Schmidt [9] have re-
ported preliminary results on the two-step double pho-
toionization in xenon. At photon energy 97.5 eV in 4d5~2
photoionization followed by N5-0230~3 So Auger decay
the emitted electrons have about the same energies, 30
eV. Since the exchange e8'ect predicts a strong asymme-
try between the parallel and antiparallel ejections, the
relative angle of the electron analyzers was 180', that is,
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FIG. ].. Calculated angular correlation (solid line) be-

tween the two equivelocity electrons produced in 4d5g2 pho-
toionization followed by N5-O&3023 So Auger decay for

xenon at incident photon energy 97.5 eV. The broken line

shows the same without exchange. According to the geome-

try of Schwarzkopf, Kammerling, and Schmidt [9], electrons
are emitted perpendicular to the direction of the photon beam
and one electron is emitted along the line of the linear polar-
ization, y is the azimuth angle of the second electron. The
state of the incident photon beam is characterized by the
Stokes parameters SI ——0.66, S2 ——Sq ——0.0.
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the two electrons were ejected antiparallel to each other.
In order to realistically compare with the experiment,

we have calculated the angular correlation in the pres-
ence of the exchange term. Figure 1 shows the calculated
cross section for the geometry of [9]. The photoionization
dipole matrix elements were taken from [10]. Since the
6nal state of the residual doubly ionized atom is Jf ——0,
there is only one allowed channel for the Auger decay and
the square of the Auger-decay matrix element )Hzsyz~,
taken to be unity here, is factorized out of the cross sec-
tion formula (15). The two electrons are emitted per-
pendicular to the direction of the photon beam and one
electron moves along the line of the linear polarization.
The state of the incident photon beam in [9] is character-
ized by the Stokes parameters Sq ——0.66, S2 ——0.0. As
Fig. 1 shows, the presence of an interference term leads
to a strong enhancement for parallel ejection of the two
electrons. The small, but nonvanishing, cross section at
180 reQects that here the interactions have some small
dependences on the electron spins.

In the measurement [9] the energy resolution was too

poor to detect the efFect. The evaluation of the improved
measurements is in preparation [12].

It can, however, be expected [11] that for parallel ejec-
tion the Coulomb interaction between the electrons may
lead to a strong reduction of the coincident angular dis-

tribution pattern owing to electron-electron repulsion in
the 6nal state not included in our calculations. There-
fore decays to triplet states of the doubly charged ion are
better candidates to observe the exchange e8'ect since
the enhancement occurs for electrons with antiparallel
momenta in this case. Final-state interaction eKects are
strongly reduced when electrons are ejected at relative
angles of 180 .
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