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Inversion of He-Ne elastic-scattering data
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Quaxxtal axxd semiclassical (WKB) xuethods of inversion have been used in axx analysis of the
elastic-scattering cross sections for 62.5-meV He atoms from Ne atoms by which an effective local
interaction between those atoms is speci6ed. The potentials obtained by the approximate method
(WKB) difFer from that found with the full quaxxtal analysis. The quaxxtal inversion potential is
repulsive at short distances aud becomes attractive at a radius of 2.695 A. . It has a mixximum value
of —1.981 mev at a radius of 2.98 A.

PACS xxumber(s): 34.40.+n

I. INTRODUCTION

Experimental and theoretical studies of interatomic
and intermolecular potentials are important for a wide
range of studies in chemistry, physics, and material sci-
ence. Of the experimental set, those using molecular
beams [1] are useful by giving data that directly refiect
the detailed properties of intermolecular potentials, with
those cases that do not form compounds under ordinary
conditions being particularly interesting [2]. In the last
decade, scattering experiments of atomic ions, neutral
atoms, and molecules from atomic and molecular targets
have been made with considerable precision and the def-
inition of interatomic potentials from those data are of
current interest [3].

Our interest is taken with the results of recent high
resolution measurements of the difFerential cross sections
from the elastic scattering of He atoms from Ne atoms
[4]. That data are of high quality and their analysis
may facilitate an accurate specification of the interatomic
potential. In making such analyses, there are two dis-
tinctively different approaches one can consider. They
are the "direct" methods of analysis and the "inversion"
ones. Direct methods of analysis of (elastic-) scattering
data involve repeated solution of the radial Schrodinger
equations with an input central, local interaction that one
believes appropriate to describe the (He-Ne) interaction.
Usually that potential is chosen to be of some specific
form, which is defined by a set of (relatively few) open
parameters. The values of those parameters are adjusted
and the cross sections predicted (from the phase shifts
obtained by solving the radial Schrodinger equations) un-
til prediction fits the observed data as well as possible.
That "best fit" may be defined by a minimal value of the

of the fit to the measured data. A better measure
from a statistical viewpoint, however, is the value of g
per degree of freedom, (y /F), wherein the definition of
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the degrees of freedom is the number of data points in
the fitting process minus the number of &ee parameters
used to make that fit. The direct procedure allows one
to keep the numbers of free parameters small and also
to choose a form that is realistic, i.e., the potential has
a shape consistent with what other data and/or micro-
scopic calculations of that interaction suggest. However,
one is then limited to this a priori chosen form so that
the minimization search is very constrained and, usually,
the resultant (y2) or (y2/F) are large; the latter being
much larger than a statistically good value, ca. 1.

Alternatively, one can treat the problem as one of fixed
energy inverse scattering. In that approach there are di-

verse methods by which an efFective, local potential can
be extracted from the scattering data [5]. As with the
direct methods, in inverse scattering theories, the S func-
tion plays an intermediary role. The inverse scattering
methods of interest find the mappings of S functions to
potentials. However, there is ambiguity in extracting the
S function from the differential cross section data. Fur-
thermore, cross section predictions only correlate with
the values of the S functions at real integer values of the
angular momentum. The inversion procedures require
that the S function be defined for all complex values of
the angular momentum. Thus there is an interpolation
and extrapolation involved in this step of the analysis.
Nevertheless, by choosing a specific class of S functions,
and one for which stable and accurate solutions of the
inverse scattering equations can be found, a potential
can be specified that is free, essentially, of a priori as-
sumptions about its shape, and whose use in a direct
solution of the Schrodinger equation reproduces the S
function with which one started and, concomitantly, the
same quality of fit to the measured data. Naturally the
potential will belong to that class of potentials associated
with the chosen S function form. But the crucial factor
is that one controls the quality of the fit to the cross sec-
tion data. The inversion potentials we seek, ultimately,
are ones for which the y2/F fits are of order unity.

Inverse scattering analyses of atomic scattering data
have been made in the past and an excellent review of
those has been written by Buck [6]. However, most have
used semiclassical schemes to facilitate studies. Herein,
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we have used a semiclassical (WEB) method of analy-
sis as well but also we have solved the fully quantum
mechanical problem. The S functions used in both cal-
culations are essentially the same so that comparison of
the two results (for a given energy) reflects the accuracy
of the (easier to use) semiclassical method of analysis.
Specifically, we study the cross section &om the elastic
scattering of 62.5 meV He atoms &em Ne atoms. The
measured data must, be deconvoluted since they encom-
pass a range of input velocities and an extended scatter-
ing volume. We use the deconvolution method as pro-
posed by Shapiro and Gerber [7] with a slight modifica-
tion. That deconvolution is considered briefly in the next
section for completeness. Likewise, the inversion meth-
ods are given subsequently (Sec. III) before the results
we have obtained are presented and discussed (Sec. IV).

II. THE DECONVOLUTION PROCEDURE

The experimental difFerential cross section [4] has well-
resolved oscillations but, given the experimental arrange-
ment, it is a convolution over scattering angles and pro-
jectile velocities. Those averaging effects introduce con-
siderable distortions upon the monochromatic, angle re-
solved cross section that is required in the inversion pro-
cess. Thus the relevant cross section must be extracted
from the data by deconvolution. To do this, we have cho-
sen the method proposed by Shapiro and Gerber [7] but
with a slight modification to their chosen procedure.

This deconvolution begins with the relationship be-
tween the averaged cross sections in the laboratory sys-
tem, (7~, and the idealized ones in the center of mass
system, oc, namely

o "(vg, 8) = Jo.

F„vg —v F~ 8 —8'

xa (v, 8') dvd8', (2)

rr, (ez, ) = f f F(ez„e, v) e (v, 8) dedv

In general, the folding factor F, is very complicated.
However, within the large limits of up to 10% full width
at half maximum (FWHM) of the magnitude and 5' an-
gular divergence for the primary beam and of up to 20%
FWHM and 10' angular divergence for the secondary
beam [7], which is the case in this experiment, F can be
simplified as a separable form, so that

where J is the 3acobian for the transformation kern the
laboratory to the center of mass system and v~ is the cen-
troid of the velocity distribution function. Both distri-
bution functions can be approximated well by the simple
forms

F„(vg —v) = D„exp[—B„(v—vg)']

wherein I is the average velocity (essentially vg) and the
scaling powers are taken as 0.95 and 1.25 for a and P,
respectively. The coefflcients, A, , B; and 8, , are adjusted
to provide the best fit. With this form, one finds

o. (vg, 8) = ) (;(vg) F~(8 —8')P;(8')d8',
0

(7)

where

(,(vg) = v~A, D„,

P;(vg, 8) =
B„+B,.g2/~

B„B;(vg8 ~~ —68 )

+ g.g2(ax exp

The 6nal integration over v is facilitated by a further
simple approximation [7]; the attendant error being neg-
ligible.

Shapiro and Gerber [?] used a fitting-iterative decon-
volution procedure to ascertain a relevant parameter set.
Instead, we have found those parameters, A;, B;, and 8;,
directly by a y minimization; i.e., by minimization of

although the angular resolution may depend on the de-
flection angle. Indeed, for the experimental data of in-
terest herein [4],

8 = 0.8(1+0.0448) .

To effect the integrations, the cross section in the in-
tegrand is approximated by a sum of Gaussian peaks,
V1z.

cr (v, 8) = ) vi'A, exp[ —B;(v8'~ —68, ) ], (6)

Using our procedure, an excellent 6t to the measured
data for 62.5 meV He atoms &om Ne atoms gave the set
of Gaussian parameters we present in Table I. With ten
.Gaussian peaks in the 6tting process, the best 6t had
a value of 58 for the y de6ned above. Therewith, the

j F~(8, —8') P;(8') d8'Ao„j
]

deconvoluted cross section can be speci6ed for all scat-
tering angles. But, in the inversion analyses, we will
use that cross section only at the angles specified by the
experiment and associate with that set of values the un-
certainties as given by the experiment as well.
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A;
1.06708[2]
—4.39140
2.99443[1]
9.68774
3.19770
2.41473
1.13769

1.27947[—1]
5.9232[—1]

1.11797

B;
5.66234[
8.20492[
2.13439[
1.97581[
9.24141[
1.19061[
1.39315[
1.02282 [
1.25424[
1.79943[

—1]
—1]
—1]
—1]
—2]
—3]
—1]
—1]
—3]
—4]

8,.

6.04782
9.11027

1.16856[
1.83995[
2.49362[
2.95319[
3.19565[
3.91891[
6.14500[
9.59434[

1]
1]
1]
1]
1]
1]
1]
1]

III. THE INVERSION METHODS

In the following, we discuss two inversion proce-
dures suitable for use in analyses of atom-atom elastic-
scattering data.

A. Quantal inversion

Fully quantal inversion schemes of the Lipperheide-
Fiedeldey type have been used successfully also to an-
alyze the elastic-scattering cross sections Rom nucleus-
nucleus [8,9], electron-atom [10], and electron-molecule

[11]scattering.
In the simplest of those schemes, one assumes the total

S function to be of the rational form given by

TABLE I. The parameters of the Gaussian forms used in
deconvoluting the cross sections. The numbers in brackets
denote multiplicative powers of ten.

is a constraint which we have applied in the studies to be
discussed.

One can also include a given background potential
Vo provided solutions can be found for the underlying
Ricatti-Bessel equations that specify all iterates of the
ensuing series to define Viv (r). The advantage of using a
background interaction in this scheme is to keep the num-
ber of pole-zero pairs to a minimum and of sizes that do
not cause numerical difficulties with the inversion. Then
the set of pole-zero pair values of the rational S function
required are those that relate to use of a product form

S(A) = S„f(A)S, t . (15)

B. The semiclassical (WKB) method

We have used a reference S function, S„f,associated with
a potential having the form A exp( —Br). The deconvo-
luted cross section for the 62.5 meV He-Ne scattering can
be well fitted with such an S function form and with but
a set of three pole-zero pair values. Specifically, with the
exponential reference otential parameter values, A and
B, of 797 eV and 4.03, respectively, the deconvoluted
cross section was fitted well with the set of complex con-
jugate pole-zero pair values as listed in Table II. The sig-
nificant factors for numerical stability and to have mono-
tonic variation in V(r) for large radii, are the relatively
large values ) 1.5 of the imaginary parts. Those pole-
zero pairs do not all lie in the complex plane segments
appropriate for the simplest Lipperheide-Fiedeldey pro-
cess, and in fact we used their mixed rational-nonrational
approach [12] to specify the quantal inversion potential.

'

(A2 p2)
~ I 4 ~

S, t(A) = "='
The semiclassical WKB method [13] is centered upon

a quasipotential which can be written as

(A' —a' )
4E1 d P b(A)

7I' 0' dO'
g gA —02 )

(16)

V(r) = Vjy(r),

namely, the N'" iterate of

(12)

as the potential associated with such an S function is
given by

S(A) 2i8(A) (17)

where A is the angular momentum variable and b(A) is
the phase shift function. That latter function relates to
the S function by

V„(r) = V„ i(r) + V(")(r), n = 1, . . . , N,

when, with the ni" pole-zero pair, (a„,P„),

V(ra) p2 222 2d 1 1()= ( )d ( ) ( )

(13)

(14)

and the cross sections are defined by the values of those S
functions with A = t+ 2. The scattering potential can be
determined uniquely &om the Sabatier transformation,

VwKB(r) = E 1 —e( "')
provided that there is a one to one correspondence be-
tween r and 0, given by the transcendental equation

Therein, L&(+)(r) are the logarithmic derivatives of the

Jost solutions f& (r) to the potential V i (r) that
asymptote as e+'"" respectively. Thus the potential is
determined entirely by the poles and zeros of the 8 func-
tion. While in general the potential is complex, it will be
real if a„and P„are complex conjugates for all n This.

Re
Im

C1y

28.9597248
—13.1957820

0!2
28.8606003
6.56645583

C13

21.8403179
10.8426396

TABLE II. The poles of S, t used in both the quantal and
(exponential) WEB inversion calculations.
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T= —g ~z
k

8o(A) = bp—AKi(bi%), (20)

which involves a modified Bessel function, as the quasipo-
tential corresponding to So(A) is

Thus one needs to solve the integration over phase shift
functions and Vollmer [14] has listed a number of differ-
ent phase functions of pertinence to such a semiclassical
analysis of atom-atom scattering for which that integra-
tion is analytic. Of that list, we have used the phase
function of the form

Re
34.25597730
22.87918684
17.84158077
13.34528341

0.2357497977
3.178899896
5.801666798
29.18965504
12.80543753
33.13973690

III1
—16.6388907
—6.48949172
—5.38368412
—5.17797907
—0.56856095
2.511798649
3.539298069
7.073164948
15.06738949
15.09356482

TABLE III. The poles of S, t for the WKB inversion.

Qp(cr) = bpe "' (21) IV. RESULTS AND DISCUSSION

For positive bo, this "reference" quasipotential corre-
sponds to a rapidly decreasing potential V(r)

Another useful form of an S function (or phase
shift function) is that considered by Lipperheide and
Fiedeldey [15]. They have shown that an S function of
the rational form, Eq. (11), gives a quasipotential

QR(0) = 2iE ) 1

(a.2 —n' ) g(iT2 p2 )
(22)

This form of S function, often used in conjunction with a
reference S function as per Eq. (15), has been used with
some success in WKB inversion of nuclear [8], electron-
atom [10], and electron-molecule [11] scattering data.

In this study of atom-atom scattering we have con-
sidered an S function of the product form. In our first
study we used the modified Bessel function form (of phase
shifts) to specify the reference S function, and thereby
the reference quasipotential. But we have also used as
the reference the quasipotential that we found numeri-
cally kom the phase shifts determined by the exponen-
tial coordinate space potential used in the fully quantal
study. With the 6rst case, to ensure that the WKB anal-
ysis is based upon the starting S matrix values that were
used in the quantal inversion study, it was necessary to
search for a new set of rational pole-zero pair values for
the rational function part of the product. With the lat-
ter, the quantal inversion pole-zero pair values were used
explicitly and so the S functions have the same values at
all real integer angular momenta values. Consequently,
the associated inversion potential is the appropriate one
to match to the fully quantal inverse result.

Thus we have two WKB studies, with quite diferent
reference S function forms, but which overall are in very
good agreement between themselves and with the quan-
tal inversion S function at the physical values of angular
momenta. With the modified Bessel function case, when
values of 60 and 6& of 0.18 and 3.996, respectively, de-
fine the background phase shift function, the set of ten
complex conjugate pole-pair parameters, (a;, P, f, listed
in Table III gave us the desired extremely close fit to the
quantal S function at the physical l values.

100 100

He-Ne {62.5meV}

[V
pK

O

10—

60

8 (deg}

90

FIG. 1. The differential cross sections for elastic scattering
of 62.5-meV He atoms from Ne atoms. The "data" obtained
from deconvolution are displayed in the larger segment by
the dots. The solid line shown therein was obtained &om the
quantal inversion. The short dashed line displays the WEB
inversion result while the long dashed line represents the cross
section found by using a potential from a Hartree-Facy calcu-
lation. The inset shows the effect of deconvoluting the diffrac-
tion oscillations of the actual measured data (dots).

The cross sections from the elastic scattering of 62.5
meV He atoms from Ne atoms are shown in Fig. l. In
the inset, the measured data [4] are displayed by the dots
with error bars and they are compared with the result of
our deconvolution calculation (solid curve). The values of
that deconvoluted cross section at the stipulated experi-
mental scattering angles then are displayed by the dots in
the main body of this figure (the error bars are the empir-
ical ones again) and are what will be referred to hereafter
as the data. All g2/F values are defined with respect to
the fit of a calculated cross section to that set of (decon-
voluted) data. The cross sections with which this data
are compared were obtained by using the quantal inver-
sion, a (modified) WKB inversion, and a Hartree-Fock
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calculated [7] potential, respectively, to give the solid,
short dashed, and long dashed curves. Clearly the re-
sults are all very similar and graphically (this scale) they
seem to be very good fits to the data. For this reason
only the inversion cross section obtained by using the ex-
ponential form for a potential to specify the background
quasipotential has been shown. The result is designated
as modified since a short range potential had to be added
to the WKB one. WKB potentials are defined only to the
turning point ( 2.1 A.). To use them in finding solutions
of the radial Schrodinger equations then requires a con-
tinuation to smaller radii. We used the values of the
quantal inversion potential at those small radii.

With the inversion potentials, the fits to the data are
epitomized by values of y2/F of 14.7 and 18.8, respec-
tively. The Hartree-Fock result gave a value of 29.9. All
three results are too large for us to make a confidence
level assessment of the radial values of these potentials
as was possible in studies of electron scattering using in-
verse scattering theory [10],and we note that 90% of the
y2 value comes from the angular region between 6.5' and
26.5'.

Four (real) potentials are shown in Fig. 2 with the
solid, dotted, short dashed, and long dashed curves por-
traying the quantal inversion, the (exponential) WKB,
inversion, the (Bessel background) WKB, and Hartree-
Fock interactions, respectively. Clearly, the quantal in-
version potential has a deeper minimum value than the
others with the two WKB results lying between that and
the theoretically calculated one. All three inversion po-
tentials decrease more slowly at large radii than does the
Hartree-Fock interaction, and all three inversion oten-
tials are indistinguishable on this scale from 4 out-
wards.

It is known [15] that potentials associated with the
class of rational S functions we have used in the inver-
sion calculations asymptote as —,. That is not the

1 I

I I
I

I

He-Ne (62.5 mev)

5
Radius (a.u. )

FIG. 2. A comparison of the diverse He-Ne interatomic po-
tentials. The solid, short dashed, dotted, and long dashed
lines represent the potentials obtained from the quantal in-
version, the Bessel background (WKB) inversion, the (expo-
nential) WKB inversion, and the Hartree-Fock calculations,
respectively.

character one may expect for interatomic interactions.
But the asymptotic value is a good approximant only at
very large radii. In any event, the data are not very sen-
sitive to the exact long range nature of this interaction
(i.e., beyond = 4 A). To ascertain that, we solved the
radial Schrodinger equations using the quantal inversion
potential up to a cut ofF radius R,„t, and matched on
a —, tail at larger radii. From those calculations y~/I'
values of 47.2, 16.5, 16.2, and 16.0 were obtained from
the fit to data when cutofF radii of 3.0, 3.5, 4.0, and 6.0
A. were used. Those numbers are to be compared with a
value of 14.7 from use of the undoctored potential. The
value of 3.0 A. for R,„& is practically at the potential well
minimum. There is a similar insensitivity to the exact
behavior of the potentials at small radii too. By varying
the quantal inversion potential to be a constant within
a lower radius Ri, calculated cross sections gave y2/F
values of 79.2, 16.1, and 15.8 when R~ was set at 2.16,
2.15, and 2.0 A. , respectively.

To investigate the semiclassical (WKB) method, not
only have we used the same product S function de-
fined for the quantal approach, but also we mapped
that S function to the Bessel reference form to have
equivalent phase shifts from l=0 to i=200. The qual-
ity of that match is refiected by a total y2, defined
as y = Pi o [SwKn —Sq„s„t i[ ) less than 0.7xl0
From Fig. 2 we note that the quantal and both WKB
inversion potentials coincide very well except at around

0
3 A where the potentials have a minimum. With the (ex-
ponential) WKB potential, its variation from the quantal
result refiects the effect of the WKB approximation. But
there are also differences between the two WKB poten-
tials. The two SwKB have difFerent functional forms, so
that the interpolation and/or extrapolation they make
upon the set of (physical) phase shifts has led to these
quite different potentials. To verify these conjectures, it
is necessary to check that use of the WKB inversion po-
tentials in direct solution of the Schrodinger equations re-
produces the input S function. However, the WKB inver-
sion potential is not specified at radii less than the classi-

cal turning point. But at r = 2.2 g, the WKB inversion
potential has not reached the classical turning point and
it is equal in value there to the quantal inversion poten-
tial; the reason for our choice of matching at low radii be-
fore. To study the sensitivity of the resultant phase shifts
to the exact short range nature of the interaction, we
made calculations varying both quantal and WKB inver-

0
sion potentials by setting V(r) = V(2.2 A) = 48.19 meV

O

for r & 2.2 P. The phase shifts that result are compared
with those of other interaction forms in Fig. 3.

The solid curve in Fig. 3 displays the phase shifts we
obtained by using the full quantal inversion potential.
The full WKB phase shift values are indistinguishable
&om that on this scale. But when the short ranged po-
tentials are set to a constant, the results do difFer notice-
ably &om the complete ones. The cutoff cases are dis-
played by the long dashed curve in Fig. 3. Also shown
in this figure are the phase shifts associated with diverse
component S functions. The short dashed curve displays
the phase shifts of the exponential background potential
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shown, &KB inversion does not reproduce the starting
phase shifts. The discrepancy between the (exponential)
t]t%]tKB and the quantal inversion thus is due to the inac-
curacy of the &KB approximation at this energy. That
also reHects in the cross section fits as the &KB calcu-
lation gave a y /F of 18.8; a value that is = 30% larger
than that obtained by the quantal inversion analysis.

V. CONCLUSIONS

—20

I

10
I

20
25

30

I

30

40

FIG. 3. Recalculated He-Ne scattering phase shifts as func-
tions of the angular momentum / and compared with the em-
pirical function (solid curve). The results of calculations dis-
played by the other curves are defined in the text. The inset
shows the important l value phase shifts of the fitted (solid
curve) phase shifts in comparison with those found by solving
the Schrodinger equation directly with the WKB potential
(dashed curve). The quantal result is indistinguishable from
the fitted values on this scale.

and those of the (quantal) rational part are shown by
the long-short-short dashed line. The Bessel function S
function gives the phase shift variation displayed by the
dash-dot-dot curve and the rational function associated
with that led to the result shown by the dash-dot curve.

In the inset in Fig. 3, the full quantal and both WKB
results for l ) 22 are compared. The difFerences are small
although the (Bessel) WKB phase shifts in that range are
smaller positive values; a consequence of the smaller at-
tractive part of the associated potential. To the extent

Some He-Ne potentials in the literature are summa-
rized in Ref. [4]. All the potentials have well depths of
1.8—2.0 meV, minimum points, and zero crossings within

0 0
0.03 A of 3.00 A and 2.68 A, respectively. Of all po-
tentials compared, ours found by inversion included the
best fit to the deconvoluted data; namely, that found
by quantal inversion. But no case gave fitting values of
y /F near to the statistically significant value of 1. As
a consequence we are as yet unable to place confidence
levels upon the radial values of the inversion potentials.
Clearly they refiect the expected shape, however. But
there is quite a variation in the specific values of these
atom-atom potentials in the region of (weak) attraction.
The quantal inversion result is favored, however, as the
procedure is more accurate than the WKB scheme and,
notably, gives the potentials inside of the classical turning
point.
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