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Elastic scattering of two Li atoms

JULY 1994

R. C6te, A. Dalgarno, and M. J. Jamieson'
Haroa« S-mithsonian Center for Astrophysics, 60 Garden Street, Cambridge, massachusetts 02138

(Received 24 January 1994)

Interaction potentials for the X 'Xg and a X„+ states of Li2 are constructed and used in calculations of
the elastic scattering of two 'Li atoms at ultralow temperatures. The extreme sensitivity of the cross sec-
tions to the details of the interaction potentials is demonstrated. The calculated elastic and spin-change
cross sections are very large, of the order of 10 "cm' at zero temperature. The predicted scattering
length for the triplet state is negative with a value of —17.2ao. Pronounced shape resonances appear at
energies of 4.9X 10 ' a.u. in the singlet scattering and 5.5 X 10 ' a.u. in the triplet scattering.

PACS number(s): 34.40.+n

I. INTRODUCTION
tan5t = J st(kr) V(r)ut(r)dr . (4)

Collisions of alkali-metal atoms at ultralow tempera-
tures have been studied recently in many experiments.
The processes that occur at millidegrees Kelvin tempera-
tures are sensitive to the details of the interaction poten-
tials between the colliding systems over an extended
range of internuclear distances. We explore here the sim-
ple case of the elastic scattering at near-zero tempera-
tures of a pair of lithium atoms for which apparently ac-
curate interaction potentials can be constructed. We
show that nevertheless their precision is not sufficient for
a reliable prediction of the elastic and spin-change cross
sections, though it is likely that the cross sections are
very large.

tr', )= g (21+1)sin 5t,4m

I=O
(6)

The scattering by V(r) is described by the phase shifts 5t
and a total elastic cross section may be defined by

cr„(E)= g (21+1}sin 5t .4m

k2 t=p

For lithium atoms in their ground states, approach
may occur along the potential-energy curves V (r) and
V„(r), corresponding, respectively, to the X'X+ and
a 3X„+ states of Liz. Elastic singlet and triplet cross sec-
tions may be defined by

II. ELASTIC-SCATTERING THEORY o,', = g (21+1}sin5I,4m

1=0
(7)

The theory of scattering by a potential V(r), where r is
the interatomic distance, is given in many textbooks. A
partial-wave expansion reduces the problem to the deter-
mination of the solutions of the partial wave equation:

z 2p V(r) 1(1+ 1)
dr 2 fi r

where p is the reduced mass of the collision system and k
is the wave number given in terms of the energy E of rela-
tive motion by k =2Eis/R The solution. s must be regu-
lar and behave asymptotically as

ut(r)- At Ist(kr)+tan5tnt(kr)], (2)

where st(r) and nt(r) are, respectively, the spherical
Bessel and Neumann functions; AI is an arbitrary ampli-
tude, and 5t is the scattering phase shift. Alternatively,
we may write

ut(r) —At sin(kr —,'le+5t) . —

If At is chosen equal to unity, the solution ut(r) satisfies
the integral equation

and an elastic spin-change cross section may be defined
by

tr„= g (21+1)sin (5t —5I) .
1=0

At values of k close to zero, only the 1 =0 term in each
of Eqs. (6), (7), and (8) contributes. The 1=0 phase shift
5p can be represented by the efFective range expansion [1]

—l 1kcot5 = +—r k —Tk +
a 2'

The parameter a is the scattering length and the parame-
ter r, is the effective range. In the limit of zero energy,

(10)

where a, and a, are, respectively, the singlet and triplet
scattering lengths. The scattering length corresponding
to a potential V(r} that decreases at large r as —C„/r"
has been obtained semiclassically by Gribakin and Flam-
baum [2] in the form
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where

a =cos
n 2

a =a ~ 1 —tan tan
n 2 2(n —2)

n —1r
n 2

n —3
- 2/(n —2)

(2p( )1/2 n 2

tri(n —2) —c,
Vg „(r)=

T

C8

r'
Cio + V,„,(r) .

1p

using values from Konowalow and Olson [6] at 2.75ao
and 3.00ap and a value of Schmidt-Mink, Muller, and
Meyer [7] at 3.25ao.

At large separations, V (r) and V„(r) may be written
as a sum of dispersion terms r " and an exchange poten-
tial V,„,(r) which diminishes exponentially. Thus, at
large r,

(12)

and

y 1/2
rp

(13)

where V(ro)=0. Gribakin and Flambaum have also
shown that the number of bound states nb is given by

n —1
nb +1,

2(n —2)
(14)

sin(kr +So)
coo(r}=

sin5o

and if uo(r) is normalized so that at large r,

uo(r) -coo(r),

(15)

(16)

where [ ] indicates the largest integer. When [ ] in Eq.
(14) is an integer, the scattering length is infinite.

The efFective range r, can be expressed in terms of the
zero-energy solutions of the partial-wave equation (1}. If
coo(r) is the solution of Eq. (1) at k =0 with the potential
taken to be zero everywhere, normalized so that

V,„,( r) =
—,
'

( V„—Vg )=Cr exp( Pr ), — (20)

where a = —I +7/2y, P=2p, and C is a constant which
can also be expressed as a function of p. We determined
C by fitting (20} to V,„,(r), matching V (r) and V„(r) at
the largest values of r for which they are reliably deter-
mined by experimental data, to obtain

For C6, Cs, and C,o we used the values of Marinescu,
Sadeghpour, and Dalgarno [8]. They are compared in
Table I with those adopted by Zemke and Stwalley [4].
Their value of C,o is an approximate estimate made using
the empirical relationship C,o=1.3(Cs/C6). The value
we adopted is a recent theoretical prediction and should
be more reliable.

The exchange term V,„,(r) is very important to the
determination of the spin-change cross section and spe-
cial care is needed if the correct cross sections are to be
obtained at low temperatures. Zemke and Stwalley [4]
found that the form A exp( ar ) is a—very good approxi-
mation between 11ap and 19ap, but it must become
inadequate beyond this range, and Smirnov and Chibisov
[9] have shown that if p is the ionization potential of the
atom in a.u. , the exchange interaction has the asymptotic
form

then [1,3] V,„,(r) =0.012 88r exp( —1.259r) . (21)

r=2 r cop Qp
p

(17)

A more complicated expression may be written for the
coefficient T in Eq. (9) [1].

If a bound state with binding energy Eb =A' y /2}M lies
near to the dissociation limit within the domain of con-
vergence of the effective range expansion, a and r, are re-
lated by [3]

(18)

III. INTERACTION POTENTIALS

The interaction potentials of two lithium atoms have
been discussed by Zemke and Stwalley [4], and we fol-
lowed broadly their recommendations, though with some
modifications. Barakat et ul. [5] have constructed an
empirical Rydberg-Klein-Rees (RKR) potential-energy
curve for the X 'X+ state at internuclear distances be-
tween 3.4ao and 23.9ao. (There are two misprints in the
data. In their Table 4, R2(v=25) should read 4.890860,
not 4.490860, and Rz(v=31) should read 5.680896, not
5.580 896.) We extended the data of Barakat et al. [5] by

TABLE I. Long-range coefficients in Eq. (19) in a.u.

Ref. C,

1381
1388

C8

82 616
83 230

Clo

6 425 000
7 348 000

The experimental data on the a X„+ state over a less
extensive range of r. We used the RKR values of Linton
et al. [10] between 6.4ao and 15.7ao, and we added
theoretical values at 3.00ao frotn Konowalow, Regan,
and Rosenkrantz [11] and between 3.25tto and 6.00ao
from Schmidt-Mink, Miiller, and Meyer [7]. The long-
range form is the same as for Vs(r), except the exchange
term is repulsive.

Our adopted potentials yield a value of 8516.618 cm
for the dissociation energy of the X 'X+ state in close
agreement with the value of 8516.78 cm ' of Barakat
et al. [5] and 8516.61 cm ' of Zemke and Stwalley [4],
and a value of 333.396 cm ' for the dissociation energy
of the a X„+ state in close agreement with the values of
333 cm ' of Lindton et al. [10] and 333.4 cm ' of
Zemke and Stwalley [4].

A second set of potentials was used to demonstrate the
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FIG. 1. The adopted potential-energy
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sensitivity of the cross sections. For Vg(r) and V„(r},we

used the ab initio calculations and the long-range extra-
polation of Konowalow and Fish [12], Konowalow and
Olson [6], and Konowalow, Regan, and Rosenkrantz
[11],which has the form

—1390
6r

12X 10'
T-46. 5 exp( 0 997—r) ..

T

(22)

There is a small discrete step in the data which we
smoothed.

The adopted hybrid potential curves of the singlet and
triplet states are illustrated in Fig. 1. The differences be-
tween the two sets of singlet potentials and the difFerences
between the two sets of triplet potentials are too small to
be shown in Fig. 1.

IV. ZERO-ENERGY LIMIT

We solved Eq. (1) by the Numerov method. We found
that a more stable phase is obtained at low energies by
substituting the solution into the integral equation (4)
[13], rather than by fitting to the asymptotic form. We
determined the scattering lengths and efFective ranges by
fitting the scattering phase shift 50(k} to the efFective

range formula (9). We also calculated the scattering
lengths using Eq. (11) and the e8'ective ranges using Eq.
(17}. We adopted an atomic mass of 7.016003 g/mole
and a reduced mass of 6394.695S electron masses, corre-
sponding to the collision of Li and Li.

The scattering lengths and effective ranges for the
X'Xg+ and a X„+ potentials are presented in Table II.
The close agreement between the calculations of a from
Eqs. (9) and (11)and of r, from Eqs. (9}and (17) confirms
the accuracy of the numerical integrations of the partial-
wave equation (1). The negative triplet scattering length
suggests the existence of a bound state close to the con-
tinuum edge [3].

The scattering lengths corresponding to the alternative

E( )=[(U V)~ ]2nl(n —2) (23)

where vD is the effective vibrational noninteger quantum
number of the dissociation limit and

TABLE II. Scattering length a and efFective ranges r, in units
Of a0.

State

x 'r+
a X„+

Eq. (9)

36.9
—17.2

Eq. (11)

36.9
—16.9

Eq. (9)

66+1
1012+4

Eq. (17)

66.5
1014.8

potential-energy curves for the X'Xs and a X„+ states

are, respectively, —0.2ao and 1720ao, values that are
quite difFerent in magnitude and sign from those in Table
II which correspond to our adopted hybrid potential
curves. The remarkable sensitivity of the scattering
lengths to the details of the potential-energy curves may
be anticipated by inspection of Eqs. (11) and (14) or Eq.
(18) which, consistent with Levinson's theorem, show
that as the binding energy of the highest levels tends to
zero, the magnitude of the scattering length tends to
infinity.

We have obtained the binding energies of the vibra-
tional levels with zero angular momentum. They are list-
ed in Table III for the highest-lying levels, together with
the experimental data [5,10]. We found 42 bound levels
for the X'Xs state and 11 bound levels for the a X„+

states. We confirmed that we had discovered all the
bound levels by calculating the total number for each po-
tential using the formula (14) of Gribakin and Flambaum
[2]. Further confirmation was obtained by slightly modi-
fying an analysis of LeRoy and Bernstein [14], who used
semiclassical arguments to derive for the binding energy
E„ofvibrational level v in a potential Cr " the expres-
sion
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TABLE III. Energies of the X 'X~ and a X„+ vibrational levels in cm

X 'r+
g a 3r+

tt

33
34
35
36
37
38
39
40
41

Experiment

8205.232
8292.029
8364.307
8421.613
8463.965
8492.044
8507.842
8514.778

Theory

8205.156
8291.967
8364.235
8421.589
8463.967
8492.110
8507.940
8514.803
8516.541

2

3

4

6
7
8

9
10

Experiment

142.637
188.358
227.803
260.958
287.779
308.229

Theory

142.577
188.329
227.752
260.885
287.723
308.199
322.134
330.001
333.014

H„= n 2
2n

1I 1+—
2' n

1 1
I —+—

2 n

n

( 1/n (24)

The total number of vibrational levels is the greatest in-
teger less than or equal to vD+1. The parameter n and
the value of C are determined by the value of the interac-
tion potential at the outer turning point R ( v

'
) of the

chosen bound level v'. Thus,

g(m+1)mC /R(v')™+1
n+1=

gmC /R(v')
(25}

where the summation is taken over m =6, 8, and 10 and

E(v'}=C/R(v')" (26)

defines C. Then,

[g( }](n —2)i2n

UD =U+
H„

(27)

Table IV lists the results for the X'Xg and a X„+

states obtained using in Eqs. (25} and (26) vibrational lev-

el v*=40 for the X 'X+ state and 7 for the a X„+ state
and applying (27) to several of the highest-lying vibra-
tional levels. All yield 42 levels for the X 'X+ state and

11 for the a X„+ state.
The binding energies of the highest bound levels corre-

spond to values of y of 0.0667 and 0.149 a.u. , respective-

ly, for the singlet and triplet states. The scattering
lengths derived using Eq. (18}are not useful estimates be-
cause yr, is large compared to unity and neither value of
y is within the domain of convergence of Eq. (18).

Calculations of the triplet scattering length for Li
atoms have been reported recently by Moerdijk et al.
[15]. Taking account of uncertainties in the a X„+ in-

teraction potential, they conclude that

—27. 8ao & a & —7. lao .

Our value is —17.2ao.

V. HIGHER PARTIAI. WAVES

With increasing energy, higher angular momentum
waves contribute to the scattering. Figure 2 illustrates
the variation with energy of the individual partial-wave
cross sections for the X 'Xg state. The total elastic cross
section in units of a 0 is also presented in Fig. 2. The total
cross section is constant at low velocities where only s-

wave scattering is significant. The s-wave cross section
tends to decrease with increasing energy but the decrease
is overcome by the higher partial-wave contributions
which initially increase with energy from zero before
passing through maxima and decreasing. Oscillations
occur through the addition of a small number of partial
waves. Sharper structures are due to shape resonances.
The most prominent is the d-wave resonance correspond-

ing to a quasi-bound-state trapped by the l =2 centrifugal
barrier. The d-wave resonance occurs at an energy of
4.9 X 10 a.u. and has a width of 1.5 X 10 a.u.

State

TABLE IV. Parameters of the LeRoy-Bernstein method.

C (a.u. )

X 'X+
g

6.333 4409 39
40
41

41.549
41.492
41.505

3y+ 6.839 17 184 6
7
8

9
10

10.074
10.301
10.482
10.624
10.750
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FIG. 2. The individual partial-wave cross
sections and the total cross section for scatter-
ing in the X 'X+ state as functions of collisiong
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energy.
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TABLE V. Spin-change rate coefficients calculated using the
cross section defined in Eq. (8).

Iogio [T «)1
—6
—5
—4
—3
—2
—1

0
1

2

k (cm's ')

2.0 ( —12)
6.3 ( —12)
1.9 ( —11)
4.8 ( —11)
2.4 ( —10)
4.9 ( —10)
6.9 ( —10)
7.7 ( —10)
9.9 ( —10)

%e illustrate in Fig. 3 the similar calculations for the
a X„+ state. A strong resonance appears in the l =4 par-
tial wave at an energy of 5.5X10 a.u. with a width of
1.3 X 10 a.u.

VI. TEMPERATURE DEPENDENCE

We assume the velocity distribution is Maxwellian
characterized by a kinetic temperature T, and we define
mean elastic and spin-charge cross sections by

o(T)=(k~T) J o(E)E exp( E/k~T)d—E . (28)

The corresponding rate coefficients are given by
(8k& T/n p)' o ( T).

Values of the mean cross sections in units of ao are
shown in Fig. 4 for T up to 10 K and values of the spin-
change rate coefficient in cm s ' are listed in Table V for
T up to 100 K. The cross sections are large and, because
of the sensitivity to the details of the interaction poten-
tial, they are very uncertain at low temperatures. At
higher temperatures where many partial waves contrib-
ute, the predictions are more reliable. The influence of
higher partial waves begins to become evident at temper-
atures as low as 10 mK.

VII CONCLUSIONS

The elastic cross sections for the collision of two Li
atoms at ultralow temperatures are sensitive to the details
of the interaction potentials but are probably very large,
of the order of 10 ' cm . Below 10 mK, the collisions
are dominated by s-wave scattering, but higher-order par-
tial waves contribute at higher temperatures. Shape reso-
nances, trapped within the centrifugal barrier, impose
structure on the cross sections. The scattering lengths
are predicted to be positive for singlet scattering and neg-
ative for triplet scattering.
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