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Electromagnetic pair production with capture
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Calculations of the electron-positron pair production by a single photon in the Coulomb field
of a nucleus with simultaneous capture of the electron into the K shell are presented. Numerical
results are given for some nuclear charges up to 92 and energies from threshold to 15 MeV. Using
the equivalent-photon method of Weizsiacker and Williams, reliable estimates of the cross sections
for the production of ete™ (K orbit) pairs by very-high-energy fully stripped heavy ions can be

made for arbitrary nuclear charges.
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I. INTRODUCTION

There is now some experimental interest in the process
of single-photon pair production. It is hoped that reliable
predictions of the cross section for K-shell capture can
be made in the case of relativistic heavy-ion collisions,
using the equivalent photon method of Weizsiacker and
Williams [1,9]. In the relativistic heavy-ion colliders like
the relativistic heavy-ion collider (RHIC) or the large-
hadron collider (LHC) there is a serious loss process for
high nuclear charges Z [2]. In addition to the fragmenta-
tion due to the Weizsacker-Williams process there is the
ete™ pair production with e™ capture, mainly into the
most tightly bound K shell (all higher shells will con-
tribute about 20% of the K capture). As this is a pure
QED process, it can be calculated reliably. Recently,
the same mechanism has also been proposed to produce
antihydrogen atoms, where the antiproton captures the
positron of the produced pair [3].

II. PAIR PRODUCTION WITH CAPTURE BY
A SINGLE PHOTON

The cross section for single-quantum pair production
is given by
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where the matrix element 7,+.- is given by
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Throughout the paper, we will use relativistic units A =
¢ =m. = 1. & are standard Dirac matrices. E, and k,
denote energy and momentum of the positron and € the
photon polarization vector. The electron binding energy
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is given by E. = v, = V1 —a2Z2% ¥¢ and ¥? are the
Coulomb field Dirac wave functions of a K-shell electron
with magnetic quantum number v and a free positron
with spin ¢, respectively.

The K-shell wave function for a Coulomb field

¢=aZ (3)

is given by [4]
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The radial functions g_; and f_; are
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The angular dependence in Eq. (4) is expressed by spher-
ical spinors
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in which x, are Pauli spinors and
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The positron Coulomb wave function, which is chosen to
represent asymptotically a distorted plane wave with an

outgoing spherical wave, is [5]
U 3 J
p+s —¢ —p

><Y;tl+§*(f(p) < f"x"“" ) s ll = _7 - %Sgn(fi), (9)

N

Ep+1 0 —
\1/52471' 2*%“;7/ ](—1)#

19Xt

3980 ©1994 The American Physical Society



50 ELECTROMAGNETIC PAIR PRODUCTION WITH CAPTURE 3981
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where the occurring form factors are given by
I, = il/ r251(kr) f_1(r) f. (r)dr, (13)
0

Jeg =1 /0°° r251(kr)g_1(r)gx(r)dr. (14)

The summation index n in Eq. (12) is related to the
positron angular momentum by n = j + % The radial
functions g, and f, fulfill the following coupled differen-
tial equations:
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From these differential equations, it is possible to obtain
an expansion of the radial functions

(5 ) =t 5 (0 ),

where the coefficients a,., and by, are given by the cou-
pled recursion relations

(n+1)(27p + n + Dkpan;ni1 — E(Ep — 1)axm
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(n+1)(2vp + n + 1)kpbeint1 — E(Ep + 1)by;p
+(vp+n+1+k)(Ep—1)ax, =0, (18)

and the starting values follow from Eq. (9). Using the
above decomposition of the radial wave functions, the ra-
dial form factors can be evaluated very fast by a method
described by Trautmann, Baur, and Roesel [7]. This
method is numerically stable and converges for arbitrary
energies.

Fy = (v + inp)F(vp — imp; 2vp + 15 2ikpT)
+(k +3€/kp)F(vp + 1 —imp; 2vp + 1; 2ikpr).  (11)

The negative energy solution for the positron is related
by charge conjugation to a positive energy solution in
a repulsive Coulomb potential. The evaluation of the
matrix element for the total cross section leads after some
algebra to a remarkably simple expression for the cross
section [6]:
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III. CAPTURE IN RELATIVISTIC HEAVY-ION
COLLISIONS

Pair production with capture is of special interest for
the development of relativistic heavy-ion colliders. The
simplest way to get an estimate of the cross section
in RHI collisions is provided by the equivalent photon
method, which is originally due to Fermi [8], and later
on developed by Weizsicker and Williams [1,9]. A quite
complete description of the method can be found in the
textbook of Jackson on classical electrodynamics; we
mention only the main idea involved in the method. The
target nucleus is considered as fixed. The projectile is as-
sumed to move in a straight line with relativistic Lorentz
factor v, = 1/v/1 — v2 >> 1 and impact parameter b, ac-
companied by the contracted electromagnetic field. This
contracted field corresponds to a spectrum of equivalent
photons, given by

Z2a [ w? 1
N(w,b) = % (731]4) [Kf(m) + W—;Kg(z) , (19)
where Ko(K,) are the modified Bessel functions of or-
der zero (one) and z = wb/yv. The cross section for an
electromagnetic process in a highly relativistic collision
is obtained now by integrating the single-quantum cross
section over the frequency spectrum and from a minimum
impact parameter by, = R (which was, in our case, cho-
sen to be the Compton wavelength) to infinity:

n(w) = /R ~ 2mbIV (w, b)db, (20)

dw

o= [ @), (21)

where o is now the total cross section of the electromag-
netic process.
The integration of N(w,b) over b can be carried out to
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give [10]

n(w) = 21 /H BN (w, b)db (22)
= 252 ko(0ma(0) - U K26 - K30,

(23)

where ( = wR/~,v is an adiabatic cutoff parameter. For
7 > 1 (except for extreme low-energy frequencies, satis-
fying the relationship wR < 1) one can use the approxi-

mation:
T P C ™ 4 n C ’ ( )

where 6 = 0.681...
constant.

I

n(w)

is a number related to the Euler’s

IV. RESULTS AND CONCLUSIONS

Equation (12) was evaluated for arbitrary values of
charge, and as a function of energy from threshold up
to 30 MeV. For these high energies the summation over
n, that is over the angular momentum, has to go to sev-
eral hundreds. The accuracy of the computation was
maintained at better than 0.1% throughout the range of
charge and energies below 10 MeV. Results of the cal-
culation for energies up to about 15 MeV are shown in
Fig. 1. We were able to reproduce the results of Johnson,
Buss, and Carroll [6] by restricting the summation in Eq.
(12) to n < 10. Also a Fortran program to compute the
cross section for arbitrary Z and E, is available now.

Theoretical calculations using semirelativistic Som-
merfeld-Maue wave functions show that for «Z <« 1 and
E, > 1 the cross section is approximately given by

1
Uﬁe, =4mabZ% —. (25)
E,
The numerical calculations confirm this simple formula.
For nuclei with great Z the formula can be modified by
a purely heuristic factor:
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FIG. 1. Differential cross section o(E,) for the pair produc-

tion by a single photon is given as a function of the positron

energy E, for different ions. The dotted curve is the result
for U, the dashed curve for Pb and the solid curve for Au.

2raZ
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This modification agrees pretty well with the numeri-
cal values for physical Z and positron energies above
15 MeV. From the considerations made above we expect
that the cross section for capture in relativistic collisions
behaves like

2naZ
1 aZ
al{i{HI = 8Z§Z5(17 (5 + —4"‘) (clln'yp - Cz). (27)

Adapting the coefficients to our numerical results
gives ¢; (cz) = 0.250 (0.619) for uranium as target,
0.238 (0.603) for lead and 0.235 (0.598) for gold. For
the calculation of these coefficients, we have used Eq.
(26) for energies higher than 30 MeV. In U2 4 U®2
collisions the numerical values for incident energies of
E, = 100 GeV amu™' and 20 TeV amu™! are 73b and
250b, respectively. The values are in good agreement
with those of Becker, Griin, and Scheid [11], which pre-
dicted cross sections of 68b and 400b. For small Z, the

TABLE I. Parameters A and B that are to be used in Eq. (28) are given for different ions. The
choice of the ions follows those of [2]. Also given are predictions of the total cross section ofy; for

LHC (y = 3400).

Z A (b) B (b) ohu (b)
92y 33.4 -82.7 484
82pyp 15.4 -39.0 222
" Au 12.1 -30.7 173
4INb 1.87 x107?! -5.02 x107?! 2.67
20Ca 1.95 x1073 -5.19 x1073 2.78 x107?
80 4.50 x10~° -1.20 x107% 6.43 x10°°
?He 3.35 x10~1° -8.85 x10~1° 4.79 x107°
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results confirm those of Bertulani and Baur [10] within a
range of a few percent. Indeed, Baltz, Rhoades-Brown,
and Weneser [12] established in a recent paper that the
cross section for very high energies is of the form

ofq = Alny, + B, (28)

and the A and B are independent of v,. In a later pa-
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per [13], they give for the specific case of "?Au-"?Au the
perturbational results A = 11.2b and B = —28.3b, a re-
sult which agrees well with our values A = 12.1b and
B = —30.7b. They also predict an approximate Z% scal-
ing, with z ~ 6.6 for U to Au, and ~ 6.4 for the much
larger jump Au to I. Our corresponding values are z ~ 6.7
and z ~ 6.4, respectively. Values for A and B are shown
in Table I for the experimentally most important charges.
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