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A theoretical model, which is free of adjustable or fitted parameters, for calculating electron-
impact ionization cross sections for atoms and molecules is presented. This model combines the
binary-encounter theory with the dipole interaction of the Bethe theory for fast incident electrons.
The ratios of the contributions from distant and close collisions and interference between the direct
and exchange terms are determined by using the asymptotic behaviors predicted by the Bethe theory
for ionization and for stopping cross sections. Our model prescribes procedures to calculate the singly
differential cross section (energy distribution) for each subshell using the binding energy, average
kinetic energy, and the differential dipole oscillator strengths for that subshell. Then the singly
differential cross section is integrated over the ejected electron energy to obtain the total ionization
cross section. The resulting total ionization cross section near the threshold is proportional to the
excess energy of the projectile electron. We found that this model yields total ionization cross
sections for a variety of atoms and molecules from threshold to several keV which are in good
agreement ( 10%%uo or better on average) with known experimental results. The energy distributions
also exhibit the expected shapes and magnitudes. We offer a simpler version of the model that can
be used when differential oscillator strengths are not known. For the ionization of ions with an open-
sheQ configuration, we found that a minor modification of our theory greatly improves agreement
with experiment.

PACS number(s): 34.80.Dp, 34.80.Gs, 34.80.Kw

I. INTRODUCTION

Electron-impact ionization cross sections are widely
used in applications such as the modeling of fusion plas-
mas in tokamaks, modeling of radiation effects for both
materials and medical research, and aeronomy, as well
as in basic research in astrophysics, atomic, molecular,
and plasma physics. Although the method we present in
this article —to be referred to as the binary-encounter-
dipole (BED) model —is equally applicable to ionization
of atoms and molecules, we shall hereafter refer to the
targets as "atoms" for brevity.

Ionization cross sections at all energies of incident par-
ticles and ejected electrons are needed to follow the his-
tory of an incident particle and its products for all ranges
of energy transferred in individual collisions. Proper un-
derstanding of the role of ejected electrons is crucial be-
cause a large number of them, mostly slow electrons, are
generated in the course of an energetic incident parti-
cle penetrating through matter. These electrons in turn
interact with other targets until the electrons are ther-
malized.

Electron-atom collisions can be divided into two broad
types: soft or distant collisions with large impact pa-
rameters and hard or close collisions with small impact
parameters. The Mott theory [1], which describes the
collision of two free electrons, accounts for hard collisions
well but not soft collisions [2]. Bethe [3] has shown that
soft collisions take place essentially through the dipole

interaction between the incident particle and the target
electron.

The symmetric form of the binary-encounter theory de-
scribed by Vriens [4], which is meant for electron-impact
ionization, augments the Mott formula by assigning a
velocity or momentum distribution to a target electron
instead of a wave function, but still lacks the dipole con-
tribution and hence leads to an incorrect cross section
when the dipole interaction dominates at high incident
energies. In contrast, contributions Rom hard collisions
dominate at lower incident energies.

There have been many attempts to combine the dipole
contribution with either the Rutherford or Mott cross
section to derive the "correct" ionization cross sections
[5,6], but these attempts have all had only limited suc-
cess because they failed to find the correct mixing ratio
between the expressions for the soft and hard collisions.
In addition, since the scattered and ejected electrons are
indistinguishable after an ionizing collision, electron ex-
change effect must be included, as is the case for the Mott
and Vriens formulas.

Other approaches to represent ionization cross sections
in compact, analytic forms [2,7—10] require parameters
that must be fitted to some theoretical or experimental
ionization cross sections.

The BED model uses the relation between the asymp-
totic (i.e., high incident energy) cross sections for ion-
ization and for stopping (defined later) to deduce the
mixing ratios not only between the soft and hard colli-
sions but also for the electron exchange term. The BED
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model, however, does not depend on any empirical or fit-
ted parameters, though accurate experimental or theoret-
ical data on binding energies and photoionization cross
sections are needed.

An important ingredient of the BED model is the dif-
ferential dipole oscillator strength for ionization, which
can be derived &om either theoretical or experimental
photoionization cross sections. The BED model con-
structs ionization cross sections subshell by subshell, and
in principle can be used to construct ionization cross sec-
tions for any target atom or molecule as long as cor-
responding differential oscillator strengths for ionization
are known. When high accuracy (10%%uo or better) is not
required, differential oscillator strengths calculated &om
Hartree-Fock or similar wave functions are suHicient.

We also have included a simpler version of the BED
model, to be referred to as the binary-encounter-Bethe
(BEB) model, which may be used when the required dif-
ferential oscillator strengths are not available.

We present a brief outline of the underlying theory in
Sec. II, our BED model in Sec. III, the BEB model in
Sec. IV, discussions of the total ionization cross section
in Sec. V, modification of the theory for ion targets in
Sec. VI, and comparisons of our results with experiments
in Sec. VII. Our conclusions are presented in Sec. VIII.
Often applications of ionization cross sections require to-
tal ionization cross sections only. In such cases, the total
ionization cross sections calculated &om the present the-
ory can be recast into a simpler function of the incident
electron energy. This simpler form is discussed in the
Appendix.

II. RUTHERFORD, MOTT) AND
BINARY-ENCOUNTER CROSS SECTIONS

der(W, T) 4m a20R 1

dW T W2
1 1

W(T —W) (T —W)2

(3)

E=W+B, (4)

where B is the binding energy of the ejected electron.
With this substitution, the modified Rutherford cross
section for a subshell becomes

In this nonrelativistic formula, T is the kinetic energy
of the incident electron, and T —W is the kinetic en-

ergy of the scattered electron. The Mott cross section
above is given in the form of a singly differential cross
section (SDCS), or the energy distribution of the ejected
electron.

Because the scattered and ejected electrons are indis-
tinguishable, it is customary to call the faster one of the
two (after a collision) the primary electron and the slower
one the 8econdary electron. The first term in the square
brackets of Eq. (3) is the direct collision term, the second
term represents the interference between the direct and
exchange collision terms, and the third term is the ex-
change collision term. Note that the Mott cross section
is symmetric in the kinetic energies of the secondary elec-
tron, W, and the primary electron, T —W, as it should
be. Both the Rutherford and the Mott cross sections,
however, diverge when W ~ 0 or when W ~ T in the
case of electron-electron collision.

Of course, for a real atom, the cross section for ejecting
an electron with W = 0 is finite, and W cannot be equal
to T because the binding energy must be overcome for a
bound electron to be ejected. With these restrictions in
mind, one can slightly modify the Rutherford and Mott
cross sections by replacing W by the energy transfer

A. Rutherford cross section do(W, T) do 4ma Z N R
dW dE T E2' (5)

The collision of a particle with charge Zqe with a free
electron at rest is described by the Rutherford cross sec-
tion [11]:

d~(W, T) 4~a Z2R2 1

dW T W2'

where W is the kinetic energy of the ejected electron, ao
is the Bohr radius (= 5.29 x10 ~~ m), R is the Rydberg
energy (= 13.6 eV), and T is the mduced kinetic energy
defined by

do (W, T) do 47rao2R2N 1 1
dW dE T E2 E(T —W)

1

(T —W) 2 (6)

where we have included the number of bound electrons,
N, in the subshell. Similarly, the modified Mott cross
section for a subshell is, after replacing W by E and T
by T + B in the square brackets of Eq. (3), given by

T=mv /2, (2)

with the relative speed e and the electron mass m re-
gardless of the actual mass of the projectile. For incident
electrons, T is the nonrelativistic kinetic energy.

B. Mott cross section

Mott generalized the Rutherford cross section for the
collision of two electrons [1,11] to take account of ex-
change:

Note that, while the original Mott cross section, Eq. (3),
is an exact solution for the collision of two &ee electrons,
the modified Mott cross section, Eq. (6), is an approx
imation for a bound target electron. In fact, Eq. (6)
becomes a good approximation for ejecting a fast elec-
tron only when W » B.

C. Binary-encounter cross section

An extension of the Mott cross section to describe the
ionization of a bound electron is to assign a velocity or
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der(E, T) 4xaoR N 1

dE T+ U+B E2
1

E(T —W)

4U

)T —wp s zm )r —w)s )
In Eq. (7),

momentum distribution to the target electron to repre-
sent the orbital motion of the bound electron. Although
one can regard the Mott cross section itself as a formula
that describes a binary collision, i.e. , a billiard-bali-like
collision between two free electrons, it is more common in
a binary-encounter theory to associate some kind of mo-
mentum or velocity distribution with the target particie.
Such a momentum distribution is often derived from the
wave function for the target electron.

The symmetric form (i.e., for the primary and sec-
ondary electrons) of the binary-encounter theory [4] dif-
fers from the Mott cross section in that it has an extra
term and introduces the average kinetic energy U:

III. BINARY-ENCOUNTER-DIPOLE (BED)
MODEL

Both the Mott and the binary-encounter cross sections
for electron-impact ionization can be recast as a series:

do(WT) S . 1 1

dW 8 "
(w + 1)" (t —w)"F„ t + . 15

The term containing m + 1 represents the secondary
electrons ejected from the target during the collision
while the term containing t —m describes the scattered
primary electrons which have lost energy. Both types of
electrons are detected in experiment, and they are indis-
tinguishable. As was mentioned earlier, the n = 1 term in
Eq. (15) represents interference between the primary and
secondary electrons, and the n = 2 term arises &om close
collisions. The n = 3 term accounts for the broadening
of the energy distribution due to the intrinsic momentum
distribution of a bound electron being ionized.

The Mott cross section corresponds to the following
choice of F„(t):

U =—(P')/2 1
F2 ———,

t
F, =O,

where p is the momentum operator of the electrons in a
subshell.

At this point, it is convenient to express cross sections
in terms of energy variables in units of the binding energy
B of the electrons in a subshell:

and the binary-encounter cross section is reproduced by
choosing

t+ 1' t + u+ 1 3(t+ u+ 1)

t=T/B;
w =W/B;
u=U/B;
S = 4vrao&(R/B) .

(9)
(io)
(11)
(i2)

der(W, T) do (w, t)
de Bdu)

S
Bt (w+ 1)2

1

(w + 1)(t —w)

(t —w)'

Similarly, the binary-encounter cross section, Eq. (7),
can be rewritten as

do(W, T) S 1 1

dW B(t + u+. 1) (w +. 1)2 (t —w)2

With these reduced variables, the modi6ed Mott cross
section becomes

The total ionization cross section o;, which is obtained

by integrating the SDCS [Eq. (15)] from w = 0 to
(t —1)/2, reduces to a simple expression

(t—1)j2 d
dtU

0 de
= S[F&lnt+F2(1 —t ')+ 2Fs(l —t )]. (19)

3
= S) F„(t)f„(w),

m=1
(20)

One can see that Eq. (19) with Eq. (16) or (17) leads
to the asymptotic (t )) 1) behavior o; -+ t ~, which
does not agree with the predictions of the Bethe theory
nor with experiment. An example of this failure is shown
in Sec. VIID. A more realistic asymptotic t dependence
is predicted by the Bethe theory [3], viz. , t ~ lnt, which
arises from the dipole interaction.

To correct this de6ciency, we consider the asymptotic
case first. In the asymptotic region t )) zu, and hence the
(t —w) " terms may be ignored, i.e.,

1

(w+ 1)(t —w)

1
(w) = („+,). for n = 1,2,

4u 1 1

(w + 1)' (t —w)' ) ' (14) while F (t) and fs(w) are to be determined.
We now introduce the stopping cross section for ion-
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ization cr,t,-, which is defined by

(~-~)/2
o..„—= B (u + 1) duJ.

0 dtU
(22)

o; = S(Fi ln t + F2 + FsG), (23)

where

and

&sti =

G = fs(uJ)duJ,
p

SB
[(ln 2)Fit + F2 ln t + F3H],

(24)

where

The asymptotic limits of cr; and O,t,. are obtained by
substituting Eq. (20) into Eqs. (18) and (22):

There is no function Fi(t) that will yield a t i lnt de-

pendence in both Eqs. (30) and (31). Hence, we choose

Fq to make the first term in both equations fall ofF faster
than t lnt so as to become asymptotically negligible in

both equations. The simplest way to accomplish this is

to choose Fy oc t . This is consistent with the t de-

pendence of Fz in the Mott and the binary-encounter
cross sections provided that we make Fq negative, i.e.,
make the interference term negative. If we now choose

F2 oc t as in the Mott and the binary-encounter cross
sections, the second term in Eq. (30) becomes negligi-

ble but the second term in Eq. (31) matches the t i lnt
dependence in the remainder of that equation.

With these choices for Fq and F2, the third term dom-

inates in the asymptotic equation for o, , Eq. (30), while

the second and the third terms dominate in the asymp-
totic equation for o,t;, Eq. (31).

The asymptotic expression for the SDCS in the Bethe
theory [14] is

H= m+1 3 m dm. (26) do Slnt 1 df(uJ)

dm Nt m+ 1 dm
(32)

SQ lnt
&i =

2 t (27)

The upper limits of the integration for G and H have
been extended to oo in the anticipation that fs(uJ) di-
minishes rapidly enough as ur ~ oo such that the asymp-
totic part of fs(uJ) does not contribute to the asymptotic
t dependence in Eqs. (23) and (25). This requires that
fs(uJ) m uJ with m & 2 for uJ » 1.

The corresponding asymptotic cross sections derived
by Bethe using the first Born approximation are [3,12]

do'

de)
= SFB(t)fs( ). (33)

Prom Eqs. (32) and (33), we get

lnt 1 df
Fs(t)fs(~) = (34)

An obvious choice is to set

where df (uJ)/duJ is the difFerential oscillator strength. On
the other hand, the asymptotic limit of Eq. (20) is

where

2BM;2
NR

R 1 df (uJ)

B p QJ+ 1 dtU

lnt
Fs(t) = and

(35)

and

(28) From this choice of fs (uJ), the definition of M2 [Eq. (28)],
and Eq. (24), we get

2SB lnt
&sti =

t (29)
1 1 df (uJ)

N p m+1 dm
(36)

Q lnt
Fg ln t + F2 + F3G =—

2 t '

lnt
(ln2)Fit+ F2 lnt+FsH = 2

t

(30)

On the right-hand side (RHS) of Eq. (29), we have
used the asymptotic form of the Bethe cross section for
o',i, which (unlike o',t;) includes excitations to both dis-
crete and continuum states. We made this approxima-
tion for two reasons. The first is that the coeKcient of the
t ln t term for ionization not only is dificult to calculate
but will also be difFerent from one atom to another. The
second reason is that at high incident energy, ionizing
collisions account for 80% or more of o', q [13], and hence
using the asymptotic dependence of cr,t on the RHS of
Eq. (29) is a simple yet efFective approximation.

Matching Eqs. (23) and (25) with Eqs. (27) and (29)
leads to

BM2
RN '

and from Eq. (26)

(37)

where

1 df (ui) N;0=—
dm N'

(39)

Earlier, we mentioned that fs(uJ) for io » 1 should di-
minish as m with m ) 2 so that the upper limits in
Eqs. (24) aad (26) can be extended to oo. This require-
meat is satisfied by our choice of fs(uJ) since df/duJ di-
minishes in the asymptotic region as to where m & 3.5
[i5].
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To find Fz(t), let F2 ——a/t. Then, from the second and
third terms of Eq. (31),

aint N; lnt
t ¹

2lnt
t

which leads to

a = 2 —(N;/N), (41)

What we have done so far is basically to let the Fs f3
term in Eq. (15) represent the dipole interaction. The
Bethe theory normally is not used in a symmetric form,
i.e., it does not have the exchange and interference terms

or

2 —(N;/N) lnt
F2(t) = ' and Fs(t) = for t )) l. (42)t t

as in the Mott cross section. At present, it is not clear
what the appropriate symmetric form of the dipole in-

teraction should be. We simply omit the exchange term
(t —u)) in Eq. (15) until this question is resolved in
the future. Besides, the exchange interaction becomes
negligible at high incident energies where the dipole in-
teraction is important.

Finally, we combine our choice for F„and fs with the
symmetric binary-encounter cross section, Eq. (17), and
set

F2 2 —(N;/N) ln t
t+1' t+u+1 ' t+u+1

With Eqs. (15) and fs(u)) defined in Eq. (35), the
SDCS of a subshell based on the BED model is given by

do(W, T) S (N, /N) —2 ( 1 1

dW B(t+ u+1) t+ 1 iu)+ 1 t —u))
+

1 1 ln t df (u))+2 — N; N + +(w+ 1)~ (t —w)~ N(w + 1) dw
(44)

cr, (1+At) = const x At (45)

Although the Wannier theory [16] predicts o, oc (b,t) '

when At is extremely small, Eq. (45) represents a more
macroscopic threshold behavior [17].

To use the BED model, values of 8, U, X, and the dif-
ferential oscillator strengths, df/Chu, are needed for each

According to the binary-encounter theory, the extra
terms in the denominators of Eqs. (43)—u and 1—
represent the acceleration of the incident electron due
to the nuclear attraction. These extra terms are essen-
tial in producing reliable ionization cross sections for low
incident energies.

Now we look at the threshold behavior of the SDCS,
i.e., the dependence as t ~ 1. Let t = 1 + At with
b, t (( 1. Then, our choice of F„and f„(u)) leads to
[Rom Eq. (44))

subshell of a target. Of these, 8 and N are readily avail-
able from the literature. The values of N, and M; can
be calculated from df/dhv The ave. rage kinetic energy U
needed in the BED model is strictly a theoretical quan-
tity, but can easily be obtained from wave function codes
such as those developed by Froese-Fischer [18]. For one-
electron atoms, the virial theorem can be used to deduce
U from the known binding energy, i.e., U = B.However,
one should not assume the virial theorem to hold for each
subshell in atoms and molecules with complicated elec-
tronic structures. The virial theorem holds only between
the total potential energy and the totaE kinetic energy.
Binding and kinetic energies for subshells of many atoms
and molecules are listed in Ref. [19]. Values of U for H,
He, H2, and Ne are included in Table I.

Differential oscillator strengths are harder to get, a].-

though total and partial values of df/dho for many atoms
and molecules may be found in the literature. Good

TABLE I. Power-series fit to differential oscillator strengths of H, He, Hz, snd Ne. [df/d(E/B) = ay + by + cy
+dy + ey + fy + gy, where y = B/E, E = photon energy. ] Numbers in square brackets are powers of ten, B (in eV)
is the binding energy, snd U (in eV) is the average kinetic energy.

Coeff.

6
C

f
9
B
U

M,
N;

H
ls

—2.24V3[—2]
1.1775

—4.6264[—1]
8.9064[—2]

1.36057[1]
1.360S7[1]
0.2834
0.4343

He
ls

1.2178[1]—2.9585 [1]
3.12S1[1]

—1.21VS[1]

2.459[1]
3.951[1]
0.489
1.605

H2
1erg

1.1262
6.3982

—7.8055
2.1440

1.S43[1]
2.568[1]
0.680
1.173

2p, I
4.8791

—2.8820
—7.4711[—1]

2.160[1]
1.1602[2]

2p, II

—5.8514
3.2930[2]

—1.6788 [3]
3.2985 [3]—2.32S0[3]

2.160[1]
1.1602[2]
1.552
6.963

1.7769
2.8135

—3.1510[1]
6.3469[1]—5.2528[1]
1.5982 [1]
4.847[1]
1.4188[2]
4.800[—2]
v.os6[—1]

5.2475
—2.8121

8.669[2]
1.2S91[3]
1.642[—2]
1.686

Ne(2p, I) covers photon energies from the 2p ionization threshold (21.60 eV) to the 2s ionization threshold (48.47 eV), and

Ne(2p, II) covers photon energies from 48.47 eV and above.
This number is the sum of 2p, I and 2p, II contributions.
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sources are the book by Berkowitz [20] and the review
article by Gallagher et al. [21], &om which one can find
original references. For convenience, we have listed values
of ¹ and M; for H, He, Ne, and H2 in Table I and also
presented values of df /d(E/B), where E is the photon en-

ergy, in the form of simple polynomials of B/E. The dif-
ferential oscillator strength for H is a fit to the exact the-
oretical values, and the others are Sts to the experimental
values compiled and recommended by Berkowitz [20]. We
emphasize that we have used experimental df/du& when
they are more reliable than calculated ones, particularly
near the threshold. Although any form of theoretical
df/dhu can be used, analytic fits are certainly more con-
venient to use than nhhhhherical tables or graphs.

IV. BINARY-ENCOUNTER-BETHE (BEB)
MODEL

d b

dm (w+ 1)
(46)

where b is a constant. If we retain only the arst term,
then

Although the BED model is substantially simpler to
use than most ab initio theories for electron-impact ion-
ization, it is often difficult to get the differential oscilla-
tor strengths, particularly subshell by subshell. For such
cases, we ofFer a simplified version, to be referred to as the
binary-encounter-Bethe (BEB)model, in which a simple
function is used for the fs(m) in Eq. (20).

Sometimes, the values of N; and/or M; for an atom are
known but not the details of the corresponding df/du&,
because N; and M; can be determined kom appropriate
sum rules without df/dm if accurate oscillator strengths
for discrete excitations are known [22]. In general, there
is no simple relationship between N; and M2 and hence
knowing N; does not automatically lead to the value of
Mz unless the details of df/dm are also known.

In the BEBmodel, we asshhhhhe a simple form of df/du),
which can be integrated to obtain N; and M~. How-
ever, these quantities can be replaced by better values if
they are known. The BEB model even ofFers help when
nothing is known about N;, M~z, and df/dtu, though the
reliability of resulting cross sections may suffer in this
case.

As will be shown in Sec. VII, deferential oscillator
strengths for H, He, and Hz have simple shapes (except
for resonances which are not important for our purpose)
which can be represented by inverse powers of m + 1,
starting from (m+ 1) 2, that is,

M; = RN;/2B and Q = N;/N. (49)

F(t)= fs(u') = 1/(hs+1) . (51)

With Eqs. (15), (43), (49), and (51), the SDCS in the
BEB model is given by

3

=~).F (t)[f ( )+f (t — ))

and

(52)

where

f (~) = (u'+1) f»(t —~) = (t —ho) (53)

P2Pq- t+1'
2 —Q

t+u+1
qlnt

t+u+1
(54)

Equations (54) are most useful to estimate the total
ionization cross section (TICS) when only the value of
Mhz (and thus Q = 2BMz/NR) is known. As a further
approximation if M; is not available, we can set Q =
1. This is a useful approximation that will still lead to
ionization cross sections of correct orders of magnitude
when nothing is known about difFerential or total dipole
oscillator strengths.

V. TOTAL CROSS SECTION FOR IONIZATION
BY ELECTRON IMPACT

Note that the specific relationship between N; and Mz

(and Q) above is a result of choosing df/dm to have the
special form in Eq. (46). Equations (49) are not expected
to hold for all subshells in targets with complicated shell
structures.

After substituting Eqs. (46) (first term only) and (47)
into Eq. (35), we have

f.(~) = /(~+1)'
which puts us back to the form of the binary-encounter
cross section, Eq. (14), except that 4u/3 is now replaced
by Q. This similarity between Eq. (50) and the binary-
encounter theory is probably the reason for the appar-
ent success in the early days of the binary-encounter and
other related classical theories (e.g. , by Gryzinski [23])
on these targets with simple shell structures.

Since fs will always be used with Fs as a product [see
Eq. (34)], one can transfer Q in Eq. (50) to Fs to simplify
our notation for fs

N;=b de =b,
0 (~+ 1)' (47)

Using Eqs. (15) and (43) with the F„and f from the
BED model, Eq. (18) reduces to a simple expression for
0;(t) for all t:

and

Rb dm Rb
B 0 (m+ l)s 2B

By combining Eqs. (28), (47), and (48), we get

(48)

cr;(t) = S
t+u+1 D(t) lnt

W

t' N i (t —1

N) g t
lnt )
,+,)I (55)
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where

p tU+1 (56)

(57)

where Q is defined by Eq. (28).

0.8-

and N; is defined by Eq. (39).
Note that the above cross section is for a given sub-

shell, and these cross sections must be summed over all
subshells that contribute to ionization. In practice, only
the valence shell and a few subshells below it will make
significant contributions to 0, .

Equation (55) has the same asymptotic form as the
Bethe theory [Eq. (27)] since from Eqs. (28) and (56)
D(oo) = (B/RN)MP. The advantages of the BED for-
mula for 0; over the Bethe theory —or other variations of
the Bethe theory —are that the BED formula (a) is de-
signed to approach the low t region with an appropriate
threshold behavior, (b) includes the interference term be-
tween the direct and exchange interactions, which man-
ifests itself as the lnt/(t + 1) term, and (c) leads to a
reduction in the dipole contribution D(t) as t decreases.
In Fig. 1, we compare the o; for H deduced Erom the BED
model with other theories as well as the experimental ~,
measured by Shah et al. [24]. Note that the BED model
does not contain any empirical or adjustable parameters.
The TICS's based on the BED model for some simple
atoms also agree well (6 10%%uo or better in most cases)
with available accurate measurements [see Sec. VII].

The TICS based on the BEB model is given by

VI. MODIFICATION FOR ELECTRON-ION
COLLISIONS

We chose our F„(t) to have t+u+ 1 in the denominator
while the Mott and Bethe cross sections have only t. Our
choice originated &om the symmetric form of the binary-
encounter theory [25] in which the incident electron was
assumed to gain a kinetic energy of U+ B before the col-
lision to make it equivalent to the target electron, which
has a potential energy of —~U+ B]. This denominator,
t+u+1, reduces the cross section, which is the desired ef-
fect since most collision theories overestimate ionization
cross sections near the peak. As is shown later, much
of the success of our model for neutral targets can be
attributed to this denominator.

The symmetric binary-encounter theory and the BED
model do not distinguish between collisions with neutral
atoms and those with ions, as far as the incident electron
is concerned, although the target electron description dif-
fers through U, B, and df/dpi The co. rrect theory should,
however, also alter the description of the incident electron
since the long-range Coulomb force between the incident
electron and a target ion should distort the wave func-
tion of the incident electron for its entire path, while such
distortion should occur only in the vicinity of a neutral
target. The Coulomb-Born and the distorted-wave Born
approximations are examples in which such distortions
are included. Qualitatively, the charge density of the in-
cident electron is attracted toward the target ion, thus
increasing the overlap between the charge densities of the
incident and target electrons. This results in increased
cross sections.

Indeed, we found the BED cross sections with t+ u+ 1
in the denominator for the ionization of He+ and Li2+
are too low compared to reliable experiments [26—29] as
is shown later. Instead, we found that replacing t+ u+ 1
in Eqs. (43) and (54) with t + 1 resulted in better agree-
ments with experiment. At this point, we cannot prove
that t + 1 is the correct denominator for ions. Further-
more, a preliminary application of the BED model to Li+
slightly favors the use of t + u + 1 in the denominator.
Hence we tentatively propose to use, for target ions with
open-shell valence electrons,

E
o
cv 0
O

C0 04-U
tti

UJ

0.2—
for the BED model, and

2 —N;/N
t+1

2 —Q
i+1

lnt
t+1

(58)

I"s —— (59)4+1
0.010'

I i a s I

10
I I I I I I I I I

) 03

T (ev)

FIG. 1. Total cross section for ionization of H by electron
impact. The abscissa is the incident electron energy T in
eV. Filled circles, experimental data by Shah et al. [24]; solid
line, BED cross section; short-dashed line, BEB cross sec-
tion; medium-dashed line, Gryzinski s classical cross section
[23]; long-dashed line, distorted-wave Born cross section with
electron exchange correction by Younger [34].

for the BEBmodel. We recommend to use t+u+ 1 in the
denominator for ions with closed-shell conagurations.

Actually, the differential dipole oscillator strength in
units of appropriate binding energies, df/d(E/B), for
one-electron ions is independent of the nuclear charge Z.
The coefficients for the hydrogen atom in Table I may
also be used for this universal df/d(E/B) in powers of
B/E. This is a fit to the exact theoretical expression for
the photoionization of a ls electron in a hydrogenic ion.
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The data in Table I can be used to calculate ionization
cross sections using Eqs. (58).

For all one-electron ious [22], M2 = 0.2834/Z and
hence Q = 0.5668. With these results, we have a simple,
universal formula for the ionization of one-electron ions
based on the BEB model:

1.4332 1.4332 0.5668 ln t
(t+1)" t+1 ' t+1

with t = T/Z R. (60)

Equations (60) should be used with f defined by Eqs.
(53), and the matching BEB total ionization cross section
for a one-electron atom is given by

4xa2
[Fi(t) lnt+F2(t)(1 —t )+ 2Fs(t)(1 —t )],

with t = T/Z2R. (61)

tion. However, this scaling of the dipole contribution
will be difFerent from one atom to another. Because of
the complexity of this scaling, one cannot simply add the
dipole contribution to the Rutherford (or the Mott) cross
section to "synthesize" SDCS. Nevertheless, the Platz-
man plot provides many useful clues to the reliability of
experimental as well as theoretical do/dW, particularly
when reliable values of difFerential oscillator strengths are
known [31].

The success of the BED model is achieved by fixing this
"scaling" between difFerent components of the ionization
cross section through Eqs. (43).

We present an example of the Platzman plot for the
ionization of the hydrogen atom by 60-eV electrons in
Fig. 2. Experimental electron-impact data by Shyn [32]
are presented in Fig. 2(a) and the corresponding (ex-
act) differential oscillator strength of hydrogen in Fig.
2(b). We can see immediately that the shapes of the two
curves are very similar, indicating that dipole contribu-

VII. COMPARISONS %6TH EXPERIMENTS

2.0-

1.6-

(o) e on H, T=60 eV

Before we compare the BED and BEB cross sections
with available experimental data, we discuss a simple and
powerful way to graphically compare theoretical and ex-
perimental results first proposed by Platzman to graph-
ically represent SDCS's [2,30]. In his method, which
we shall refer to as the Platzman plot, the ratio Y of
do(W, T)/dW to the Rutherford cross section, Eq. (5)
with N and Zq equal to 1, is plotted as a function of the
inverse energy transfer R/E:

1 02

0.8-

0.4-

0.0

(b) hv on H

Mott

do(W, T) T E2

dW 4ma20 R (62)
0.8—

where do/dW can either be experimental or theoreti-
cal. If the target is a multishell atom, the lowest bind-
ing energy is used to define E in Eq. (62). Since
do(W, T)/dW = do(E, T)jdE,

Ydi —
i

= dW= n;. (63)
(R & T der(W) T
i,E) 4z ao2R dW 4vra2oR

In other words, the area under the Platzman plot is pro-
portional to the TICS. This fact can be used to normalize
do/dW because o; is often known with a better accuracy
than do/dW from independent measurements.

Similarly to the physical interpretation of the dipole
oscillator strength, Y can be interpreted as the effective
number of target electrons participating in an ionizing
collision. In this way, we expect that the value of Y will
approach the number of valence electrons as W )& Bpro-
vided that the valence shell contributions dominate the
TICS as is the case in most atoms and molecules. For
slow secondary electrons, the shape of the Platzman plot
is expected to follow the shape of the diH'erential oscilla-
tor strengths (multiplied by the energy transfer) "scaled"
by some function of t and superposed on the contribu-
tions &om close collisions, i.e., the Rutherford cross sec-
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FIG. 2. Energy distribution of secondary electrons from H
by electron impact. The abscissa is the inverse of the energy
transferred to the target, E, in rydbergs. (a) Platzman plot
of the SDCS at T = 60 eV. Filled circles, experimental data
by Shyn [32j; solid line, BED cross section; short-dashed line,
BEB cross section; medium-dashed line marked "Ruth, " the
Rutherford cross section; long-dashed line marked "Mott,"
Mott cross section. Shyn's data were renormalized so that
the integrated cross section —which is proportional to the area
under the data points between R/E = 1 and 0.370—matches
the total ionization cross section at T = 60 eV in Fig. 1. (b)
Differential oscillator strength df/dE for ionization of H(ls).
The ordinate is the dipole function E(df/dE) that matches
the dipole contribution in a Platzman plot. The energy trans-
ferred, E, is the actual photon energy.
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tions are prominent at the incident energy of T = 60 eV.
The Mott cross section [Eq. (6)] is marked "Mott, " while
the Rutherford cross section [Eq. (5)] is marked "Ruth. "

To match the accurate TICS measured by Shah et al.
[24], however, the data by Shyn have been renormalized
to the height shown in Fig. 2(a). The area under Shyn's
data between the threshold (R/E = 1) and the upper
limit of the secondary electron energy (R/E = 0.370)
reproduces the electron-impact o; measured by Shah et
aL [24], o;(expt. ) = 6.16 xlO 2i m2. The BED model
leads to 0;(BED) = 6.47 x10 2 m2, while the BEB re-
sult is a;(BEB) = 6.12 x10 i m2 for Q = 0.5668 and
6.60 x10 i m for Q = 1.

Note that it is very simple to extrapolate the electron-
impact data for slow secondary electrons, W & 5 eV,
using the shape of the dipole contribution in Fig. 2(b).
This possibility is important because most experimen-
tal data on secondary electrons are either unavailable or
unreliable at W ( 5 eV.

Figure 2 clearly demonstrates the power of the Platz-
man plot in (a) checking the reliability of experimen-
tal cross sections, (b) normalizing the overall magnitude,
and (c) extrapolating do/dW to values of W inaccessi-
ble to experiments, as long as the dipole contribution is
discernible.

A. Hydrogen atom

for the hydrogen atoxn to one-electron ions as outlined in
Sec. VI.

Experimental TICS's for He+ and Li + are available
[26—29]. In Fig. 3, we compare our BED cross sections
for total ionization using the t + 1 denominator (solid
line) and those using the t+ u+ 1 denominator (medium-
dashed line) with the experiment [26] as well as with
Younger's distorted-wave Born cross section (dot-dashed
line) [34] and Gryzinski s classical cross section (long-
dashed line) [23]. While both BED and BEB cross sec-
tions with the t + u+ 1 denominator are lower than the
experimental data near the peak, the BED cross section
with the t + 1 denominator is in good agreement, as we
have discussed in Sec. VI. Gryzinski s cross section is
remarkably close to our BED cross section, but this is an
accidental agreement, in view of the disagreement seen
in the case of H and H2, for instance. The cross sections
for the ionization of He+ measured by De&ance et aL [27]
and those by Achenbach et aL [28] are in good agreement
with those by Peart et aL [26] and hence with our BED
model with the t + 1 denominator.

As is shown in Fig. 4, the BED cross section with the
t + 1 denominator (solid line) is in good agreement with
the experimental data by Tinschert et al. [29]. The BED
cross section with the t+ u+ 1 denominator (long-dashed
line) is too small, while Gryzinski's classical cross section
(mediuin-dashed line) [23] merges with experiment only
beyond the peak.

In Fig. 1, the BEB cross section (short-dashed line)
nearly coincides with the experimental 0; [24] while the
BED cross section (solid line) is slightly higher than the
experiment, though still within the experimental error
limits. It is well known that the plane-wave Born cross
section overestimates the peak cross section by about
65% [33]. The long-dashed line is the distorted-wave
Born cross section that includes electron exchange cor-
rection by Younger [34]. The medium-dashed line is the
cross section based on Gryzinski's classical theory [23].

Although the BEBcross section for the total ionization
appears to agree better with the experiment than the
BED cross section, Fig. 2(a) indicates that the shape of
the experimental SDCS's by Shyn [32] is in better agree-
ment with the shape of the BED model (solid line) than
that of the BEB model (short-dashed line). The impor-
tance of using the correct df/dm will become more ap-
parent when we compare the SDCS from the BED model
with other experimental data (see Sec. VIIE).

At high incident energies, the dipole contribution to
the SDCS—the difFerence between the solid line and the
Mott cross section in Fig. 2(a)—increases while the Mott
cross section remains almost constant, making the overall
shape of the Platzman plot strongly resemble the shape
of the dipole function in Fig. 2(b).

B. One-electron ions

In the nonrelativistic form, the difFerential oscillator
strengths of hydrogenic ions scale as a function of Z,
and hence it is simple to extend the BED cross section

C. Helium atom
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FIG. 3. Total cross section for ionization of He+ by elec-
tron impact. Filled circles, experimental data by Peart et al.

[26]; solid line, BED cross section with the t+ I denominator;
medium-dashed line, the same with the t + u + 1 denomina-
tor (see Sec. VI); long-dashed line, Gryzinski's classical cross
section [23]; dot-dashed line, Younger's distorted-wave Born
cross section [34].

In Fig. 5, we compare our BED cross section (with
the t + u + 1 denominator for a neutral target) for the
ionization of He with experimental data by Shah et al.
(filled circles) [35] and those by Montague et al. (filled
triangles) [36].

Again, we see excellent agreement between the BED
cross section and the experimental dna. The distorted-
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FIG. 4. Total cross section for ionization of Li + by elec-
tron impact. Filled circles, experimental data by Tinschert et
al. [29]; solid line, BED cross section with the t+ 1 denomina-

tor; long-dashed line, the same vrith the t+u+ 1 denominator
(see Sec. VI); medium-dashed line, Gryzinski's classical cross
section [23].

FIG. 6. Energy distribution of secondary electrons from
He at T = 500 eV. This is a Platzman plot of SDCS of He.
Solid line, BED cross section; filled circles, experimental data
by Opal et al. [37]; Blled triangles, data by Goruganthu and
Bonham [38]. The small peak at R/E 0.23 arises from the
autoionization of the doubly excited state 2s2p.

wave Born cross section (medium-dashed line) by
Younger [34] overestimates the peak cross section.

A Platzman plot of the SDCS of He by 500-eV elec-
trons is presented in Fig. 6. The solid line is our BED
cross section, the filled circles are experimental data by
Opal et al. [37],and the filled triangles are those by Goru-
ganthu and Bonham [38]. One can see from the areas in
the Platzman plot that the data by Opal et aL lead to
too large a total cross section, while the normalization of
the Goruganthu-Bonham data seems to be correct. The
advantage of a Platzman plot is amply demonstrated by
the small peak at R/E 0.23, which represents the au-
toionization of the doubly excited 282@ state. The overall
shape of the Platzman plot comes from that of the dipole
function E(df/dE) for He, which is similar in shape to
that shown for H in Fig. 2(b), though the magnitude and
abscissa are very difFerent from those for H.

The BED model is too simple to account for sharp
autoionization peaks and resonances, although we could

have indicated their presence by including such details
seen in photoionization experiments in the dipole func-
tion E(df/dE) we have used. The shape and height of
such resonances in SDCS's, however, would have been in-
correct because the BED model does not account for the
intricate interference between the doubly excited states
and the background continuum.

D. Hydrogen molecule

In Fig. 7, we compare our BED cross section (solid
line) for the ionization of Hz with electron-impact exper-
imental data by Rapp and Englander-Golden [39]. Al-

though the BED cross section is somewhat smaller than
the experimental data before reaching the peak, agree-
ment between our theory and experiment is still far better
than any theoretical efForts made in the past. Gryzin-
ski's classical cross section (long-dashed line) overesti-
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FIG. 5. Total cross section for ionization of He by electron
impact. Filled circles, experimental data by Shah et aL [35];
Slled triangles, data by Moutague et al. [36]; solid line, BED
cross section (with the t + u+ 1 denominator for a neutral
target); medium-dashed line, Younger's distorted-wave Born
cross section [34].

FIG. 7. Total cross section for ionization of Hz by elec-
tron impact. Filled circles, experimental data by Rapp and
Englander-Golden [39]; open squares, calculations by Schultz
et al. [40] based on the classical trajectory Monte Carlo
(CTMC) method; solid line, BED cross section; long-dashed
line, Gryzinski's classical cross section [23].
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mates the peak cross section. The squares represent the
classical trajectory Monte Carlo (CTMC) cross section
calculated by Schultz et al. [40], which agrees well with
experiment &om threshold to the peak. The CTMC cross
section begins to fall below the experimental data beyond
the peak because CTMC cross sections lack the dipole
contribution that increases at high incident energies.

A Platzman plot of SDCS at T = 100 eV is presented
in Fig. 8. Two sets of experimental data are available at
this incident energy, those by Shyn et at. [41] (filled cir-
cles) and those by DuBois and Rudd [42] (filled triangles).
Both sets of experimental data indicate a departure from
the expected shape for slow secondary electrons, TV & 10
eV. Since the lowest secondary electron energy measured
by DuBois and Rudd is TV = 4 eV, their data must be
extrapolated to the threshold, R' = 0 eV, before the
corresponding integrated cross sections, o., at T = 100
eV, can be determined. Judging from the area under the
Platzman plot, the data by DuBois and Rudd would lead
to o, at T = 100 eV, signi6cantly lower than that shown
in Fig. 7. As shown in this example, the Platzman plot
provides an effective guide to extrapolate SDCS's to the
threshold, where experimental difEculties are the great-
est.

E. Neon atom
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FIG. 9. Total cross section for ionization of Ne by elec-
tron impact. Solid line, BED cross section; filled circles, ex-
perimental data by Rapp and Englander-Golden [39]; filled

triangles, data by Wetzel et al. [43].

from the shape of the dipole function E(df/dE) while-
the data by DuBois and Rudd for slow secondaries are
too low, as they themselves indicated [42].

The overall shape of the Platzman plot —with a peak
at R/E 0.2—refiects the shape of E(df/dE). Had we
used the BEB model, the shape of the Platzman plot
would have resembled that shown in Fig. 2.

The TICS is compared in Fig. 9, where the BED cross
section (solid line) overestimates o;. at low incident en-

ergies, but agrees better with the measurement by Rapp
and Englander-Golden 39 (filled circles) than the exper-
iment by Wetzel et at. 43 (filled triangles).

In Fig. 10, the SDCS's at T = 500 eV are compared.
The solid line is the BED cross section, while the filled
circles are the experixnental data by Opal et al. [37], and
the filled triangles are those by DuBois and Rudd [42].
The magnitudes of both sets of experimental data are
too small to match the TICS's in Fig. 9. The data by
Opal et al. resemble the expected shape —which comes

F. Water molecule

In Figs. 11 and 12, it is seen that the BEB model
may also be applied quite successfully to molecules with
several molecular orbitals. Using Q = 1 and values of
B and U from Rudd et al. [19], the contributions to the
SDCS's and TICS's from the five molecular orbitals were
calculated and then summed. The total cross section is
shown in Fig. 11 as a solid line. Considering the spread
among the various experimental values, the agreement is
satisfactory.

In Fig. 12, the SDCS's for T = 1500 eV are com-
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FIC. S. Energy distribution of secondary electrons from Hz
at T = 100 eV. This is a Platzman plot of SDCS of H2. Solid
line, BED cross section; 61led circles, experimental data by
Shyn et al. [41]; filled triangles, data by DuBois and Rudd
[42].

FIG. 10. Energy distribution of secondary electrons from
Ne at T = 500 eV. This is a Platzman plot of SDCS of Ne.
Solid line, BED cross section; 6lled circles, experimental data
by Opal et al. [37]; filled triangles, data by DuBois and Rudd

[42].
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present the details of the SDCS beyond the "operational"
definition of the upper limit, W = (T —B)/2, of the
secondary electron energy.

VIII. CONCLUSIONS
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FIG. 11. Total cross section for ionization of water vapor by
electron impact. Filled triangles, experimental data by Duric
et aL [48]; filled squares, data by Bolorizadeh and Rudd [49];
filled circles, data by Schutten et aL [50]; solid line, BEBcross
section.

pared with experimental data of Hollman et al. [44] and
with calculations using the Miller model [5,44]. The peak
near 500 eV is &om K Auger transitions in oxygen and
the sharp drop near 1000 eV results &om the fact that
1500-eV incident electrons which have ionized K elec-
trons cannot have energies above that value. There are
similar drops in the 1470—1490-eV region due to the other
molecular orbitals, but they are not resolved. Note that
the ordinate in Fig. 12 is the ratio of do'/dW to the
Mott cross section, unlike the Platzman plot. Also, the
abscissa is the secondary electron energy itself, R', to
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FIG. 12. Energy distribution of secondary electrons from
water vapor at T = 1500 eV. The ordinate is the SDCS [a (W)]
divided by the corresponding Mott cross section [O'M(W), Eq.
(6)]. Filled circles, experimental data by Hollmau et aL [44];
dashed line, calculations using the Miller model [5,44]; solid
line, calculations using the BEB model, Eqs. (52)—(54). Us-
ing the method described by Hollman et aL [44], the five
highest-energy experimental points have been corrected for
small-angle scattered primaries which were not detected. The
bumps at about 65G, 1100, and 1300 eV in the experimental
data are artifacts due to the coarseness of the angular mesh.

%'e have successfully combined the binary-encounter
theory and the dipole interaction —referred to as the
binary-encounter-dipole (BED) model —to provide a re-
markably reliable method to predict singly differential
and total ionization cross sections. Both types of cross
sections have three basic components: the electron ex-
change term, the hard collision term, and the dipole in-
teraction term. The ratios between these components
were determined by requiring the asymptotic total ion-
ization cross section and the stopping cross section to
agree with the asymptotic form given by the Bethe the-
ory.

The BED model derives the differential and total ion-
ization cross sections for each subshell of the target atom
or molecule using the binding energy, average kinetic en-

ergy, and the differential oscillator strength of the sub-
shell. One can deduce the required differential oscilla-
tor strengths either &om reliable photoionization exper-
iments or &om accurate theoretical calculations. For
atomic ions with an open-shell configuration, we found
that a minor modification brought the BED and experi-
mental cross sections into good agreement. For the cases
we have tested, the BED cross sections agree very well
with experiment &om threshold to high incident ener-
gies. The BED theory does not contain any fitted or
adjustable parameters and is not a perturbation theory.
It works well at low incident energies because it is closely
linked to the Mott theory, which includes the Coulomb
interaction to all orders, although it was derived for a
&ee-electron target.

When details of differential oscillator strengths are
not available, we offer the simple binary-encounter-Bethe
(BEB) model. This model provides ionization cross sec-
tions for targets which are theoretically difficult to han-
dle, e.g. , polyatomic molecules. The shape of the differ-
ential ionization cross section based on the BEB model
may not be realistic, but we found that the corresponding
total ionization cross sections are reasonable.

A systematic application of the BED model to more
complex targets than those presented here is needed to
understand the validity of this simple but remarkably ef-
fective model. To do so, not only reliable total photoion-
ization cross sections but also cross sections for each of
the outer subshells of atoms and molecules, e.g., those
measured using a synchrotron light source, are needed.

Further comparisons of the BED theory with experi-
mental 0;. of He-like and Li-like ions available in the liter-
ature [26,45—47] should reveal whether the use of the t+ 1
denominator is necessary or sufficient to represent the
distortion of the incident-electron wave function. Work
is in progress to determine reliable differential oscilla-
tor strengths for these ions so that the BED model can
be applied. Experimental data on the ionization of other
one-electron ions would be welcome. Currently, there are
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no experimental SDCS's of one-electron ions to compare
with our theory.

With the BED and BEB models, both singly difFeren-
tial and total ionization cross sections can easily be cal-
culated for most atoms, atomic ions, and molecules. The
accuracy of electron-impact ionization cross sections pro-
vided by the BED and BEB models over the entire range
of energies should be adequate for most applications, in-
cluding modeling of radiation and plasma eKects.
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which only total ionization cross sections are needed, the
TICS can be fitted to an even simpler function of t than
that used in Eq. (55), by avoiding the summation over
subshells, using a single t defined by the lowest binding
energy B, and by omitting u.

When a reliable TICS is known —usually through ac-
curate measurements —then a simple form to fit u, is

4vrao I' 1) lnt
o;(t) = aint +b] 1 ——]+c

t, ( t) t+1 (Al)

4m'ao 1) lnt lnt
cr;(t) = a 1 nt + b] 1 ——

~
+ c + d

ty t+1 t+1 2

where a, b, and c are fitting parameters. Note that the
first term containing lnt in Eq. (Al) arises from the
dipole interaction, while the second lnt results &om in-

tegrating the interference term in the Mott formula. If
this three-term fit is inadequate, then more terms can be
used:

APPENDIX: APPROPRIATE FORM POR
PITTING TOTAL IONIZATION CROSS

SECTIONS

lnt
(t+ I)' (A2)

Equation (55) indicates an appropriate functional form
of the total ionization cross section (TICS) to be used
in fitting the cross section into a compact analytic for-
mula independent of whether the cross section was de-
rived Rom the BED model or not. For applications in

For multishell atoms, 0, may require more fitting param-
eters than for those with simple shell structures. Note
that Eq. (A2) can also be adapted to ionizing events
that take place without appreciable dipole interaction-
e.g. , double ionization of He—by dropping the a ln t term
but keeping the other lnt terms.
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