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A fully quantal calculation of the excitation cross sections for the fine-structure levels of ground-state
atomic oxygen, in collisions with oxygen atoms at low energies, is presented. The results are compared
with the cross sections obtained in a previous calculation.
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I. INTRODUCTION

Collisions among oxygen atoms, in which excitation
and quenching of the fine-structure levels of their ground
state occur, play an important role in determining the
heat budget of the terrestrial atmosphere [1]. There are
three fine-structure levels in the P ground state of an ox-
ygen atom. In its upper, J =0, level, the atom has a dom-
inant decay mode into the J =1 level with a lifetime of
16.3 h [2]. This transition involves the emission of a
145.5-LMm photon and in the J =1 fine-structure level the
atom decays into the J=2 ground level followed by the
emission of a 63.2-pm photon. The lifetime of the J =1
state is 3.1 h [2]. These far-infrared emissions may serve
as a valuable diagnostic for the atomic oxygen density in

planetary atmospheres [3], but accurate modeling of the
atomic fine-structure populations requires knowledge of
the collision cross sections.

In a previous calculation, Allison and Burke reported
[4] values of cross sections for an oxygen atom to under-

go a fine-structure transition in collisions with oxygen
atoms. However, Grossmann and Offermann [5] suggest-
ed, based on an analysis of sounding-rocket remote-
sensing observations of the 63.2-pm emissions, that Al-
lison and Burke may have overestimated the values for
these cross sections by as much as a factor of 10 .

In a recent paper Zygelman, Dalgarno, and Sharma
[6,7] (which we refer to as Paper I below) introduced a
molecular theory of the fine-structure excitation of oxy-
gen atoms by collisions with atomic oxygen, which in-
cluded molecular and spin-orbit effects ignored in the
previous calculation [4]. Here, we report the results of
our calculations for the fine-structure excitation cross
sections of the J =2, 1,0 levels in collisions of oxygen
atoms at energies corresponding to gas temperature in
the range T=680—2000 K.

In Sec. II we briefly review the scattering formalism in-
troduced in Paper I and applied to the present calcula-

tion. In Sec. III we assemble, discuss, and assess the ac-
curacy of available potential curves for the 02 molecule
that are needed in the scattering calculation. In Sec. IV
we derive the radial scattering equations in the I.-S repre-
sentation. This representation allows tremendous
simplification in the calculation of the scattering ampli-
tudes for the system of coupled equations. However, the
L-S approximation is only valid if the spin-orbit interac-
tion, or the fine-structure splitting, can be neglected.
This approximation was employed in the calculation of
Allison and Burke, but in our discussion we apply the I.-
S approach as a diagnostic check on the integrity of the
more complex scattering code in the j-j coupling scheme.
In Sec. V we discuss our results and compare our cross
sections with those given in Ref. [4]. We show that the
simplifying assumptions used in that calculation greatly
overestimate some of the fine-structure transition cross
sections. Atomic units are used, unless otherwise stated,
throughout the discussion.

II. SCATTERING FORMALISM

In Paper I we introduced a molecular-state close-
coupling theory of the collision process

0( PJ )+0( P, )~0( P, )+0( P, ),

and since the theory has been described in detail there,
we review only the main features of it. The scattering
amplitudes that describe process (1) are expanded into a
partial-wave sum and the radial amplitudes Gjtj J (R),J Ja~b

where JM are the total and azimuthal angular-
momentum quantum numbers, j is the total electronic
angular momentum of the separated atoms [8], / is the or-
bital angular-momentum quantum number of the nuclear
motion, and j„j& are the total electronic angular-
momentum quantum numbers for atoms a and b respec-
tively, obey the coupled radial equations [6]
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1 d
2p dg 2

1 (1 +1) G~br (R)g2 JJ Jb

J'I'J Jb

=[E EE—,(j, } EEb—(jb}]G&J 1 (R) . (2)

In Eq. (2), b,E,(j, ) and bEb(j b } are the energy defects of

the individual fine-structure levels of atoms a and b, re-
spectively, E is the total energy in the center-of-mass

frame, JM is the nuclear reduced mass, and V.,I,', , (JM;R)JlJ Jb

J J~Jb

is a radial multipole potential. V.,&,
', , (JM;R} is an

JIJ Jb

J 1J~J
N XN matrix, where N is the number of channels and
each channel represents one particular combination, out
of a total of 81, of the quantum numbers Ij jl,jb ]. Each
entry in the potential matrix is a linear combination of
products involving 3j and 9j symbols and Born-
Oppenheimer potentials e'~zL (R ),

JlJg JbV,;.,'. , (JM;R)=g g g[j,j',j„j,',j„,jb, l, l')' '[L,S]
AX LS 0

J
X

l,
X lb

L

I J L S
0 —0 A X

sa Ja a a
I' s'

Sb Jb lb Sb

S j L S

j L S
—0 A X

jb '~~SL(R} .

J J I'

0

(3)

In our notation the Born-Oppenheimer potentials
e„zL (R } are identified by A, the quantum number of the
electronic orbital angular momentum projected along the
internuclear axis, S, the total spin angular momentum,
and L, the quantum number associated with the total or-
bital angular momentum of the electrons in the
separated-atom limit [8]. In Eq. (3} we used the short-
hand notation

I+iE(J}
I—iK(J)

The cross section for a pair of oxygen atoms initially in
fine-structure states j„jb to make a transition into levels

jb is [6]

[a,b, . . . , c]=(2a+ 1}(2b+1} (2c + 1) .

G(JM, R)=—G~i(J, "(JM,R) . (4}

Table I illustrates the relationships between the atomic
and molecular quantum numbers for each of the 18 elec-
tronic states of the 02 molecule that dissociate to
ground-state atomic oxygen atoms. Because our formal-
ism takes into account the different fine-structure levels
of the separated atoms, we need to consider 81 distinct
channels. Potential (3) consists of 81X81 entries and
each entry corresponds to a distinct pair
[jlj,jb], [j'l'j,'jb]. For the partial wave JM [9], and
channel [jlj,jb], we obtain N independent solutions to
Eq. (2). We therefore construct an N XN matrix whose
columns are the N solution vectors to Eq. (2),

a 'hg
1'rIg
1 'lI„
c 'r„
b lg+

g
2 1y+

iL =2A=+2S=OX&
iL =2A=+ls=ox&
~L = 1A=*1S=OX)
~L =1A=OS =OX&
iL =oA=os =ox)
IL =2A=OS =OX)

0.931
—3.73

0.0
0.0
0.0
5.59

17.05
16.49
16.49
17.10
16.72
16.35

C 5„
1'II„
1 'IIg
X Xg
A'X'.
2 3@+

iL =2A=+2s=lX)
iL =2A=+1S =1X)
iL =1A=+1S=1X)
~L =1A=OS =1X)
~L =OA=OS=1X &

iL =2A=OS =1X)

0.931
—3.73

0.0
0.0
0.0
5.59

17.05
16.49
16.49
17.10
16.72
16.35

TABLE I. Connections between atomic and molecular states
for two oxygen 'P atoms.

Molecular state Atomic state

The superscript, or column index, identifies a particular
solution to Eq. (2) and the subscript, or row index,
identifies the channel index. We impose standard scatter-
ing boundary conditions [6] and construct the symmetric
K matrix X(J) [6] and the S matrix

iL =2A=+2S =2X)
~L =2A= +is =2X)
iL =1A=+1S=2X)
iL =1A=OS =2X)
IL =OA=OS =2X)
iL =2A =OS =2X )

0.931
—3.73

0.0
0.0
0.0
5.59

17.05
16.49
16.49
17.10
16.72
16.35
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~ / ~ t ~ ~ 7r

2k, , (2j,'+ 1)(2jb+ 1)
~ajb

where

[T(J)]jijJ'"=[I $(J-)]jiiij

0.05

and
0,00

4'

-0.05

is the wave number for the system in the incident chan-
nel.

In deriving Eq. (6) we took into account the fact that
the nuclei of the collision system are identical bosons and
that the total wave function of the system must be sym-
metric under the interchange of the nuclei.

III. MOLECULAR POTENTIALS
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Liu and Saxon [10] have calculated, using an ab initio
theory, and tabulated the potential-energy curves for all
18 states of 02 that dissociate to oxygen atoms in their
ground state. In a more recent calculation, Partridge
et al. [11] tabulated the potential-energy curves for the
eight bound and weakly bound states c 'X„, C 6„„
A X„+, II, 1 II„, 1'll, X„,and 1 II„,of the Oz mol-
ecule [12]. The Liu-Saxon calculations employed a first-
order configuration-interaction (FOCI) method, but Par-
tridge et al. argued that their multireference
configuration-interaction treatment including a Davidson
correction (MRCI+ Q) is more reliable.

In order to construct potential matrix (3) in the molec-
ular region (R (10ao), we adopt the values for the
Born-Oppenheimer potentials calculated by Liu and Sax-
on, and for the eight states listed above we use the more
accurate ab initio potentials reported by Partridge et al.
At internuclear distances 8 = 10ao we spline-fit the ab in-

itio values so that they smoothly merge to the correct
asymptotic limits predicted by the leading-order, long-
range, atom-atom potential
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C5 is a coefficient that measures the strength of the
quadrupole-quadrupole interaction between a pair of
ground-state oxygen atoms [6,14—16]. C6 is the van der
Waals coefficient and, for a pair of oxygen atoms, it has
been tabulated [17] in the form of matrix elements
C6(M, Mb', M,'M&), which depend on the initial, M, Mb,
and fina, M,'Mb, magnetic quantum numbers of the
separated atoms a and b, respectively. Neglecting the
negligible [17] off-diagonal elements of
C6(M, Mb, M,'Ml', ), we get
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FIG. 1. Potential curves for (a) ground singlet states of 02,
(1) ground triplet states of 02, and (c) ground quintet states of
Oq.
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here. The numerical values for the C6 coeScients are
tabulated in Table I.

The 18 potential curves used in the present calculation
are plotted in Figs. 1(a)—1(c). In Figs. 2(a) —2(f} we plot
the six long-range components, each corresponding to
atomic states with definite values of L and A. In the
molecular region, exchange forces split energies (9) into
singlet (S =0), triplet (S =1), and quintet (S =2) com-
ponents. In the region where the molecular description is
less reliable, at R =10ao, we ignore small exchange
effects and construct the potentials by setting the singlet,
triplet, and quintet energies (for a given set L, A) to the
values obtained by the calculation of Partridge et al. [11].

In Fig. 2 we plot the potentials (dashed and solid lines)
constructed by us and used in the collision calculations.
The dotted lines are the long-range energies (9), the open
boxes are the values tabulated by Partridge et al. [11],
and the crosses are the values tabulated by Liu and Saxon
[10].

IV. THE L-S REPRESENTATION

In the theory outlined in Ref. [6] the close-coupling ex-
pansion was carried out using basis states that diagonal-
ize the spin-orbit interaction of the electrons with the nu-
clei in the separated-atom limit. These states are
identified by the quantum numbers [jQj,j, } where

j,j„jb are defined above and 0 is the projection of j
along the internuclear axis. If the spin-orbit-interaction
term is neglected, then it is valid to use a representation
in which the atomic states are identified by the set of
quantum numbers [LASX}, where L is the total elec-
tronic orbital angular momentum, A is the projection of
the electronic orbital angular momentum on the internu-
clear axis, S is the total spin, and X is the projection of
the total spin on the internuclear axis. The two represen-
tations are related by a unitary transformation [6],

jlQJ.jb) g ~As'xL IASXL),
ASXL

where

JOJa Jb 1/2
AsxL =[J,J~,Jb, L,S]

Following the convention in Paper I, I
ASXL ) represents

the Born-Oppenheimer molecular eigenfunction whose
electronic angular momentum is quantized with respect
to the z axis of the laboratory frame, and L is an index
that identifies the atomic state

I
L ASX ) which evolves

from it in the separated-atom limit [6]. L is a good quan-
tum number only in the separated-atom limit. The one-
to-one mapping of the Born-Oppenheimer states with the
atomic states ILASX ), is given in Table I. In Paper I we
performed a series of unitary, or gauge, transformations
on the molecular basis equations to derive the set of radi-
al equations (2). In the following discussion we apply the
method introduced in Sec. III of Paper I to obtain the
corresponding radial scattering equations in the [LASX}
representation. Because the derivation, with minor
differences in details, is essentially unchanged from that
given in Paper I, we stress only the highlights here. The
interested reader is urged to follow the more detailed dis-
cussion given in Paper I. Following the procedure out-
lined by Eqs. (25)—(38) in Paper I, we obtain the scatter-
ing equations for the amplitudes F(R)=FL„SX(R)in the

[LASX} representation,

(IV —i A} F(R)+ V(R)F(R)=EF(R)
p

(14)

where ~ is a vector potential [18], and V(R) is now
given by

I: V«) ]LASX' =~LASX' &LAS(R ) . (15)

Unlike the case in the [jQj,jb} representation, the
molecular-gauge potential matrix V(R} is diagonal, and
all transitions are induced by the off-diagonal elements of
the vector potential A(R). Because the vector coupling
A (R) persists in the R ~ ~ limit [6], we construct a uni-

tary transformation (gauge transformation) and define a
new amplitude G(R)=T(8$)E(R), where T(8$}is a uni-

tary matrix. In this representation we define

[T(8$)]L„sx = t XSAL lexp( i', )exp(—i8J'~)—
Xexp(i', ) IL'A'S'X' )

=D ($,8, $)Dx x (P, 8, —f)—
L

X( —1)J+"
A

and

J+JaJb J + Ja JbX ~ASxL IVASXL
ASXI.

I
S a

lb

L

sa ja

Sb Jb

S j
(12)

(13)

& &I.„,I. &s,s (16)

where j„Jy j, are total electron angular-mornenturn
operators [6],

Dti n ($,8, —P) =exp[ —ig(Q —Q')]dIi n, (8),
and d oI o, (8) is a reduced Wigner function [19]. Carrying
out the transformation we find that the amplitude G(R)
obeys [20]

Ja Jb J Ja JbX ~ASXL ~A'S'X'L' fiL, L'fiA, A'fis, s'fix, x'
J&JaJb

V G(R)+[V'(R) —E]G(R)=0,
p

where

[ V'(R)]L~'A's'x' fiL, L'~s, s'X DA, n($, 8, —p)Dti A ($,8, —p)Dx x ($,8, p)Dx x (4, 8~ —0)ensL(R)
QXI

=5L L iss &x x ADA, ti(y 8 4')Dn, A (4 8 4)&nsL(R) (19)
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and we have ignored the transformed vector potential
A'(R} and the nonadiabatic component of the scalar po-
tential since it is proportional to I /2p. Expression (19) is
the molecular generalization of the atom-atom interac-
tion term given by Eq. (9) in the discussion of Allison and
Burke [4].

We introduce the partial-wave expansion

VL'i'S'X'( Q R ) AS, S'fiX, X'~L,L'LISX

L l
XX [t,l']' fl O

Q

L I'
X ~ O ~ enLs(R) (22)

L I Q
GLASX( R }=X X

lm Qq

, , Ggi x(R)
X Y, (8$)[Q]', (20)

1 d
2p dR2

l(I + 1 )
Ggy

R X

+ X VL'i S X.(Q;R )GL)S X (R)=EGPitX(R),
L'I'S'X'

(21)

where

where Gg)x(R } is the Q, qth radial partial scattering am-
plitude, and repeating steps described by the discussion
framed by Eqs. (67)-(74) in Paper I, we arrive at the radi-
al equations

is a radial multipole potential. Equation (21) is the analo-
gue of radial equation (2) derived in the [jlj,j b ] represen-
tation. In this representation the radial potential is diag-
onal with respect to the atomic quantum numbers LS,
and the numerical effort required to integrate the radial
equations is greatly reduced. Instead of integrating 81
coupled equations, the LS representation allows
simplification to sets of uncoupled equations involving
only five, three, and single channels. The S matrix is con-
structed in this representation and the S matrix in the

[j/j, jb] representation may be gotten from it by a uni-

tary similarity transformation. We describe this method
below. A similar procedure was also exploited by Allison
and Burke.

We use Eq. (22) to construct the radial S matrix,
[S(Q)]Lisx for the Qth partial wave, and the amplitude
for the system to undergo a transition from an electronic
state L'A'S'X' to state LASX and for the nuclei to
scatter into solid angle d 8 sing d P following an initial ap-
proach along the incident wave vector K, with polar an-

gles 8;iI); is expressed by the partial-wave expansion

L'A'S'X'
fLAsx (84&giki } X X XfiL,L'fis, s'~x, x' A m —

q A' in' —
qIm I'm' Qq

X Yi~(8$)Yi'~. (8,$;)[Q] [I—S(Q)]Lisx
2p,E

(23)

fL„"sx*(8/8 $; ) is related to the scattering amplitude in the [jQj jb ] representation, given by Eq. (94) in Paper I, by
the unitary similarity transformation

Jajb (gy. g y ) X X IVLASXf L'A'S'X'(gy. g y
)IVL'A'S'X'

LASX L'A'S'X' J ~ J~Jb
(24)

Multiplying both sides of Eq. (24) with spherical harmonics whose arguments are the incident and observation angles,
integrating and averaging over these angles, using definition (11)and relation (94) in Ref. [6],we derive the relation

[S(J}],i, ,', '=X X( —»"""[Q,L,S)[ji ',i.,i~ i.',ib]'"
Q LS

S J Q S J Q
X IL j I, L., 1

L

1

1 jb '1
S j L

1 j,'
1 jb [S(Q}1LiiSX

S j'
(25)

In this derivation we contracted products of 3-j symbols
into 6-j symbols, and used I, =I& =s, =sb =1. Relation-
ship (25) is a useful diagnostic tool and we employed it to
check the integrity of the numerical procedure used to

solve Eq. (2). For example, we solved Eq. (11) for the ra-
dial amplitude in the [LASX] representation and ob-
tained the S(Q) matrix, for Q=J+2,J+1,J,J —1, and
J—2, where J=11 and E=0.0025 a.u. The squares
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l[S(Q)]LIsx ~
of the S-matrix elements are tabulated in

Table II, and in Table III we tabulate the squares of the
reduced S-matrix elements

when we solved Eq. (2), setting the fine-structure energy
defects to zero, directly. The two methods gave identical
results, within six significant figures, for the reduced S
matrix (and hence the transition cross sections).

v. aKSUX.rS wxo DrSCUSSzax

obtained by applying relation (25) to the calculated values

for [S(Q)]LIs&*. The reduced matrix elements ~S(J) ' '~
~a~b

calculated this way were compared to the values obtained

S L / Q=9 Q =10 Q =11 Q =12 Q =13

0 0 Q Q 1.000
0 I Q

—I Q
—I 0.295

0 I Q —I Q+ I 0.705
0 I Q Q 1.000
0 I Q+ I Q+ I 0295
0 2 Q —2 Q —2 0.433
0 2 Q —2 Q 0.166
0 2 Q —2 Q+2 0.401
0 2 Q —I Q

—I 0.095
0 2 Q —I Q+ I 0.905
0 2 Q Q 0.726
0 2 Q Q+2 0.108
0 2 Q+ I Q+ I 0095
0 2 Q+2 Q+2 0491
I 0 Q Q 1.000
I I Q —I Q —I 0.802
I I Q

—I Q+I 0198
I I Q Q 1.000
I I Q+ I Q+ I 0.802
I 2 Q —2 Q —2 0.645
I 2 Q —2 Q 0.020
I 2 Q —2 Q+2 0.335
I 2 Q

—I Q
—I 0.827

I 2 Q —I Q+I 0173
I 2 Q Q 0.941
I 2 Q Q+2 0.039
I 2 Q+ I Q+ I 0.827
I 2 Q+2 Q+2 0625
2 0 Q Q 1.000
2 I Q —I Q —I 0.447
2 I Q —I Q+ I 0.553
2 I Q Q 1.000
2 I Q+ I Q+ I 0.447
2 2 Q —2 Q

—2 0.477
2 2 Q —2 Q 0389
2 2 Q

—2 Q+2 0133
2 2 Q —I Q —I 0.008
2 2 Q —I Q+ I 0.992
2 2 Q Q 0.324
2 2 Q Q+2 0.287
2 2 Q+ I Q+ I 0.008
2 2 Q+2 Q+2 0.580

1.000
0.249
0.751
1.000
0.249
0.460
0.129
0.411
0.137
0.863
0.786
0.085
0.137
0.504
1.00Q
0.753
0.247
1.000
0.753
0.666
0.009
0.325
0.778
0.222
0.976
0.015
0.778
0.660
1.000
0.428
0.572
1.000
0.428
0.479
0.362
0.158
0.003
0.997
0.340
0.298
Q.Q03

0.544

1.000
0.202
0.798
1.000
0.202
0.485
0.096
0.419
0.193
0.807
0.845
0.059
0.193
0.522
1.000
0.695
0.305
1.000
0.695
0.687
0.002
0.311
0.718
0.282
0.997
0.001
0.718
0.688
1.000
0.408
0.592
1.000
0.408
0.475
0.337
0.189
0.001
0.999
0.357
0.307
0.001
0.505

1.000
0.154
0.846
1.000
0.154
0.510
0.066
0.424
0.262
0.738
0.900
0.034
0.262
0.541
1.000
0.628
0.372
1.000
0.628
0.707
0.000
0.292
0.649
0.351
0.996
0.003
0.649
0.705
1.000
0.385
0.615
1.000
0.385
0.463
0.311
0.226
0.002
0.998
0.376
0.313
0.002
0.461

1.000
0.109
0.891
1.000
0.109
0.534
0.041
0.425
0.344
0.656
0.945
0.014
0.344
0.560
1.000
0.552
0.448
1.000
0.552
0.726
0.006
0.268
0.571
0.429
0.968
0.026
0.571
0.706
1.000
0.362
0.638
1.000
0.362
Q AAA

0.287
0.269
0.008
0.992
0.397
0.317
0.008
0.414

TABLE II. Square of the S matrix elements ~SLssi'(Q)~ for
values of total angular momentum Q=9, 10, 11, 12, 13, ob-
tained in the L-S representation.

We integrated Eq. (2), using an implementation of the
log-derivative algorithm of Johnson [21], to obtain the S
matrix and Eq. (6) was used to construct the transition
cross sections. The potential matrix (3) was constructed
using tables of the 3j and 9j symbols which were calculat-
ed using an algorithm of Schulten and Gordon [22].
Some simplification in the system of 81 coupled channels
is achieved by using parity conservation to reduce these
equations into two independent sets, having dimensions
%=41 and 40, respectively. We used an integration step
size of about 0.01ao and integrated the equations from
R =0 to R =15ao-20ao. With these values for the in-

tegration parameters we achieve an accuracy of about
0.001a0 for the inelastic transition cross sections, though
at higher energies a smaller step size is required.

In order to explore the sensitivity of the calculated
cross sections under various simplifying assumptions
used in a previous calculation [4], we attempted to repro-
duce the results of Allison and Burke within our frame-
work. We solved Eq. (2) in the hard-core-potential ap-
proximation [4] for R (Sao, and replaced the Born-
Oppenheimer potentials eAsL with the long-range form
Cs/R [4]. We also set the fine-structure energy defects
in each atom to zero. The results of this calculation, for
an energy corresponding to the wave number
k =2pE=96.0 a.u. , are given in Table IV and are la-
beled by o z. The values reported in Ref. [4], divided by
a factor of 2 [23], are labeled o s. Our results are in good
agreement with the ones given by Allison and Burke,
with most cross sections agreeing to within 10%; the
largest discrepancy, for o (22~01), is about 20% We do.
not know why the cross sections are not in better agree-
ment, except to note that Allison and Burke did not
specify the exact value of the hard-core-potential cutoff
point, and this may introduce some uncertainty in the
comparison. We stress that our calculations were done in

the [jQj,j& ] representation, and so the general agree-
ment with the previous calculation, done in the [I.ASSI
representation, is another independent check of our nu-

merical procedure. In the column labeled by ere we re-

peat the calculation, but now include accurate molecular
potentials. Though Allison and Burke argued that
molecular effects are unimportant in this energy region,
our results clearly indicate that molecular effects are
quite significant, altering some cross sections by more
than a factor of 2. Finally, in the last column, labeled by
o.a, we present the cross sections obtained when the fine-

structure energy defects are included. %'e found that in-

clusion of the fine-structure splitting alters most cross
sections dramatically.

Table IV is divided into three groups of rows. The first

group identifies the nine transitions in which one atom
undergoes an elastic transition while the other atom
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Ja JbTABLE III. The square of the effective S-matrix elements iS,;b (J)i2 in the j-j representation for

J=11.
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JaJb
00
01
10
02
20
12
21
22
11

JaJb

0.000

01

0.000
2.064

10

0.000
0.043
2.064

02

0.000
0.054
0.033
2.734

20

0.000
0.033
0.054
0.032
2.734

12

0.000
0.364
0.437
0.229
0.885

10.67

21

0.000
0.437
0.364
0.885
0.229
1.068

10.67

22

0.000
0.423
0.423
0.578
0.578
2.746
2.746

15.07

0.000
0.384
0.384
0.062
0.062
0.817
0.817
1.269
4.542

makes an inelastic (endothermic) transition. The second
group contains the five transitions where both atoms un-
dergo an excitation transition. The third group denotes
transitions where one atom undergoes excitation while
the second atom makes an exothermic transition. We
define a dimensionless parameter y =b,E/E;, where hE
is the total energy difference of the internal states of both
atoms after and before a collision, and E; is the total
kinetic energy in the entrance channel. For each transi-
tion the corresponding y parameter is tabulated, and

TABLE IV. Cross sections for fine-structure transitions using
different approximations. All cross sections are calculated for a
relative collision energy corresponding to the wave number
k =2' =96.0 a.u. cr z are calculated using the approximation
outlined in Ref. [4], o s are cross sections, divided by a factor of
2, given in Ref. [4], o c are calculated using s molecular poten-
tial within the degenerate fine-structure approximation, and cr&
are the cross sections calculated using molecular potentials and
accurate fine-structure splitting. The parameter y represents the
ratio of the energy defect of the given transition to the value of
the relative collision energy in the entrance channel. All cross
sections are in units of ao.

~ gJa~ja

TABLE V. Cross sections for transitions from initial atomic
oxygen fine-structure levels j,jb into final levels j,'jb. All cross
sections are in units of a 0.

Ja ~ja Jb ~jb Energy (a.u.)

0.0025 0.004 0.005 0.006 0.007

looking at the Table IV we note a trend. Generally,
smaller y translates into smaller de'erences between ~~
and oc. Transitions characterized by larger values of y
have cross sections that are significantly smaller than
those predicted by the degenerate-level model. The
second group of transitions involving two-atom excita-
tions have larger y values and Table IV shows that the
corresponding cross sections are, sometimes, orders of
magnitude smaller than the degenerate fine-structure lev-
el model predicts. A notable exception to this trend is
the cross section cr(20~00) which corresponds to the
transition where y has a large value (0.46) though o D and
o c difFer by only about 25%.

In Table V we tabulate the calculated cross sections
rr(j,jb ~j,'j & ) for collision energies in the range
0.0025 &E &0.0070 a.u. The table is divided into the

2~1
2—+0
1—+0
2~1
2—+0
1~0
2—+1
2—+0
1~0

2 +2
2 +2
2—+2
1~1
1—+1
1~1
0~0
0~0
0~0

27.50
5.819

13.44
14.91
5.249
8.880
3.262
0.806
2.883

26.81
5.219

13.21
14.06
5.185
9.134
3.236
0.815
2.766

39.28
11.29
17.54
23.09
7.196

10.17
4.565
1.768
3.449

0.22 14.50
0.31 0.844
0.12 12.96
0.28 4.574
0.40 0.470
0.17 11.43
0.32 2.240
0.46 1.314
0.20 0.638

2~1
2—+0
1~0
2~1
2~0
1~0
2—+1
2~0
1—+0

2 +2
2—+2
2—+2
1~1
1—+1
1~1
0~0
0~0
0~0

6.927
0.458
7.836
1.937
0.082
3.258
1.010
1.192
0.258

15.47
1.051

14.48
5.608
0.710

12.14
2.264
1.524
0.868

16.92
1.338

14.10
7.012
1.063

11.44
2.575
1.744
1.116

18.53
1.604

13.91
8.538
1.370

10.74
3.003
1.717
1.338

12.52
1.424
9.165
6.723
1.104
6.993
2.344
1.543
1.562

2~1
2~0
2~0
1~0
1—+0

2~1
2—+1
2~0
2—+0
1~0

15.57
4.631
1.783
0.844
6.589

13.98
3.800
1.419
0.860
6.929

26.43 0.44
8.857 0.53
3.228 0.63
1.223 0.52
6.132 0.34

0.849
0.051
0.019
0.040
3.212

2~1
2—+0
2—+0
1~0
1~0

2~1
2—+1
2—+0
2~0
1 —+0

1.082
0.079
0.003
0.030
2.855

1.092
0.087
0.038
0.060
3.838

1.475
0.150
0.065
0.101
4.879

1.822
0.215
0.096
0.144
5.607

1.806
0.234
0.124
0.170
5.870

2—+ 1 20.54 21.38 17.69 0.18 25.89 0~1 2~1 15.89 24.29 22.38 20.78 13.49
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three groups which identify transitions involving one-
atom excitation, two-atom excitation, and one-atom exci-
tation, other-atom deexcitation, respectively. The
remaining inelastic cross section, not tabulated, can be
calculated using the principle of detailed balance. In gen-
eral, the one-atom excitation cross sections are
significantly larger than those involving excitation transi-
tions in both atoms. Most cross sections increase mono-
tonically to a local maximum at a collision energy near
0.006 a.u. before decreasing at higher energies.

The accuracy of the cross sections presented in Table V
is limited by uncertainties in the 02 ab initio potential
curves, though it is unlikely that these uncertainties
reflect errors exceeding 20% in the tabulated cross sec-
tions. Additional approximations, such as setting the
fine-structure defects to have a constant value given by
their asymptotic values, are expected to be valid [24]. We
also neglected the effects of the nonadiabatic vector-

potential couplings [6] but in Paper I we show that these
derivative coupling terms vanish in the separated-atom
limit and, since they are proportional to the inverse of the
reduced mass of the 02 system, we suspect that they pro-
vide a small contribution to the total cross sections at the
collision energies of interest.
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