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The theory and numerical methods required for extending the distorted-wave Born approximation to
the description of relativistic (e,2e) processes are developed. We compare the results of our theoretical
approach with the absolute experimental data available in coplanar asymmetric geometry. A significant
improvement over earlier calculations is achieved. It is shown that both the shape and the absolute mag-
nitude of the triple differential cross section are strongly influenced by elastic electron-nucleus collisions
in the incident and final channels. We predict an important increase of the magnitude relative to the
binary peak and changes in shape of the secondary maximum of the triple differential cross section as a
function of the nuclear charge.
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I. INTRODUCTION

The measurement of triple differential cross sections
(TDCS) in electron-impact ionization experiments on
atomic targets, pioneered by Ehrhardt et al. [1] and
Amaldi et al. [2] has developed into one of the most so-
phisticated methods for studying the details of both the
target structure and the scattering process itself. In these
(e, 2e) experiments, the cross sections are determined as
functions of the energies and emission angles of both out-
going electrons, so that the scattering kinematics are
completely known. This provides a serious challenge to
any theoretical description of the process. Indeed, to
date no theory is capable of explaining all experimental
results. Still, important insights have been gained by
comparison of the data with different theoretical models.
The current status of this field of research is reviewed in
[3).

While most of the experiments and calculations have
been devoted to nonrelativistic (e, 2e) processes, Nakel
and collaborators have performed a number of absolute
measurements of K-shell ionization TDCS for heavy
atoms [4—8]. Due to the large binding energies involved,
relativistic electrons are required for the ionization pro-
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cess. All theoretical studies of these relativistic (e,2e) ex-
periments reported so far have used modifications of the
first-order Born approximation. The most straightfor-
ward calculation was that of Bell [9] who used plane
waves to represent all unbound electrons and the impulse
approximation to factorize the TDCS into the momen-
tum profile of the bound state and the free electron-
electron scattering cross section. In earlier work, Das
and Konar [10] had employed a semirelativistic
Sommerfeld-Maue function for one of the outgoing elec-
trons. Subsequently, in a series of calculations,
Jakuba)3a-Amundsen studied the influence of the choice
of different approximate semirelativistic scattering and
bound-state wave functions on the TDCS [11,12).
Walters et al. [7] demonstrated the need to incorporate
purely relativistic spin-Hip processes in calculations of the
TDCS in symmetric geometry. All these calculations
overestimate the experimental cross sections. This
overestimation is most pronounced for the heaviest target
considered (Au).

It is argued in [7] that the distorting efFect of both the
strong nuclear potential and the electrostatic potential of
the electron cloud must be taken into account for inner-
shell ionization in all geometries. This observation is
supported by the excellent agreement of calculations in
the distorted-wave Born approximation (DWBA) [13,14]
with experimental results for the inner-shell ionization of
neon and argon at nonrelativistic impact energies. This
approximation allows for elastic scattering of the incident
and outgoing electrons in the field of the atom or ion
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while the ionization is described in terms of a first-order
electron-electron interaction. To achieve this, the wave
functions describing the unbound electrons have to be
constructed numerically as scattering eigenstates of the
Schrodinger equation using appropriate effective poten-
tials.

The numerical solution of the wave equation can be
avoided if the distorted waves are approximated by non-
relativistic Coulomb waves that are known analytically.
A careful analysis of this "Coulomb-Born" approxima-
tion has been carried out by Botero and Macek [15] for
the E-shell ionization of carbon by fast, but nonrelativis-
tic, electrons. They explicitly demonstrate the crucial
importance of properly including the phases of the vari-
ous contributions to the S matrix that may be expected to
be strongly influenced by the electron-nucleus elastic-
scattering phase shifts for heavier atoms. Indeed the
Coulomb-Born calculations of Refs. [11,12] have up to
now provided the most adequate description of relativis-
tic (e, 2e) processes, though they also seriously over-
predict the experimental TDCS for the experiments with
gold targets.

While taking into account the influence of the nuclear
potential, apart from the inconsistency of using nonrela-
tivistic wave functions to describe a relativistic process,
the Coulomb-Born approximation has the obvious defect
of completely neglecting the electrostatic potential gen-
erated by the spectator target electrons in its description
of the unbound particles. Now it is known that even at
relativistic impact energies the elastic differential scatter-
ing cross section differs considerably from the Coulomb
scattering result [16]. Furthermore, for a quantitative
understanding of experimental bremsstrahlung differen-
tial cross sections at these energies, the use of an effective
atomic potential rather than a Coulomb potential is
essential [17]. These results provide strong evidence for a
major influence of the effective atomic field on the TDCS
of relativistic (e, 2e) processes. Therefore a fully relativis-
tic extension of the distorted-wave Born approximation
suggests itself as an appropriate theoretical framework
for the study of these processes.

In the present paper we develop the theory of relativis-
tic (e,2e) processes using exact eigenstates of the Dirac
equation with an effective atomic potential for all elec-
tron wave functions. That is, we calculate the two-
particle S-matrix elements of quantum electrodynamics
(QED) to lowest order in the electron-electron interaction
coupling constant 0., but to all orders in the effective
electron-nucleon interaction coupling Z(r)a (where Za
is of order unity for the heavy targets used in the experi-
ments mentioned above and the notation indicates the in-
clusion of screening by the atomic electrons). On the oth-
er hand, the method employed may be viewed as the
direct generalization of the distorted-wave Born approxi-
mation discussed above, employing (partial-wave expand-
ed) Dirac spinors instead of Schrodinger wave functions
and the full QED photon propagator (in a generalized
multipole expansion) as the relativistic generalization of
the interelectronic Coulomb potential.

Relativistic distorted-wave Born calculation of single
differential electron-impact ionization cross sections have

been the subject of a series of papers by Pindzola and col-
laborators [18—22]. The formalism developed in [19] is
essentially equivalent to the one employed in the present
contribution. However, the calculation of angle
differential cross sections, which is the objective of our
work, turns out to be a much more formidable task. This
has been noted by Butler et al. [23] who studied
positron-impact ionization cross sections using the same
method. While these authors could calculate cross sec-
tions as a function of the impact energy using only a few

multipoles and partial waves, they found it impossible to
obtain satisfactory convergence of the multiple sums for
TDCS. Up to now, apart from results of s first set of our
own calculations [24], within the relativistic distorted-
wave Born approximation angle differential cross sections
have only been obtained for bremsstrahlung [17] and
electron positron pair creation induced by internal nu-

clear conversion [25], that is, for one-fermion matrix ele-

ments.
At this point, it is also worth noticing that a very simi-

lar method has a long tradition in the study of QED
effects in heavy atomic systems. Indeed, the formalism
we derive in the following section is closely related to the
~ichmann-Kroll [26] approach to the calculation of
QED corrections in strong Coulomb fields. The latter ap-
proach is the basis of some of the most refined calcula-
tions of vacuum polarization [27], electron self-energies

[28], and Delbriick scattering [29]. In these calculations
an additional complication arises from the necessity of
performing a sum over energy eigenstates to construct
the off-shell fermion propagator in the external field.
Also, the renormalization problem has to be faced. Qn
the other hand, in computing QED eFects it is usual
practice to disregard the influence of the potential gen-
erated by the remaining electrons, i.e., to work with a
pure Coulomb potential plus an analytical model for the
potential inside the nucleus. This fact can be exploited to
simplify the numerical calculations considerably.

The present paper is organized as follows. In Sec. II
we develop the forrnal theory underlying our calcula-
tions. The methods used for the numerical evaluation of
the resulting expressions are presented in Sec. III. We
discuss in some detail the question of convergence of the
multipole and partial-wave expansions. In Sec. IV, we
present numerical data for triple differential cross sec-
tions in coplanar asymmetric geometry corresponding to
measurements by Nakel and collaborators. (A prelimi-
nary account of some of these results has been given in

[24].) Section V consists of a summary of our results and
an outlook of future refinements and extensions to our
work.

In the following, atomic units (fi= m, =e = 1) are used

so that the numerical value of the vacuum velocity of
light is c = 137.036 04. The metric tensor has
diag g„„=(1,—1, —I, —1); contravariant four vectors
are written as x"=(t,x). The summation convention is
understood.

II. THEORY

The TDCS for a relativistic (e, 2e) process at a given

impact energy Eo is defined by
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d a(e, 2e) (2n. ) kikz
+QEiE2 g I & ki&i k2&pl&lkp&p &&s & I

~i~0~2~b

where 0 is the S matrix operator. Throughout this paper
the indices 0, 1, 2, and b refer to the incoming, the two
outgoing, and the initially bound electron, respectively.
Eo, E„E2 and ko, k„k2 are the on-shell total energies
and momenta of the unbound particles E =k c +c .
The quantity ~ denotes the quantum numbers of the
atomic bound state (see below) and e are the spin projec-
tions with respect to the quantization axis, which we
define to be the beam axis. Since we presently deal only
with experiments that are insensitive to spin polarization,
Eq. (1) involves a sum over the final spin states ei, e2 and
an average over the initial ones (ep and es };hence the fac-
tor of N„/2N (N„ is the occupation number of the state
sc, N the number of degenerate states with this set of
quantum numbers}.

For any process involving relativistic electrons and
electromagnetic fields, the S-matrix operator is formally
defined within QED. Of course, a complete evaluation of
this quantity is not feasible. Indeed, due to its enormous
complexity, such a solution would not be very helpful in

understanding the physical processes involved. %'e there-
fore introduce the following approximations.

(a} The electromagnetic fields of the nucleus and of the
atomic electrons are incorporated in the form of a classi-
cal external field.

(b) The interaction of the two active electrons is treated
in first-order perturbation theory, whereas the influence
of the external field on all states is retained exactly.

These assumptions imply that all many-body effects
(for instance, polarization of the atomic electron cloud or
radiative corrections) may only enter the calculation via
the external potential. The relativistic distorted-wave
Born approximation thus defined corresponds to the eval-
uation of the two Feynman diagrams depicted in Fig. 1,
or to a first-order calculation in the Furry picture of
QED [30]. The physical process it describes may be visu-

alized as a binary collision of the two electrons combined
with elastic scattering of both the incoming and the two
outgoing electrons off the atomic core.

By applying standard Feynman rules to interpret the
diagrams in Fig. 1 (see, e.g., [31]}it is readily shown that
the S-matrix element in question reads

(k, e, , k,e, lSlkpep, ae, &
w =S"'—S'" (2a)

with

2 2

S "=ifd x f d yak, (x}y y"ttlk, (x)

XD„,(x y—W k. ,..(y)r'r'4. ,,(y),

S'"=ifd'x fd'y6', (x)r'r"6, (x)

(2b)

Note that in writing Eqs. (2) we have reverted to first
quantized notation. In particular, gk, (x) is an exact sta-
tionary solution of the first quantized Dirac equation

i g(x—)=[a[ icV—„—A(x)]+Pc + V(x)]g(x) .
at

(3)

[a, P, and y are the usual Dirac matrices; ( V(x},A(x))
is the electromagnetic four-potential. ] In the following
discussion we will write all formulas only for the direct
term. The exchange term follows by interchanging all
quantum numbers of the outgoing electrons.

In order to evaluate (2) with (3}we introduce our final
approximation, namely, the assumption that the external
electromagnetic field is in fact purely electrostatic and ra-
dial symmetric in the rest frame of the nucleus (which we
now choose as our reference frame}:

A(x) =0,
V(x}=V(r„} .

(4a)

(4b)

Then, the Dirac equation (3) can be separated in spherical
coordinates x=(r„,Q„). Solutions of this equation have
the form

g„(r„):-„„(0„)
eiEtlc

if„(r„):- „„(II„)

where the quantum number z= —(2j + 1)(j—1)
represents good total angular momentum j and parity
( —1)'. The corresponding eigenstates with total angular
momentum projection p are spinorial harmonics defined
by

1/2
:-„„(0„)= g C(l, ,',j,p m,—rrt,p)—Y& „(Q„)y

m = —1/2

XD,(x y)gk—, (y)y'y"g„, (y), (2c)

where D„„(x—y) is the QED photon propagator (in the
Feynman gauge) defined by

4~ d qD,(x —y) = — ig„ f 4 2, g~0 .
c " (2m) q +ig

(2d)

b 0

FIG. 1. Feynman diagrams corresponding to Eq. (2a).

Here C(. . . ) is a vector coupling coefficient (for which
we use the conventions of [32]), YI is a spherical har-
monic, and y is a two-component Pauli spinor. The ra-
dial wave functions are solutions of the equations
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dg (r) I+v 1+ g, (r)+ —[V(r) c— E—]f„(r)=0, (7a)
dr r c

df. (r) + f„(r) ——[V(r)+c E]—g„(r)=0 . (7b)
dr 1" c

]/2E+c 1 cos(kr +5„),
2E kr

I ) 1/2

f (r)~— E+c kc
sin( kr +5„),E+c « (8b)

In order to construct scattering waves with asymptotic
linear momentum k, spin projection e, and the proper in-
coming or outgoing wave behavior, Eqs. (7) have to be
solved subject to the boundary conditions

for r ~ ao where 5 is the scattering phase shift (that may
include a logarithmic Coulomb phase). The solutions
desired are then given by

eiEt/c oo j+1/2 j g „(r„):-„„(Q„)
X ) 3 / 2 g g g a ' *'

(j,l, e,p ) .r ( ) ( Q )j= i/2 I =j —i/2 p= j K X K~)tt X

{+) .I Xi [5~+71'/2{ l + 1 ) ]a —(j, l, e,j2)=4' e C(l, ,',j,p—e,e,—j2) Y&'„,(Qk ) .

(9a)

(9b)

See [33,34] for details.
The photon propagator (2d) can also be represented in polar coordinates by writing it as a Fourier integral, doing the

energy integration and expanding the result in multipoles. This leads to the representation

D„„(x—y)= 8~ pg„—, g g j„(pr&)[ y„(pr& )+ij—„(pr& )]Y„' (Q„)Y„(Q ),
n =0m = —n

(10)

where j„and y„are spherical Bessel functions of the first and second kind, p:=(Eo Ei )/c i—s the zero component of
momentum transfer, r & .=max(r„, r ), and r & .= min(r„, r ). It is straightforward to show that, in the nonrelativistic
limit (c& ao ), Eq. (10) reduces to the well-known multipole expansion of the Coulomb potential between two point
charges located at I and y.

To evaluate the DWBA S-matrix elements, (9) and (10) are inserted into (2). After doing the time integrals, resolving
the bispinor structure by inserting the y matrices in the standard (Dirac) representation, and writing out the sum over
Lorentz indices, this yields (with l =2j —l)

Sd"=8mip 5(E. o+Eb Ei E—2)—
X g f d3x f d y j„(Pr )[ —y„(Pr& )+ij„(Pr& )]Y„(Q„)Y„(Qy)

n, m

X g g g [a' '(j„l„ep,)]*a +'(Jo, lo, eo, po)'[a' '(j2, l2 e2 j22)]
jl ' 1'{ I jo' 0') 0 j2' 2'~2

X{[g, .(r„)g „(r,):-,", „(Q„):-, , „(Q,)

The main advantage of this result is that the angular vari-
ables are completely separated: each term in the sum has
the form

& &j i l i P i I
o

I n, m I 1o lo j2o &

I

with

&j, l,plo In, m Ij, l, P&

= fdQ:-'i„(Q)cr Y„(Q):--.i ~(Q) (12b)

R =f "dr„r, f "dr r j„(pr & )[ y„(pr& )+ij„(p—r& )]
0 0

&«j2 l2 p2I~ In, ~jib lb jjb& (12a) X ((}i ( r )yo( r„)$2(ry )yb ( ry ) (12c)
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where a=0, 1,2, 3 and each P(r) represents a large or
small component radial function occurring in {11). The
angular integrals (12b) can be worked out analytically
and explicit expressions are given in Appendix A. Due to
the fact that the distorting potential is not known in
closed form, the remaining calculations have to be done
numerically.

III. NUMERICAL METHODS

There are two major problems in computing the S-
matrix elements from (11},namely, the enormous number
of terms contributing to the eleven-fold sum and the eval-
uation of the individual radial integrals of the form (12c).
While highly efficient and accurate methods are available
for evaluating the vector coupling coefficients that make
up the angular integrals (12b), care has to be taken to in-
clude all angular momentum selection rules into the cal-
culation in order to reduce the number of terms. Howev-
er, the convergence of the various sums has to be studied
in detail in order to keep computing time within reason-
able limits while incorporating all relevant contributions.
This matter will be addressed in Sec. III B.

The main challenge in the computation of the radial in-
tegrals {12c)stems from three peculiarities of this task.

(a}The wave-function components P(r) are only known
analytically in the asymptotic region. It is therefore im-
possible to tailor the integration algorithm explicitly to
the analytical structure of the integrand in the vicinity of
the nucleus where one would expect the dominant contri-
butions to the integral.

(b) Due to the large momenta involved, the three
scattering wave functions are rapidly oscillating func-
tions.

(c) A highly accurate numerical solution of the in-

I

' 1/2

gz'"„~(r)= [cos(5„}jI(kr)—sin(5„)yI(kr}]

tegrals is required, since due to the large number of radial
matrix elements and the relative signs entering through
the vector coupling coefficients, cancellation efFects are
severe.

In the following discussion, we will restrict ourselves to
the case of short-range effective potentials, thus assuming
that all distorted waves are generated in the field of a
neutral atom. The complications arising from using
Coulomb boundary conditions for one or both of the out-
going electrons will be only briefly addressed, a detailed
investigation of this matter being reserved for a forth-
coming publication.

A. Description of algorithms

The radial integrals (12) may be split up in the form

ReR= r„r„& r, 0 r„V r„
0

ImR =C r„r„&r„0 r„j„pr„
0

V( r„}= y„(—pr„) dr~ re „(prY )$2(r~ )Pb (r~ )

j„(pr„)f—"dr rry„(pr~)pz(rr )pb(r~),
x

C =f dr r~j „(pr~ )pz( r~ )pb ( r~ ) .
0

(13a)

(13b)

(13c)

(13d)

(14a)

In order to evaluate these expressions, we solve the radial
Dirac equations (7) for the functions P on an equidistant
grid using the program package developed by Salvat and
Mayol [35], which is based on a power-series expansion
[36]. At a maximum radius R,„determined by this
code subject to accuracy requirements, the wave func-
tions are matched to radial solutions of the free Dirac
equation,

' 1/2E+c2fz'"„(r) =sgn(a )
kc

[cos(5„)j&(kr) —sin(5„)y&(kr) ] .E+c (14b)

The scattering phase shift 5„ is determined by solving
(14a) for 5„at the matching point.

The integrands of the "inner" integrals (13c) and (13d)
are heavily damped by the exponentially decreasing
bound-state wave function, in particular for the large nu-
clear charges we are interested in. For each target sys-
tem, it is therefore possible to determine a value of r„
much smaller than R at which these integrals practi-
cally take their asymptotic values. Between the origin
and this point, the integrals (13c) and (13d) are evaluating
using fourth-order Newton-Cotes rules on a sufficiently
dense grid. The constant C is obtained using the same
procedure. We have verified that this method is accurate
to at least six significant figures by comparing the results
with closed analytical expressions {see Appendix 8) and
by alternatively calculating C using a high-order Gauss-
I,egendre rule.

The "outer" integrals (13a) and (13b) are treated in two
steps. For the interval (O,R,„),a Romberg integration
scheme is used. A large number of points (of order 10 ) is
required to resolve the rapid oscillations of the integrand.
Because of computing time and storage limitations, it is
not practicable to refine the grid until a prescribed accu-
racy is obtained. Rather, we monitor the error estimate
returned by the Romberg scheme in order to be able to
treat particularly troublesome integrals separately. (It
should be noted that the use of higher-order rules like
Gaussian formulas is inadequate for the problem at hand
because the integrands cannot be appropriately represent-
ed by finite order polynomials. )

In the asymptotic region [R,ca ), according to (13a),
(13b), (14a}, and (14b), the analytical form of the in-
tegrand is known, the integral is a sum of terms of the
form
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dr„r„b„(pr„)bi (k&r„)bi (kor„),
max

(15)

where the b, (z) are spherical Bessel functions of the first
or second kind. A powerful numerical algorithm for
these integrals has been developed in [37].The basic idea
of this approach is to represent the Bessel functions by
spherical Hankel functions. This allows the integrand to
be split up into contributions that decrease exponentially
in the upper or lower half of the complex plane. By ap-
propriate rotations of the integration contour, the indivi-
dual oscillating terms can thus be converted into smooth-
ly decreasing ones. We have refined this approach by
combining it with a Gauss-Laguerre rule. This allows the
integrals to be done to high accuracy using only a few
points. In our implementation, the results obtained with
15- and 25-point rules differ only in the ninth digit.

To test the combined algorithm, we have extensively
studied the integral

I dx x J„(px j),(kx)j (kx ), (16)
0

for which an analytical solution has been found (see [38]
and references therein; note also the discussion in Appen-
dix B). We have found that a minimum accuracy of five
significant figures can be obtained. Note also that (13b)
reduces to (16) if all scattering waves are taken to be
plane waves. This provides another severe test of the
method since the two parts of the integral have to cancel
each other to provide the vanishing imaginary part of the
plane-wave S-matrix elements. Indeed, we observe can-
cellation of at least the leading six figures in a11 these in-
tegrals.

Despite the convincing results obtained in all our test
cases, it turns out that there remains the possibility of a
systematic error of a few percent in the computation of
some of the integrals (13a). This is due to the fact that by
construction both the integral (13c) and the integrand of
(13a) vary on the scale defined by the zero component p
of momentum transfer, which leads to very important
cancellations that are strongly increased if multiplied by
low-order partial waves with relative phase-shift zero. In
consequence, there is a certain tendency toward overes-
timating the leading matrix elements of the multipole
sum. Indeed, it will be seen in the following section that
our tests within the plane-wave approximation —which
represents a worst-case scenario with regard to this
problem —are somewhat biased by the effect just de-
scribed.

While the integration scheme used for the inner part of
the integrals does not depend on the analytic structure of
the integrand, the algorithm used for the asymptotic part
of the outer integrals explicitly uses the Bessel function
form of the asymptotic solutions (14). Therefore, the cor-
responding part of the numerical procedures has to be
modified if Coulomb boundary conditions are included.
This problem can be approached using a similar contour
integration procedure, details of which will be described
elsewhere.

B. Convergence studies

In the following, we present a set of calculations using
plane waves for all scattering waves. For this problem an

l ()C3
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FIG. 2. TDCS for ionization of Au as a function of 6& in the
plane-wave approximation. Eo =500 keV, E2 = 100 keV,
6,= —15'. Full curve, exact result; broken curves, results for
di6'erent maximum multipolarities, n 1 (long dashes), n ~2
(short dashes), n ~3 (dots), n &4 {long dash-dotted line), n ~ 5
(short dash-dotted line), n ~ 6 (double short dashes), n ~ 7 (triple
short dashes). (The last two lines are almost indistinguishable in
this plot. )

analytical solution is possible (see Appendix B). This al-
lows us to assess the quality of our numerical results for
complete triple differential cross sections as a function of
the number of terms retained in the multipole and angu-
lar momentum sums.

We will discuss two example systems: a very asym-
metric kinematical situation (ionization of the gold K
shell, E0=500 keV, E, =319 keV, E2=100 keV, the fast
electron being observed at —15') and a symmetric prob-
lem (same target, but at ED=300 keV, E& =E2=109.65
keV).

The restrictions imposed on the set of partial waves
and multipoles considered can be expressed by fixing two
quantum numbers. The remaining quantities are then
limited by triangle inequalities. In the following, we mill
therefore discuss our results in the plane-wave approxi-
mation as functions of the number of partial waves in the
incoming channel (defined by the total angular momen-
tum j 0) and of the number of terms in the expansion of
the propagator (the multipolarity n).

We have based our study on a standard set of matrix
elements defined by n &7 and j0 ~25. For asymmetric
geometries, an estimate of the number of multipoles
based on the Bethe approximation (see Appendix B) sug-
gest that terms beyond n =7 are likely to be negligible.
The maximum value of j0 is then dictated by hardware
restrictions.

In Figs. 2 and 3 we show the triple differential cross
sections for different maximum multipolarities. The con-
vergence of the series is obvious. However, there is a ten-
dency to overestimate the exact result that is most clearly
visible in the tip region and right slope of the asymmetric
binary peak. This feature is a manifestation of the prob-
lem associated with the evaluation of the radial integrals
that was discussed at the end of the preceding section.
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FIG. 3. TDCS for ionization of Au as a function of e2 in the
plane-wave approximation. Eo =300 keV, E2 =E& =109.65
keV. Symbols are as in Fig. 2.

0 10 20 30 40 50 60 70

Oz (deg)

FIG. 5. Same as Fig. 3, but for maximum multipolarity n =7
and different maximum angular momentum jo in the incident
channel. Symbols are as in Fig. 4.

100

90

80

70

60

50
2 40

30
~~ 20
~ 10

90 180 270

02 (deg)

360

FIG. 4. Same as Fig. 2, but for maximum multipolarity N=7
and different maximum angular momentum jo in the incident
channel. Full curve: exact result; long dashed curve: jo 25;
short dashed curve: jo ~ 20; dotted curve: jo ~ 15; dash-dotted
curve: jo ~10.

The data for asymmetric geometry clearly show that the
error described above is to be attributed to an overes-
timation of the maxima of the low multipolarity terms.
However, we emphasize again that the plane-wave calcu-
lations are particularly sensitive to this type of deviation
because of the vanishing relative phases within the indivi-
dual matrix elements. Figures 4 and 5 indicate that the
deviation described cannot be attributed to an incomplete
summation of angular momenta. Note that the
differences between the calculations with jo&20 and

jo 25 are almost invisible in the plots.
These results clearly indicate that this standard set of

angular momentum and multipole contributions is ade-
quate for the theoretical description of the kinematic
configurations of interest. (Of course, proper conver-
gence of the multiple sum is verified in each individual

calculation. ) Furthermore, from the data presented, a
very conservative error estimate of our calculation may
be extracted. Our calculations are at no point more than
10% ofi' the exact result. However, this includes the sys-
tematic error discussed above that accounts for most of
the discrepancies (as is evidenced by a detailed analysis of
selected individual matrix elements). For a realistic cal-
culation, where the nontrivial scattering phases induce
additional error cancellations that are absent in the
plane-wave case, we can therefore use our standard set of
parameters to an expected maximum error of a few per-
cent.

As a complementary check of our program, we have
verified that the nonrelativistic DWBA results for
electron-impact ionization of the neon E shell published
in [13) are reproduced. While the plane-wave case is ex-
tremely sensitive to errors in the integration algorithms
and the handling of all the relativistic extensions of the
standard theory, this test allowed us to make sure that
the inhuence of the distorted potential on the wave func-
tions is properly incorporated.

IV. APPLICATIONS

Absolute measurements (with a systematic error of
15%) of TDCS for relativistic (e,2e) processes in asym-
metric geometry have been carried out by Nakel and col-
laborators for gold and silver targets. In Fig. 6, we com-
pare their results for a gold target (Eo =500 keV,
E& = 100 keV, 8,= —15') with theoretical results by Das
and Konar [10], who use a semirelativistic Sommerfeld-
Maue Coulomb wave function to represent the slow out-
going electron and the Ochkur approximation for the ex-
change term, and with the first Born results of Walters
et al. [7), where a Darwin-Coulomb wave is used for this
electron. Both theories employ plane waves to describe
the incoming and fast outgoing electron, and they both
overestimate the experiment by about a factor of 4. (It is
not clear why the calculation of Das and Konar
mispredicts the location of the maximum). As may be
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FIG. 6. TDCS for (e, 2e) on gold, ED=500 keV, E2=100
keV, 8&= —15'. Full squares: experimental results [6]; short
dashed curve: results from Das and Konar [10]; dotted curve:
first Born approximation (Walters et al. [7]); long dashed curve:
Coulomb-Born approximation (Jakuba[3a-Amundsen [11]);full
curve: this work.

FIG. 7. Convergence of multipole series for the calculation
of Fig. 6. Full curve: 6nal result (n ~ 7); broken curves: results
for different maximum multipolarities, n ~ 6 (long dashes), n ~ 5

(short dashes), n ~4 (dots), n 3 (long dash-dotted line), n 2
(short dash-dotted line), n 1 (double dashes).

seen from Figs. 2 and 4, using plane waves in all channels
would lead to an order-of-magnitude deviation from the
experimental results. Furthermore, Fig. 6 shows the re-
sult of a Coulomb-Born calculation by Jakubaj3a-
Amundsen [11]. The results of this theory, which may be
understood as an approximation to the full DWBA, as
was indicated in the Introduction, is much closer to the
experimental data but still overpredicts them by a factor
of 2. Finally, we show a calculation in the relativistic
DWBA. A self-consistent relativistic Kohn-Sham local-
density approximation (LDA) potential [39] (which is
essentially equivalent to a Dirac-Fock-Slater potential) of
a neutral gold atom has been used in all channels. The
bound state was described by a relativistic hydrogenic
1s,&2 wave function. The effects of Slater screening and
of orthogonalizing the outgoing distorted waves to the
bound state were found to be negligible. The standard set
of angular momenta and multipoles discussed in the
preceding section was used. Figure 7 demonstrates that
the convergence of the multiple series is almost perfect
over the whole range of angles. From the various
theoretical results, it is obvious that for this heavy target
the process in question may be understood as a first-order
process in the electron-electron interaction that occurs in
the strong Coulomb field of the nucleus and the spectator
electrons.

In Figs. 8 and 9, we show the same theories for the two
experiments that have been carried out with silver targets
(En =500 keV, E2 = 100 keV, 8,= —7', and e,= —15 ).
Unfortunately, no Coulomb-Born calculation has been
published for the latter system. As one would expect, the
agreement of the approximate first-order theories with
the experiments in the region of the "binary" peak is
somewhat improved because here the atomic field is sub-
stantially weaker. However, the experiment clearly es-
tablishes the existence of a second maximum at about—50. Previous theories have not even been able to de-

scribe the order of magnitude of this structure relative to
the "binary" peak. Again, the relativistic DWBA is quite
successful in this respect. The discrepancy between
theory and experiment at 82= —50' is presently being
reconsidered both theoretically and experimentally. As is
most clearly visible in Fig. 9, for this lighter target the
relativistic DWBA also has a certain tendency to over-
predict the binary maximum.

Up to now, the additional peak in the recoil regime
(which appears in the forward direction due to relativistic
kinematics) has only been observed in the above-
mentioned experiment with a silver target. The fact that
only the DWBA is able to predict it indicates that this
structure should be understood as an effect of the
electron-atom interaction and hence should depend
strongly on the nuclear charge. In Fig. 10, we show

100

l I

-80 -60 -40 -20 0 20 40 60 80

02 (deg)

FIG. 8. TDCS for (e, 2e) on silver, E0=500 keV, E2=100
keV, el = —7'. Symbols as in Fig. 6.
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TDCS for the kinematical configuration of Fig. 8
(En=500 keV, E2=100 keV, e&= —7') and for difFerent
atoms, where in each case the maximum of the binary
peak has been normalized to unity. Our calculations in-
dicate a drastic buildup of the relative magnitude of the
secondary maximum. It is gratifying to note that this in-
crease leads to secondary peak cross sections of the order
of a few millibarn for all targets. Therefore, it should be
possible to detect this structure with the present experi-
mental setup of the Tubingen group and thus test the pre-
dicted increase.

Another quite surprising fact is that the shape of the

FIG. 9. TDCS for (e,2e) on silver, Ep=500 keV, E2=100
keV, e, = —15'. Full squares experimental results [6]; long
dashed curve, results from Das and Konar [10]; short dashed
curve, first Born approximation (Walters et al. [7]); full curve,
this work.

FIG. 11. Relativistic DWBA calculations for TDCS at
Ep=500 keV, E2=100 keV, uranium target. Full curve,
e& = —15', long dashed curve, e& = —7', short dashed curve,
e( = —3.5'.

secondary peak changes significantly. While for gold and
silver it takes the form of a well-defined maximum with a
slowly increasing left slope, a plateaulike structure devel-
ops in the case of uranium (see Fig. 11). Note also that
the magnitudes of both binary and secondary maxima are
almost independent of the detection angle of the fast elec-
tron. For very small angles, the TDCS decreases, an
effect most prominent in the region of the beam axis. The
plateau structure reduces to a saddle in the secondary
maximum, which then takes its maximum value in the
backward direction. The question whether or not these
unusual features of the TDCS exist makes experiments
with uranium targets particularly desirable.

V. SUMMARY AND OUTLOOK

I I I t I I I

0.001
0

I I

90
f I I I I

180 270 360

02 (deg)

FIG. 10. Relativistic DWBA calculations for TDCS at
Ep =500 keV, E2 = 100 keV, e

&

= —7 with different targets.
Cross sections normalized to unity at the maximum of the
binary peak. Full curve, uranium target; long dashed curve,
gold target; short dashed curve, silver target.

In this contribution, we derive the relativistic
distorted-wave Born approximation for (e,2e) processes,
which is equivalent to a consistent first-order QED calcu-
lation in the Furry picture. The numerical methods re-
quired for the practical application of this theory are
presented and the convergence of the angular momentum
and multipole expansions is discussed in some detail. It is
demonstrated that the triple differential cross sections of
interest may be calculated to a numerical error of at most
a few percent.

The comparison of our numerical results with data
from absolute measurements in asymmetric geometry
shows that these relativistic (e,2e) processes may ade-
quately be described in terms of a binary collision of the
electrons, provided that the influence of the electric field
of the nucleus and the other atomic electrons is properly
incorporated. The secondary maximum in the forward
direction, whose existence is established experimentally
but has failed to be described by all previous theories,
then emerges naturally. %e predict an important in-
crease of the relative magnitude and a broadening of this
structure as a function of the nuclear charge. Both
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effects should be observable with present experimental
techniques.

A set of calculations in symmetric geometry is now
near completion. These results will be presented in a
forthcoming paper [42]. We are presently involved in ex-
tending our code to include Coulomb boundary condi-
tions and a spin-polarized incident channel. It is to be
expected that by proceeding along these lines while main-
taining a close collaboration with the experimentalists,
the understanding of the physics of relativistic (e, 2e) pro-
cesses will be further improved.
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APPENDIX A: ANGULAR INTEGRALS

The angular integrations in

(j,I,p I o I N, M
Ij,I,p )

=f dQ:-J'I q(Q)o YN ~(Q):-- Ip(Q). ,

may be performed by inserting the explicit form of the
spinorial harmonics and using

1/2
(2N + 1)(21+1)

4n(21+ 1)

to find

XC(N, 1,1,0,0,0)C(N, I, I,M, P m, p,
—m—)

1/2

&j I plo IN, MIj I p) = C(N, 1,1,0,0,0)

1/2
X g y (m)o g(M+m+p, p)C(N, 1,—I,M, p m M, p —m)— —

m = —1/2

XC(l, ,',j,p m—M—,P p—+m +—M, P)C(l, ,',j,p m,—m,p)—.

In the remaining sum, the bilinear forms y e y may be written as

y (m)o y(M+m+P —p)=5

y (m)o'y(M+m +P—p) =5

y (m)o y(M +m +p —p) = 2im 5—

(m)o g(M +m +P p)=2m5

(A3a)

(A3b)

(A3c)

( I IooIN MI I ) =5 ( 1)(+)~2 J+p v(2N—+ l)(—21+1)(2j+1)J»P O ~ J) ~P =
Mp p 4m

X C (N, I, 1,0,0,0)W(j, Ij,I; ,',N )C(j,Nj, p, P—p,P ), —
1/2

C(N, 1,1,0,0,0)C N, I, I,M,
(2N+1)(21+1)

4 (21+1)

. p+P+M p, P M-, —. p—+P—M p, P+M „—XC I
2 J, »,I C I, 1J. . .I"2 2

This can be used to collapse the summation over M in the a =0 and a= 3 terms, thus simplifying the calculation consid-
erably. For the other terms, it is more useful to the compute the m sum instead. The final results for the angular in-
tegrals read [with W(. . . ) a Racah symbol]

( I I
'INMI" I ")= 2" "—

2 4~(21 +1)

1/2

C(N, 1,1,0,0,0)C N, I,I,M,

. @+@+M p —p —I
2'J'

@+p—Q p —@+M
)p C I) 2)J) ) )p (A4c)
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&j, I,pl~'IN, i(/Ijl, 1,p & =5~
1/2

(2N+1)(2l+1)
C(N 1 l 0,0,0)

4n(2.l + 1)
1/2

X g 2mC(N 1,1,p P—P m—p m—)
m = —1/2

XC(l, ,',j,—p m—, m, p)C(l, ,',j—,p p—,p m—,p m—) . (A4d)

APPENDIX B: ANAL%"I ICAL BENCHMARK RESULTS

In order to be able to assess the proper implementation and quality of the algorithms, analytical test cases are in-
dispensable in any numerical work. Since in the literature there are only very few closed results available for relativistic
(e,2e) processes, we summarize in this Appendix some of the results we have derived in order to test our code.

The main approximation used in all our analytical calculations is that of replacing the distorted waves with plane-
wave states. This is consistent with our present restriction to short-range potentials. In this case, the triple differential
cross section can be worked out in closed form. It should be noted that in order to be able to check the individual spin
contributions separately, the calculation must not be simplified by using trace identities. Therefore, the result is too
long to be reproduced here. For a discussion of this approximation see [44].

In the plane-wave approximation, Eq. (12c) reduces to

R = A f dr„r„f dry re „(pr ) )[ y„(pr ( )+—ij„(pr ( )]ji (k ~r& )JI (kor& )j ~ (kyar~ )$1(r~ ), (B1)

Xji (k&r„)j& (kpr ), (B2a)

C= dr~re„(pr~)ji (kyar~)QI, (r~) . (B2b)

Note that C is identical to (13d) written in the plane-wave

where I; may correspond to z or —~ and A is a normali-
zation factor, depending on the choice of large and small
components involved. While it is possible to calculate the
leading matrix elements (Bl) in closed form by inserting
the explicit representation of the spherical Bessel func-
tions in terms of trigonometric functions and approxi-
mating the bound-state wave function by its nonrelativis-
tic limit, the resulting expressions are only finite due to
subtle cancellations between a number of terms of a much
different structure. This makes them quite susceptible to
numerical errors themselves, so that they are not useful
for testing other programs.

In order to construct closed expressions for the indivi-
dual radial matrix elements (12c), we further apply a rela-
tivistic analog of the Bethe approximation discussed in
[40]. It corresponds to the assumption that r„ is always
the larger of the two radial coordinates. Owing to the
fact that Pb(r~ ) is a rapidly decreasing function and that
j&(x}-x'for small x, this approximation is well justified
for the contributions from high multipoles and angular
momenta. Of course, the low-order terms are
misrepresented so that the results for triple differential
cross sections cannot be expected to be consistent with
experimental data. In particular, this restriction applies
to symmetric geometries where the momentum transfer
to the nucleus is large.

Under the assumption stated above, (B1) factorizes:

R =ABC,
8 =f dr„r„[ y„(pr„)+ij„(pr„)]—

0

approximation. To check the algorithm used for the
inner integrals for all combinations of large and small
components, we have evaluated (B2b) for (n =0, i& =0),
(n =1, i& =0), and (n =0, lz= 1) using a relativistic hy-
drogenic 1s state:

C„I.=f dr r j„(pr )j I(kr)r r 'e

(B3a)
Coo= [Fc(p k, y) Fc(p—+k—,y)],

2kp
1

C&o = [Fc (
—p+k, y —1) Fc(p+—k, y —1)]

2kp

+ [Fs(p k, y) Fs(p+—k, y)], —1

2kp

1
Co, = [Fc(p k, y

—1) Fc(—p+k, y ——1)]
2kp

+ [Fs( —p+k, y) Fs(p+k, y)],—1

2kp

Fc(a,b):=
b

cos b arctan
I (b) a

(g 2+z2)b/2 Z

(B3b)

(B3c}

(B3d)

Fs (a,b):=
b

sin b arctan
r(b) a

(g2+z2)b/2 z (B3e)

where y = [1—(Z /c )]', and we have omitted all nor-
malizing factors in the displayed equations.

The integrals with three Bessel functions of the first
kind arising from (B2a) has been solved in a form that is
readily evaluated numerically ([38]:see also the very re-
cent study [41]). As these integrals occur quite frequently
(actually, whenever a plane-wave approximation is evalu-
ated with a multipole expanded photon or meson propa-
gator), their analytical evaluation continues to be of con-
siderable importance.
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(u2 1)
—i/2Q1( )

(2p/c)
(B4a)

Finally, the Bethe approximation allows for an esti-
mate of the number of multipoles required in our calcula-
tions in asymmetric geometry. To this end, one has to
compute (B2b) as a function of n. This is feasible if the
bound state is treated in the nonrelativistic approxima-
tion. Again, the various combinations of 12 and n have to
be considered. %e give here only the result for 12 =n cor-
responding to combining the large components of both
wave functions. The other combinations of large and
small components lead to similar expressions. For the
ls —,

' state we find (n & 0) [43]

Mi, i&2(n):= f "dr r e 'j„(pr)j„(kr)
0

0.1

0.01

0.001

t I I l I I

3 4 5 6 7 g 9 10

n (Multipolarity)

where Q„'(u) is an associated Legendre function of the
second kind and

Z'+p'+k'
2pk

(B4b)

The calculation can be repeated for the 2P3/2 state. The
corresponding result reads (n & 1)

M2 (n):=f dr r e ~ "j„(pr)j„+i(kr)

8Z

(8pk)
(u —1) '[pQ„(u) —kQ„, (u)],

(B5)

FIG. 12. Absolute values of M&, &zz (squares) and M»3/2
(crosses) as defined by Eqs. (B4) and (B5), normalized to unity at
n =2.

where Z has to be replaced by Z/2 in (B4b). Figure 12
shows the absolute values of these functions (for Z=79,
Eo =500 keV, E2 =100 keV), both normalized to unity at
n =2. It is evident that although both types of inner in-
tegrals go down exponentially for large enough n, the
multipole series will converge much slower for I.-shell
states.
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