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The retardation (or Casimir) potential for Rydberg Hz —a hydrogen molecule with one elec-
tron in a highly excited, hydrogen-atom-like electronic state and an Hz core—is determined using
time-dependent quantum electrodynamics in the Coulomb gauge. The potential obtained is valid
over a range of r, the Rydberg electron-core separation, from several ao to in6nity, and accurate
numerical results for the magnitude of the corresponding energy shift are calculated using a discrete
representation of the electric dipole oscillator-strength spectrum. The prospects for measurement
are analyzed.

PACS number(s): 31.30.Jv, 31.50.+w, 31.90.+s

I. INTRODUCTION

Over the last several decades there have been many ex-
perimental and theoretical efforts devoted to the quan
titative verification of a retardation effect—the change
arising, due to the finite speed of propagation of light—
formally, one evaluates the contribution &om the ex-
change of two virtual photons —in the form of the in-
teraction potential between two polarizable systems as
their separation tends to asymptotic distance.

The qualitative behavior of the retardation (or
Casimir) potential is known on theoretical grounds to
be a change in the long-range potential power law, see,
for example, Refs. [1—5). The potentials are known for
many pairs of systems, including atom-atom, atom-wall
(conducting, dielectric, or permeable) (Ref. [6] and ref-
erences therein to the original papers), electron-ion, and
wall-wall. (We shall be referring to the electric dipole
component of the retardation potential; for some pairs
of systems the retardation potential is known for all or-
ders of multipole, electric and magnetic [7].) There have
been experimental investigations that have yielded quan-
titative evidence that is rather good for the effect for
the wall-wall case [8,9] and quite accurate for the atom-
wall [10,11] case, and studies are underway in the atom-
atom case [12]. The highest relative precision obtained
thus far in a system without walls would seem to be
that for the Rydberg helium atom —a He atom with one
electron in a highly excited, near hydrogenic, state with
n = 10, and l n, with a ls He+ core [13]. Further,
it would seem to be possible to greatly increase the ac-

curacy for the Rydberg helium atom. It can be difficult
to isolate the asymptotic part of the potential in a mea-
surement. Indeed, on theoretical grounds the form of the
retardation potential is usually known over a range of
r, the distance between the systems, &om several ao to
infinity. The most dramatic effect of retardation is the
change at asymptotic distances in the power law of the
potential, but there are also effects at smaller distances.

Although Rydberg helium and a number of Rydberg
helinmlike ions (~2C +, ~sO +, ..., ) have obvious merits,
such as the absence of nuclear spin, a one-electron core,
hydrogenlike wave functions for both electrons, etc. , there
are other analogous systems that offer considerable sim-
plicity, which is essential if highly accurate theoretical
results are to be obtained, and for which precise spec-
troscopic measurements are possible. One such system
is the Rydberg hydrogen molecule, a hydrogen molecule
with one electron in a highly excited, hydrogen-atom-like,
electronic state and an H2+ core, which, like the Rydberg
helium atom, has only two electrons, and for which a se-
ries of experiments have demonstrated [14] that precise
resolution of electron-H2+ long-range forces from spec-
troscopic measurements is achievable. Prom the theo-
retical point of view, the H2+ core has some additional
complexity relative to Rydberg helium, namely, the pres-
ence of nuclear spin and core rotation, but it should be
possible to overcome these difficulties as it becomes nec-
essary.

Using semiclassical theory, we recently derived the ex-
act asymptotic form for the retardation interactions in
Rydberg H2 (the result is applicable also to the case of
a Rydberg atom with a P state core; see also Sec. III C
below). The result obtained [15] was
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where a, (0) and n&(0) are, respectively, the components
of the static scalar and tensor electric dipole polarizabil-
ities of the Hz+ core, to be defined in detail later, r = lrl
is the distance of the Rydberg electron from the center
of mass of the nuclei, and 0 is the polar angle of the
Rydberg electron with respect to the internuclear axis.
There is a previous calculation of a retardation potential
for two asymmetric systems —the asymptotic interaction
between two neutral diatomic molecules, one or both of
which could be asymmetric, was obtained by Craig and
Power [16]. That analysis is not applicable to the e
H2+ system since the constituents are charged. In this
paper, we generalize a prior calculation for the Rydberg
He atom carried out using time-dependent perturbation
theory in the Coulomb gauge [17,18] to the Rydberg H2
system to obtain the retardation potential. The poten-
tial to be obtained has as its asymptotic limit the form
Eq. (1.1) and is valid for a range of r from several ap to
infinity. We also obtain accurate numerical estimates of
the energy shift caused by the potential.

II. EXTENSION OF A PREVIOUS
CALCULATION TO A CYLINDRICALLY

SYMMETRIC CORE

I, z x - l(0l»lu) I'&-p
(2.1)

The retardation potential for Rydberg H2 obtained
in [15] using a physical argument and exhibited in
Eq. (1.1) above can also be obtained using the formal
apparatus of quantum electrodynamics (/ED). In this
section, a derivation [17,18] of the retardation potential
for a Rydberg electron in helium that used nonrelativistic
/ED in the Coulomb gauge will be extended to the Ryd-
berg Hz system. The result to be obtained has Eq. (1.1)
as its limit for r ~ oo and is valid for all r greater than
several ap. The essential modi6cation is to allow the
core to be cylindrically symmetric, since He+ is being re-
placed by H2+. The notation used will follow closely that
of [18],designated as paper I, and references to equations
therein will be preceded by the symbol I, see also [17].
Many of the mathematical steps taken in reducing the
virtual photon exchange matrix elements to an efkctive
potential are similar to the spherically symmetric core
case—the only modi6cation being the core asymmetry-
and the notation and symbols used for the present deriva-
tion will be analogous to those used for the spherical case
where possible. Thus, for example, with P„representing
an in6nite sum and continuum integration, the essential
quantity that characterized the core for Rydberg helium,
the dynamic electric dipole polarizability de6ned in Eq. I-
(2.7), was

the energy of the virtual photon. For Rydberg H2 the
analogous quantity is

2 ~ - (01»*lu)(ul»~I0}&-p
up k

(2.2)

where in the molecule-fixed frame (fixed with the core)

l0) represents the H2+ core ground 1sos electronic state,
lu) is an intermediate cr„or ir„state, and xi, is the Carte-
sian component of the position vector of the core electron
from the center of mass of the nuclei, Ep and E„are
the energies associated with the new l0) and lu) states,
E p = E —Ep, and EIC

——hcjc is again the energy of the
virtual photon. (We will use the Born-Oppenheimer ap-
proximation for l0) and lu). ) Thus, n;z(k) for H2+ is the

analog of n~(k) for He+. [For l0) in Eq. (2.2) spherically
symmetric, o.;r. (k) reduces to a~(k)6;z. ]

Implicit in the definitions of the core parameters is
their dependence on the internuclear separation R. For
notational convenience, this dependence will be sup-

pressed until the last section of the paper, Sec. IIIB,
where the matrix element over the wave function corre-
sponding to the nuclear motion is evaluated.

There are a number of interactions due to the static
multipole terms, such as the permanent quadrupole mo-

ment of the core, which we do not address in this paper,
but it should be noted that they are signi6cant. Expres-
sions for the potentials arising &om such terms have been
given [19,20].

A. The evaluation of VII

&rr(r) = —e') ).).(0nl»'x'r 'luv)
i=1 j=l u, n

x (uvlx, ~x, r l0n)(E„p + E„„) (2.3)

After the Coulomb and permanent moment interac-
tions, the leading term in the interaction potential be-

tween a charge and a molecular ion is due to the polariza-
tion of the molecule by the electron electric field (some-
times called the adiabatic polarization potential) and is
given by, for example, Buckingham [19]. In this section,
we show, brie6y, how the computation of I, Sec. IV A, for
the exchange of two Coulomb or instantaneous "II" pho-
tons (see Appendix), extended to Rydberg H2, yields the
leading electric dipole adiabatic term and nonadiabatic
terms of higher order.

Carrying out the analog of the computation of I, Ap-

pendix A, we 6nd for the II contribution to the eH'ective

potential

where the wave function l0) and energy Ep referred to
the 1s state hydrogenlike He+ core electron and the wave
function lu) and energy E„referred to an intermediate
p-state, E„p = E„—Ep, rq was the position vector of
the core electron &om the nucleus, and EI, ——hck was

The quantities l0), lu), E„p&xi, , and r = lrl were defined
above, ln) represents the hydrogenlike wave function of
the Rydberg electron bound to a nucleus of charge Z —1
and in the state nl with energy E„, and lv} represents
an intermediate state of the Rydberg electron with an
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energy E, E = E —E„,and x~ is a Cartesian com-
ponent of r.

Expanding the denominator of Eq. (2.3) in powers of
E„ /E„o, the first term, 1/E„o, yields the adiabatic po-
larization potential

tities depend on the internuclear distance R. We return
to the question of numerical values for the various polar-
izabilities and the energy shifts arising &om Eq. (2.3) in
Sec. III8 below.

3 3

V (r) =——
—,'e ) ) a;, (0)z;z, /r, (2 4)

B. The evaluation of VIT

i=1 j=1

where x1, i2, and x3 are the components of the unit
vector r/r in the molecule-fixed &arne, that is, direction
cosines, (not unit vectors).

The next term in the denominator expansion,
E„/—E„o, yields, after some manipulation, the nona-

diabatic potential

Carrying out the analog of the computation of I, Sec.
IVB, for the efFective potential for exchange of one in-
stantaneous and one transverse photon "IT," we Gnd

3 3 QQ

Vlz (r) = ) ) kF;z(k) J;~(kr) dk, (2.9)
0

with
8 6V,„g(r) = ) ) *

(b;~ + 3Z;z~),
i=1 j=l

where

(2.5)
J, (kr) = b; [ jo(k——r) + —j2(kr)]

+ 3z;*,[sjo(kr) + s j2(kr)], (2.1o)

,.& - (oI*i*lu)(ul»ilo)
tao (ol»;lu)(ul», lo)

E 0+E~In deriving Eq. (2.5) we follow Eq. (A7) of Ref. [17] and
write

where jo and j2 are spherical Bessel functions and
(2.6)

(2.11)

) (nlz;r I v)(vl zr In)E„„ C. The evaluation of V~

where T2 ——pz/2m is the kinetic energy of the Rydberg
electron, and use the property P;~ = P~;. We found that
with this technique there was no need to integrate by
parts to obtain the r 6 dependence, as is sometimes done.

Our P;~ is the analog of P„„d for helium [17] and
reduces to P „~b;~ for lo) spherically symmetric. There
unfortunately exist many difFerent definitions of P„„d
for atoms, and the same is true for P;z, we note that the
definition of P;~ of Lundeen and collaborators is a factor
of two larger than ours and correspondingly a factor of 2
appears in their expression for this potential, see Eq. (35)
of [20] and our Eq. (3.39) below.

Our analysis of VII in paper I indicates that there
should be an additional nonadiabatic potential of O(r r),
see Eq. I-(4.12), a potential proportional to the quantity

1 f a l ' d'~„(k)
8 (mc) dk2 (2.8)

arising &om the third term, E2 /E„o, in the expansion
of the denominator of Eq. (2.3). Such a potential ap-
parently has not been included in the e -H2+ potential
calculations that have gone to order 1/rr [14,21]. We
hope to present an expression for this potential in a fu-
ture paper.

For a hydrogenlike ion (core) as(0) =
2 Z ao,

Pn~nag(0) = s Z ao, and p(0) =
4s Z ao, while for

H2+ no such rational forms are available and the quan-

The analog of the computation of Sec. IV C of paper I
for the e6'ective potential for the exchange of two trans-
verse photons "TT," is found to be, on inserting a con-
vergence factor as in I,

with

OO

VT~(r) = — lim ) ) dkk e ""
9 vr2mc2 p-+0 i=1 j=1
x H,, (k) G;~ (kr), (2.12)

H (k) 2,2) - (ol»*lu)&ul»~lo)E o

E o+E~ (2.13)

and

There is a typographical error in Eq. 1-(4.24); there should
be a factor k' in the numerator.

1 I
k'

G;~(kr) = —P dk', (4j o(kr)jo(k'r)b;~
0

—2[jo(kr)j2(k'r) + j2(kr)jo(k'r)](b;, —3z;z~)
+j2(kr)j2(k'r)(b;, + 3z;z, )), (2.14)

where P represents the Cauchy principal value. Integrat-
ing over k' as in I, we find, with s = kr,

G;~(s) = 2n(([—2jo(s) + j2(s)]s —3'(s))b;~
+([2j ( ) + j ( )] —I ( ))3*'* ) (2.»)
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where

Ig(s) =
2 sin(2s)(s —3s + s )

+ cos(2s) (s —s ), (2.i6) to complete the integration in (2.20); we find

VT(r) = V (r)

(2.25)

I~(s) =
2 sin(2s)( —s —s + 3s )

+ cos(2s) ( —s —3s ).

Using the identity

&:/(E:+~.) =1 —[~./(~:+ ~.)]

(2.17)

(2.is) where

(2.26)

2e4+. ..„,).).).—„.(oI*.I-)(-I*., Io)
i=1 j=l

x(b;~d(y) + x;x~&(y)),

in H;~ (k), the integrations arising from the "1" in
Eq. (2.18) separately vanish, and using Eqs. (2.15) and
(2.11) we can write

d(y) —= f(2y)(-,'y' —-', y'+ —,')
+g(2y)( y'+ y—) + —',y ——,'y' (2.27)

VTT(r) =

(2.i9)

OOh ) ) f dkk e ""F;,(kI
i=1 j=l

x(—2(Ig(kr)by + Iz(kr)x;i1]
+(1/k'r') J;,(kr)).

p(y) =—f(2y)( —
—,
'y' —

—,'y'+ -', )

+g(2y) (y'+ 3y) —
—,'y + —,'y'. (2.28)

In order to evaluate VT numerically, it will prove con-
venient to express V in terms of y, include it in the sum
over u, and write

D. The sum VT of Viz and VTz

Using Eqs. (2.9) and (2.19), we can write
VT(r) = ) ) (D,,b,, +P,,x;x, ), .

i=1 j=l
(2.29)

VT (r) = VIT (r) + VzT(r)
3 3 QQ

kee) ) f dkk e Fe()ek
i=1 j=l

x (b;, I~(kr) + x.,xzI~(kr)]. (2.20)

With the replacement of F;~(k) by o.;~(k), Eq. (2.20)
above is identical to Eqs. (2.17) and (3.16) obtained in
Ref. [15] using a semiclassical argument. We will return
to this point in the last section.

To facilitate comparison with the asymptotic form of
the potential we introduce

where

2e4
, , ) .—,(0i»'Iu) (ui»~ ]0)(d(y) —

—,'~ —
—,'y]

(2.30)

4

4 ) —2(olx1;lu)(ulx1&lo)(p(y) —4~+ s y]

(2.31)

hack

0

i=1 j=l

The expansions of the quantity in (. ) in Eq. (2.26)
are

&V(0) 1—e ap [-, b',, + —,x;x, ] (2.2i)
and

) - y '( —".b', + —."*.*, + ) y oo, (2.32)

%e also introduce

y—:E„pr /hc (2.22)

f (y) = C1(y) s111y —s1(y) cos y, (2.23)

and the auxiliary functions f and g of the sine and cosine
integrals [22],

f. . .) —{-7r+ sy —41ry
1 1 1 2

+[—s(p+ ln2y) + ss]y + 47ry )b;,
~(3 25 + 5 2

+[2(p+ ln2y) —4']y' —41~y4)x;x, , y 0,

(2.33)

g(y) = —Ci(y) cosy —si(y) siny. (2.24)

Using (2.11) and (2.21) we follow paper I and use para-
metric differentiations with respect to t of the integral
representation of f (ty), with

where p = 0.577... is the Euler constant. In the next
section, Sec. III 8, we will use these expansions to eval-
uate the small-r and large-r limits of VT by completing
the sums over i and j. The small-r limit, which con-
tains terms of order r, r, and r, is obtained by
substituting Eq. (2.33) into Eq. (2.26) and in Sec. IIIB
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below we will give explicit expressions for these terms,
and discuss their physical meanings, where possible. The
asymptotic limit, which results &om the substitution of
Eq. (2.32) into Eq. (2.26), can be written as

o o )
0 A~ 0

E o o
(3.3)

3 3 2

v (.) -)), [--,b,,-+ —,*,*,l
Q»j (0)

i=1 j=1

[136,, + 7z»z, ],
ao r~

(2.34)

where p;~ is formally defined in Eq. (2.8). The r s term,
the asymptotic potential, is the result obtained semi-
classically [15], and reduces to the usual form [17] for
~"(o) = ~(0)4.

III. ENERGY SHIFTS

~. —= —,'(2~ +~~~), (3.4)

because 4, and Aq have simple transformation proper-
ties [24]. Equation (3.4) is not surprising. The coeffi-
cients 2 and 1 in 6, reBect the fact that there are two
directions perpendicular to the internuclear axis and one
parallel. Thus, since 4, = 3TrE,~, 4, is a scalar. Fur-
ther, roughly speaking, with b a number,

and

= +11 = 422 = 2(411 + 422) =
y2b Slil 8, (3.5)

with 4 and A~~ the two independent elements. As in
Ref. [15] for the particular case of o.;~, it is convenient to
work with two different independent elements,

To obtain the energy shifts for a Rydberg state nl &om
the various forms of the effective potentials comprising
VT obtained above, we need to evaluate matrix elements.
To do so, we 6rst reduce the sums over i and j to ge-
ometricaf factors, then make contact with the work of
Eyler and Pipkin [23], who have developed all of the for-
malism required to obtain reduced matrix elements, and
we then evaluate the potentials using a representation of
the electric-dipole excitation spectrum of H2+. Matrix
elements of the potentials over the vibrational-rotational
wave function for the H2+ core and the Rydberg electron
wave function follow and yield the desired energy shifts.

A. Reduction to geometrical factors

=bcos 8, (3.6)

so that

b„= sb, 6» ——b[cos 8 —2(1 —cos 8)] = bP2(cos8),

(3.7)

that is, Aq is proportional to Y20, a component of a
symmetric traceless second-rank tensor. Note that for
4+ = A~~ = 4, in which case cos 8 = 2, 4;~ has only
one independent element, b,, = b, . (b,» then vanishes. )
We will now proceed more formally.

T;~ can be decomposed into a linear combination of
two irreducible components, one transforming as a scalar,
and one transforming as a traceless symmetric tensor,
denoted by S;~, as

In general, the effective potential expression to be eval-
uated is composed of a scalar product of two symmetric
second-rank Cartesian tensors, thus,

where

T;, = (A+ s'B)b,, + BS;,, (3.8)

3 3

n=) ) S;,T;, ,
i=1 j=l

(3.1) (3.9)

where 4;~ depends on the orientation of the core, R, and
possibly r, and could represent n;~, P;z, p;~, F;~, D;~, or
P;~. In general, any symmetric second-rank tensor would
have six independent elements. However, as applied to
the H2+ core, the cylindrical symmetry and the choice
of principal axes such that the z axis coincides with the
internuclear axis reduce the number of independent ele-
ments of each 4;~ to two. By inspection of an equation
such as (2.29), we see that T;z is of the forin

using Trz~z~ = 1. We can then write, using (3.5) and
(3.6),

3

0 = ) b»»T»» = 6 (Tii+ T22)+ 6 Tss) (3.1o)

and using (3.8) to replace the T;; we have

0 = (A+ -', B)[2b, + b.~~] + B[b. (S'„+S2,) + 4~ Sss].

T;~ = Ab;~ + Bx,x~, (3.2) (3.11)

with A and B scalar factors that are independent of the
core properties, such as y.

In the molecule-fixed frame (fixed with the core) in
which the electronic matrix element (0)zi; )u) (u~ zi~ )0) ap-
pearing in A;~ is calculated, L;~ can be written in the
form

With (3.4) and the definition of S;;, (3.9), we can write

0 = (3A+ B)4, + B[b,~(z2i + z', —-', ) + A (z', ——,')],
(3.12)

and since P,. i z2 = 1 and zs2= cos~ 8, we have the final
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result

0 = (3A + B)A, + &Bb,qP2(cos 8). (s.is)

where InlvN) = Inl)lvN), Il —Nl & J & Il+Nl, and the
diagonal coupling can be expressed using [23]

(N, l; JIP2(cos 8) IN, l; J)

The result for 0 obtained in Eq. (3.13) is identical
to that worked out by Eyler and Pipkin. [To see that,
note that P2(cos8) = Co (8, $), with Co a spherical-
harmonic tensor in the notation of Ref. [23] and where
8, P are the angles of the Rydberg electron relative to the
core (in Ref. [23] these were denoted ur, v).] That 0 is

P independent is expected due to the cylindrical symme-
try of the core charge distribution seen by the Rydberg
electron. For example, we can check Eq. (3.13) by see-
ing that for A = 0 and B = 1 it reproduces the result of
Ref. [23], the equation above their Eq. (7), for the electric
dipole polarization potential expressed in the molecule-
fixed frame. We will use relation Eq. (3.13) repeatedly to
reduce products of the form of Eq. (3.1). Note that Eyler
and Pipkin started with a classically-derived expression
for the polarization potential and then obtained expec-
tation values using quantum-mechanical wave functions,
while an alternative derivation has been given by Sturrus
et a/. [20], who used quantum mechanics to derive the po-
larization potential in second-order perturbation theory
and also to obtain expectation values. The latter ap-
proach has the advantage that it can readily be adapted
to obtain higher-order "nonadiabatic" potentials.

In Hund's case (d) the orbital angular momentum vec-
tor j. of the Rydberg electron is space-6xed and it is de-
sirable to transform to the space-6xed kame in obtaining
reduced matrix elements. Eyler and Pipkin have carried
out the transformation and the angular momentum al-
gebra to obtain reduced matrix elements for O. Since
our Eq. (3.13) provides the connection to their molecule-
6xed frame expression, we can proceed directly from their
Eq. (7) to obtain the final expression for the matrix ele-
ment of O. Introducing the vibrational quantum number
v and the angular momentum quantum numbers N, I,, J„
where J = Il + Nl is the total angular momentum less
electron and nuclear spin, with N the core rotational an-
gular momentum, we have

(vNnl; JlnlvNn/; J) = (n/vNI(32+ B)b„ln/vN)
+ s (n/vNIBb, g In/vN)

x (N, l; JIP2(cos 8) IN, l; J),
(s.i4)

N, /, J.) The selection rules are given in Ref. [23]. We
consider only terms diagonal in ¹ the term P2(cos 8) can
also couple states that diger in N by +2 for a given / and
J and such couplings can be treated using perturbation
theory, but they are small and we ignore them because
their relative efFect on the retardation energy shift is ex-
pected to be small. For the common case of % =
Eq. (3.15) yields

(1, /;llP2(cos8)ll, l;/) = s—, (3.17)

(1, /; l + 1IP2(cos 8) I1, /; l + 1) = l/[5(2l + 3)], (3.18)

The oscillator strengths, de6ned to be

f.".= -'. E.'o l(ul~l0) I'(e'ao) ', (3.20)

f..= -.'E.'1(ul*lo) I'(e'no) ' (3.21)

where z = zq3 and x = zqq are, respectively, parallel and

perpendicular to the internuclear axis, E„p —E„~~ —Ep
~

II

for Iu) a o'„state and E„o —E„~—Eo for Iu) a vr„state,
obey the Thomas-Reiche-Kuhn sum rule

) fll +) f&
~II uJ

(3.22)

Since the x, y, and z components give the same value,
despite the fact that the ground state is not spherically
symmetric, we can decompose Eq. (3.22) into

(1,/;/ —1IP2(cos8)ll, l; l —1) = (/+ 1)/[5(2/ —1)],

(3.10)
both of which tend to

z&
as l ~ oo.

[An alternative method would be to proceed directly
from Eqs. (3.1) and (3.8) to reduced matrix elements by
using Ramsey's theorem [25], which suggests itself due
to the quadrupolar form of the tensors in Eq. (3.1). The
theorem may be used to obtain diagonal matrix elements
of a second-rank symmetric traceless tensor constructed
&om a vector that commutes with some angular momen-
tum vector in the same manner as the relevant coordinate
vector commutes with the angular momentum vector.
Propin [26] applied this method successfully to obtain
some energy shifts due to the electron spin-dependent
interactions (the so-called magnetic fine structure) for
H2. ]

B. Numerical evaluation

3Y(Y —1) —4N(N + 1)l(l + 1)
2(2N —1)(2l —1)(2N + 3)(2l + 3)

(3.15)
):f,= —,',it

u}/

).~-o —
S (3.23)

with

Y = N(N+1)+/(/+1) —J(J+1),

The
II

and J components of the polarizabilities o.;~, P;~. ,

p;~ are proportional, respectively, with n = —2, —3, —4,
to the dimensionless sums

see also Ref. [20]. (Note that Eyler and Pipkin used
the symbols R, I,N, where we have used, respectively,

~'(n) = 3).f.o(E.'o/EH)"
uII

(3.24)
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(3.25)

where E~ = e /ao. Thus, for example, we have

~ (0) = 3ao).f 0/(E o/E~) = aoS (—2) (3 26)
~ll and

and

a (0) = -a ) f„ /(E„ /E ) = a S (—2), (3.27)

and, with e representing
~~

or J, analogously, P"
~a4oS" (—3) and p" = 4aos" (—4), according to our
definitions, Eqs. (2.6) and (2.8). Numerical values of
the sums (3.24) and (3.25) at various internuclear dis-
tances R have been given by Bates [27] and values of
S,(n) = z~ [2S+(n) + Sll (n)] with n = —2, —3 have been
given by Bishop and Cheung [28].

By introducing the oscillator strengths, defined by
Eqs. (3.20) and (3.21), we can reexpress Eq. (2.26) for
VT in terms of the scalar and tensor components, using
Eqs. (3.1)—(3.13) separately for D,~ and P;~ in Eqs. (2.30)
and (2.31). Thus, with A = 1, B = 0 for D,~ and A = 0,
B = 1 for P;~ we have

chill(0) - 3as ) gll/(~ll)' (3.33)

A convenient way to evaluate the infinite summation-
integration g„ is to use pseudostates —a set of M pairs
of effective transition energies ~; and dipole oscillator
strengths g;—and we note that a tabulation for H2+ with
M = 6, for both parallel and perpendicular transitions
and at various values of the internuclear distance, has
been published [29]. These will be used in the subse-
quent evaluations. A comprehensive tabulation of the
various polarizabilities as a function of R is beyond the
scope of this paper, but in terms of the dimensionless
pseudostates, we have, for example,

VT (r, R, 8) =—VT,,(r, R) + VT, ,(r, R)P2(cos8)

M
~J (0) sas ) gJ /(gJ )2 (3.34)

= [3D,(r) + P, (r)]+ st(r)P2(cos8), (3.28)

where the R dependence was reintroduced in the notation
on the left hand side and where D„P„and Pq are defined
according to Eq. (3.4) and

Dll(„) ) o
[g(y) ~ y] (3 29

~ll

To evaluate Eqs. (3.29)—(3.32) with pseudostates we

need only make the replacements g„-+ g, &, y
M

E„or/hc m u;re2/aohc and f; m g, , using the J or
~~

set of pseudostates as appropriate.
Before we evaluate Vz, we give its small-r and large-r

forms, obtained as described above in Sec. IID and ex-
pressed in terms of the sums Eqs. (3.24) and (3.25) using
the definitions of the s and t components in Eq. (3.4).
For r small but greater than a few ao we find

Qo —7GO 6 a' (e2)'
V~(r, R, 8) - ', S.(-1)+,' —S.(O)+ ',

(

—
[ S.(1)

5ao 4a e ao (e (e2)
Sg(—1) + —Lg(0) —

~

—
~

Sg(l) P2(cos 8) )

—
~

E~,6r4 3vrrs Ac 6r2 (hc) I hc)
(3.35)

where L4(0) is obtained from the logarithmic sums

Lll(0) 3) filo ln(E„o/E~)
~ll

and

L (0) = 2) f l (oEn„/Eo~)

(3.36)

(3.37)

that have been tabulated for various R in Ref. [29].
Note that because S&(0) = 0, only the logarithmic sum
Lq(0) appears in Eq. (3.35). The small-r limit gives
O((e /Ac)2) and O((e2/hc) ) corrections arising, respec-
tively, Rom the Breit-Pauli orbit-orbit interaction and
two-photon exchange (Araki-Sucher) [30,31] terms.

For large r we Gnd,
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11ao e' 3a,' 23ao AC
VT(r, R, 8) —S.(—2) — S.( —3) + —S, (—4)2r' 4vrr7 e2

25ao e' a6 7ao kco —S, (—2) — S, (—S) 4 —S, (—4) P, (cosS))Err12mr5 hc 2r6 12vrr" e2 (3.38)

We also find, in agreement with prior derivations for H2 [20], the Coulombic potential

a04 3a6 a', ao
4rrr(r R, 4) ,

= — S.(—2) + S.(—S) + — Sr( —2) + Sr( —S) Ps(cos S)
)

Err2r4 2r' ar4 2r
s

(3.39)

Note that the s and t components of the nonadiabatic,
1/rs, terms in Eqs. (3.38) and (3.39) separately cancel,
similarly to the spherically symmetric case of Rydberg
helium [32]. (See Appendix. )

All of the quantities dependent on E„o and the os-
cillator strengths —that is, the ii and J components of
the various polarizabilities o. , P, and p, the sums S(p)
and 1(p), and the components of VT —depend upon
the internuclear distance R. We now need to aver-

age these core-dependent quantities over the vibrational-
rotational wave function of the H2+ core. To do so, we

require the wave function of the vibrational-rotational
part of the Hamiltonian. , which we determine in the
Born-Oppenheimer approximation by numerically inte-
grating, using the Numerov-Cooley method, the radial
Schrodinger equation corresponding to the Hamiltonian

I„„,= (5'/M„)V—'„+E,(R) + e'/R, (3.40)

where Ep(R) is the electronic energy and the reduced
mass is 2M„, with M~ the proton mass. The methods
are standard and yield a radial vibrational-rotation wave
function y„~(R) that satisfies

(3.43)SE..., (n«X) —= (niiVT, „~(r)int)

f dRy„~(R) = l.
0

(3.41) and

I

pseudostates and evaluate the potentials VT, (r, R) and
VT i(r, R) as functions of r as in Ref. [33], but unlike
the potential for He, the potentials are also functions of
R. We then carry out as described above the average
in Eq. (3.42) for each value of r In T.able II, some re-
sults are given for Vz. , N and VT q „~, for v = 0, N = 1
and various values of r. The expansion of Eq. (3.28) for
small-r, Eq. (3.35), is accurate to better than O. l%%uo for
r ( 5ap, while the expansion for large r, Eq. (3.38), is
accurate to better than 0.1'%%u() for r & 3000ap, and so we
have tabulated VT from Eq. (3.28) only for the range
5 & r/ap ( 3000. The near equality of VT' s pi and VT' i pi
over the range of R given in Table II appears to be fortu-
itous. It arises because the 8 and t coeKcients are numer-
ically almost equal for the leading r potentials of the
small-r expansion and for the leading r potentials of
the large-r expansion. Finally, to obtain the correspond-
ing energy shift, we need to take the matrix element over
the Rydberg electron wave function inl) = Q„i(r), which
was carried out as described in Ref. [33]. In Table III, we

give the retardation energy shifts

Q. ( iv)=r dR y„~(R)Q(r; R), (3.42)

For a given quantity Q(r; R) known at various discrete
values of R we obtain Q„~(r), the radial matrix element
over the vibrational-rotational state, by evaluating the
integral

&E,.t,&(ri«~) = (ii&[VT,t, N(r)iii&), (3.44)

calculated for the v = O, N = 1 state of H2+ for vari-
ous values of n and l. Note that for the t component
the expectation value Eq. (3.15) of P2(cos8) was not in-

cluded in the expression for the energy shift, as discussed

using Simpson's rule with the function Q(r; R) interpo-
lated using cubic splines at the points where y„~(R) is
known. We used a value Mz ——1836.1527 and a step
size of 0.001ao in generating the wave function. The ma-
trix elements S„"~(p) of the sums calculated using the
M = 6 pseudostates of Ref. [29] are given in Table I for
v = O, X = 1 and can be used to evaluate the small-
and large-r forms of VT „~(r) merely by replacing the
sums appearing in Eq. (3.35) or Eq. (3.38) by their av-
erages from Table I. The accuracy of the sums could
be improved, if necessary, by using a larger value of
M, but the M = 6 pseudostates are suKcient for the
present pilot study, an indication of which are the values

of Spi(0) = 0.9899 and Spi(0) = 0.9959 from Table I;
each would be unity if the calculation were exact.

To evaluate the general expression for VT (r, R, 8),
defined by Eq. (3.28), we first insert the M = 6

-3

So'i(p)
46.01
15.09
5.834
2.337
0.9899
0.5585

Soi(p)
3.971
2.667
1.833
1.307
0.9959
0.8548

I ', (0)
-0.7918

Loi(0)
-0.2237

TABLE I. Values of the sums Soi(p), S()i(p), Lpi(0), and
Loi(0), for the matrix elements over the v = 0, N = 1 vi-
bration-rotational wave function calculated using the M = 6
pseudostates.
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r/ap
5
6
7
8

10
20
30
40
50
60
70
80
90
100
120
140
160
180
200
300
400
500
600
700
800
900
1000
1400
2000
3000

VT ...oi(r)
6.920[-8]
s.s27[-s]
1.790[-8]
1.046[-8]

9]
[-91

6.512[
4.260
2.587
4.973
1.534
6.131
2.888
1.524
8.744
5.346
3.437
1.595
8.298
4.698
2.837
1.803
3.089
8.657
3.187
1.397
6.913
3.743
2.171
1.331
2.742
5.020
7.103

[-io]
[-»1
[-11]
[-12]
[-i2]
[-i2]
[-13]
[-is]
[-is]
[-13]
[-i4]
[-i4]
[-i4]
[-14]
[-15]
[-is]
[-16]
[-16]
[-i7]
[-»]
[-17]
[-»]
[-18]
[-19]
[-2o]

+T,t,01
7.235[
3.4S2[
1.876[
1.098[
6.838[
4.478
2.744
5.315
1.650
6.630
3.138
1.663
9.571
5.869
3.783
1.762
9.199
5.220
3.157
2.008
3.441
9.597
3.511
1.529
?.515
4.043
2.331
1.421
2.874
5.160
7.162

-8]
-8]
-s]
-8]
9]

[-9]
[-io]
[-ii]
[-11]
[-12]
[-12]
[-12]
[-is)
[-is]
[-is]
[-13]
[-i4]
[-i4]
[-i4]
[-i4]
[-i5]
[-i6]
[-i6]
[-i6]
[-17]
[-17]
[-17]
[-17]
[-18]
[-19)
[-20]

TABLE II. Values of Vr, ~,oi(r) and VT,e,oi(r) in units of
EH. Numbers in square brackets represent powers of 10.

n l AE,
14 13 1.68[

12 2.80[
11 4.73[
10 8.19[
9 1.47[
8 2.76[
7 5.52[
6 1.20[
5 2.93
4 8.47[
3 3.20

13 12 3.23
11 5.57
10 9 78[
9 1.77
8 3.36

-4]
-4]
4]

-4]
-3]
-3]
-3]
-2]

-2]
[-1]
[-41

[-4]
-4]
[-31

[-sl
7 6.76[-3]
6 1.48[-2]
5 3.62[-2]
4 1.05 [-1]
3 398[

12 11 6.53[
10 1.17[
9 2.16[
8 4.13[
7 839[
6 1.85[
5 455[
4 1.33[
3 5.04[

-i)
-4]
-3]
-3)
-3]
-3]
-2]
-2]
-i]
-1]

+Eret, ,t
1.87[-
3.10[-
5.21 [-
8.97[-
1.60[-
2.98[-
5.92[-
1.28[-
3.10[-
8.92[-
s.s6[
3.58[
6.14[
1.07[-
1.93[
3.64[
7.27[
1.58[
3.84[
1.11[
4.18[
7.22[
1.29[
2.35[
4.47[
9.02[
1.97[
4.83[
1.40[
5.29[

4]
4]
4)
4]
3]
3]
3]
2]
2]
2]

-1]
-4]
-4]
3]

-3]
-3]
-3]
-2]
-2]
-i]
-i]
-4]
-3]
-3]
-3]
-3]
-2]
-2]
-i]
-i]

n l dE,
11 10 1.40[

9 2.63[
8 5.13[
7 1.06[
6 2.34[
5 5.82[
4 i7i[
S 651[

10 9 3 22[
8 6.43[
7 1.35
6 303
5 759[
4 224[
3 8.60

9 8 806
7 1.73
6 3.98
5 1.01
4 3.02

AEr t, t
-3]
-3]
-3]
-2]
-2]
-2]
-i]
[-1]
[-3]
-3]
[-2]
[-2]
[-2]
[-1]
[-i]
[-3)
[-2]
[-2]
[-i]
[-1]

-3] 1.54[
-3] 2.ss[
-3) 5.56[
-2] 1.14[
-2] 2.5O[
-2] 6.18[
-1] i.so[
-1] 6.83
-3] 3.52
-3] 6.98[
[-2] 1.45
[-2] 3.24
-2] 8.06
-1] 2 S6
[-1] 9.02
[-3] s.77
[-2] i.s7
[-2] 4.26
[-1] 1.08
[-1] 3.19

1.23
2.43
5.70
1.47
4.43

1.17
2.25[-2]
5.ss[-2]
1.38[-1]
4.20[-1]
1.64
7.2O[-2]
1.94[-1]
6.03[-1]
2.40

3
8 7

6
5
4
3

7 6
5
4
3

[-2)
[-21

[-1]
[-1]

1.72
7.73[-2]
2.o7[-i]
6.37[-1]
2.51

TABLE III. The retardation energy shifts EE„t,„
Eq. (3.43), and AE„&,z, Eq. (3.44), in MHz, for v = 0, N = 1

and various values of n and /. Numbers in square brackets
represent powers of 10.

below. Various approximations have been made in arriv-
ing at the results presented in Table III. For example,
l should be large enough that case (d) coupling applies;
the corrections become more signi6cant as one goes to
lower values of l.

C. Prospects for measurement

The most accurate measurements for Rydberg H2 were
carried out by Sturrus et al [14], who m.easured fine-
structure transitions for n = 10 and l' —/ = 1 with a e =
0, N = 1 core. For each measured transition ivNnl J)
ivNnl'J'), where J —J' could be 0, +I, they defined a
"pure electric fine structure (EFS)" interval E(l, J) that
represents the measured energy shift in the absence of
spin (and exchange) effects, and which could be fit most
accurately using the expression

E(l, J) = Ap(v, N, n, l)
+Ai (v, N, n, l) (N, l; JiN . 1iN, l; J)
+Az(v, N, n, l)(N, l; J]Pq(cosa)[N, l; J)
+E,(l, J), (3.45)

where Ao, Aq, and A2 represent empirical values for the
"structure factors, " and where E{ &(l, J) is the theoret-
ical "second-order polarization energy, " which includes
energy shifts arising from ofF-diagonal couplings. The
empirical structure factors are the scalar and tensor co-
efficients appearing in the energy. [Sturrus et al. also in-

vestigated a Gt in which the Aq term was omitted and the
results were similar to those obtained using Eq. (3.45).]

We shall abbreviate Ap(0, 1, 10, l) as Ap(l) and simi-
larly for A2. The measurements yielded (see Table VIII
of Ref. [14]) a value of Ap(g) —Ap(h) with a precision
(one-standard-deviation error) of 3.3 MHz, Ap(h) —Ap(i)
with a precision of 0.5 MHz, and Ap(i) —Ap(k) with a
precision of 0.3 MHz, and values of A2(l), for l = g, h, i,
and k, with precisions ranging Rom 23 to 0.5 MHz. Our
predicted 8 component energy shifts due to retardation,
from Table III, would appear in the Ao structure fac-
tor and are 0.15, 0.045, and 0.017 MHz, for, respectively,
Ap(g) —Ap(h), Ap(h) —Ap(i), and Ap(i) —Ap(k). The pre-
dicted t component energy shifts &om Table III, which
would appear in A2, are 0.24, 0.08, 0.03, and 0.015 MHz,
for, respectively, / = g, h, i, and k. The magnitudes of
these scalar and tensor shifts are of the order of the mea-
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sured fine-structure energies appropriately averaged over
the spin values (see Table VII of Ref. [14]). Because
the coefficients Ao, Ai, and Az in Eq. (3.45) have to
be fitted to the fine-structure energies, and because the
present theoretical values of E &, which also appears in
Eq. (3.45), are not yet sufficiently well known, it is not
now possible to confirm the Casimir shifts. It might be
possible to improve the experimental precision by a factor
of 10, and perhaps to the level of 0.01 MHz [14].

Further, in order to isolate the retardation effect one
needs to know the energy shift due to the other potentials
present (adiabatic and nonadiabatic polarization poten-
tials, potentials due to permanent multipoles, etc.). From
Table VIII of Ref. [14] we see that for Ao the estimated
precision of the theoretical determination of these other
effects is about 10—100 times the experimental precision.
For A2 the estimated precision in the theoretical deter-
mination is of the order 2—5 times the experimental pre-
cision, but there is a considerable discrepancy between
theory and experiment, of the order 4—100 MHz, in the
magnitude of A2. To improve upon the theoretical esti-
mates for the other effects will take a considerable effort,
perhaps a comprehensive perturbative approach such as
that used by Drachman [34] for Rydberg helium, includ-
ing the calculation of terms, such as the nonadiabatic
potential depending on p, Eq. (2.8), which we discussed
in Sec. IIA above, or a variational basis set approach,
such as that used by Drake for Rydberg helium [35]. We
note that while there is no t component energy shift for
N = 0 for Rydberg H2, the s component shift is still
present and the corresponding level structure is similar
to that of Rydberg helium.

In our calculation we have neglected the effect of the
reduced mass of the core and Rydberg electron, which
could be treated by formulating the problem in Jacobi
coordinates [14], the Rydberg constant for H2, 7Z

109707.4496 cm i [36], which would modify slightly the
length scale in the radial equation for Q„~(r) [21], ex-
change energies [37], relativistic "p4" corrections, second-
order perturbations [14],magnetic fine structure [38], and
hyperfine effects [39], all of which may need to be under-
stood before a truly reliable quantitative verification of
the retardation potential is achievable.

The final result, Eq. (3.28), could be applied with little
modification to obtain an estimate of the retardation en-
ergy shifts for other Rydberg molecules with E+ cores,
providing sets of pseudostates are available. For exam-
ple, there have been measurements of the 8f, 9f, and 10f
Rydberg states of N2 of which the 8f data were used to
determine the permanent quadrupole moment and n, (0)
for the v = 1 zZ+ Nz+ core [40] (and references therein
for other molecules). It may be possible to extend the
present approach to a Rydberg atom for which the core
consists of a relatively inert set of closed shells plus a p (or
d, or f, . . .) electron. (A prototype would be a Rydberg
carbon atom, with the core in its ls 2s 2p configuration. )
For a given value of the magnetic quantum number, the
vector defined by the angular-momentum vector of the p
(or d, or f, . . .) electron should play the role played by
R for the Rydberg H2 problem. For an upnolarized core,
one would average over the magnetic quantum number.

IV. CONCLUSIONS

We have shown that the retardation potential obtained
using a semiclassical approach [15] can be extended anal-
ogously to the extension obtained for Rydberg He [18];for
He one replaces the dynamic electric polarizability o.(cu)
for He+ by F(~) for He+, while for H2 for H~ . The
retardation energy shift is an order of magnitude smaller
than each of the present theoretical and experimental un-
certainties. With some effort, it seems likely that both
theoretical and experimental results could be improved
to the point at which the retardation shift would be de-
tectable. Apart from the interest in confirming a retar-
dation shift, a knowledge of the shift allows greater ac-
curacy in the determination of the various parameters
which characterize the H2+ core.
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APPENDIX A: DISAPPEARANCE OF THE
"NONADIABATIC" TERM

The (action-at-a-distance or instantaneous) Coulomb
potential affecting the distant Rydberg electron is, in the
dipole approximation,

—e Fi F2
—+

p r3

In first order, the effect of the (R independent) pertur-
bation 6 averages out to zero. The 1/r second-order
effect of 6, V~ ~ of Eq. (2.4), does not involve excita-
tion of the outer electron; E„never appears. With r
Gxed, the outer electron interacts with the dipole mo-
ment which its electric field induces in the core; the cor-
relation between the electrons is static. E„does enter
in the determination of the 1/rs third-order effect of h,
the "nonadiabatic" potential V„„gof Eq. (2.5); we are
here concerned with a dynamic correlation, with the elec-
trons simultaneously excited, with each electron "aware"
at each instant of the location of the other electron at
that instant. V„„p can therefore be correct asymptoti-
cally only for c infinite. For c finite, V„~ is correct (be-
yond a few ao) only out to distances of order r*, where
r* is defined by the equality of the to-and-&o time of
Bight of two photons and the period of the inner elec-
tron. (See Ref. [2].) Since the argument does not require
the unperturbed state of the core electron to be spher-
ically symmetric, it is applicable to Rydberg states not
only of He but of H2.
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