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Upper and lovver bounds on the energy eigenvalues
of the one-electron Dirac Hamiltonian
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A variational method based on results for self-adjoint operators due to T. Kato [Proc. Phys.
Soc. Jpn. 4, 334 (1949)] is developed to calculate upper and lower bounds on the energy eigenvalues
for the one-electron Dirac Hamiltonian. The method avoids relativistic variational collapse for any
one-electron potential. This result is con6rmed analytically in the case of the Coulomb potential
and numerically in the case of hydrogenic atoms in very strong magnetic 6elds for which standard
variational techniques cannot preserve bounds. The upper bound thus obtained converges rapidly
to the best available numerical results, and provides a very efBcient technique for the search of the
optimal variational energy by means of a minimization procedure.

PACS number(s): 31.30.Jv, 32.60.+i, 31.10.+z

I. INTRODUCTION

Many accurate nonrelativistic atomic-structure calcu-
lations are based on finite-basis-set variational methods,
especially for atoms with a few electrons, such as heli-
umlike atoms [1,2]. These methods can provide rigor-
ous variational upper bounds on the energy eigenvalues
due to the fact that the nonrelativistic Hamiltonian is
bounded from below. However, the extension to the rel-
ativistic case is not simple, because the Dirac Hamilto-
nian is not bounded from below: its energy spectrum
contains an infinite continuum of negative-energy states.
As a consequence, the variational energy (Rayleigh-Ritz
eigenvalue) is not necessarily an upper bound to the exact
eigenvalue, and even worse, one may run into the problem
of variational collapse in which, upon minimization, the
variational eigenvalue may collapse to any value below
the exact energy eigenvalue. Several methods have been
developed to overcome this difficulty [3—8]. Recently,
a method based on the operator 1/H~, where H~ is
the one-electron Dirac Hamiltonian, was introduced [9]
in which the upper bound on the ground-state energy
can be obtained by maximizing the variational spectrum
of 1/HD. Also recently, a minimum principle for Dirac
scattering lengths was developed [10], which can also be
used to provide a sufficient condition for the existence
of a given number of bound states and lower bounds on
the energy eigenvalues. For the single-electron Hamil-
tonian, a practical and effective way is to select a basis
set based on boundary conditions and the nonrelativistic
limit [6,11],but this method generally does not guarantee
bounds on the energy. (Only for the Coulomb potential
it has been proven that if a proper basis set is chosen, the
variational energy is an upper bound on the true energy
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[6].) In this work, we propose a method for determining
rigorous upper bounds to the eigenvalues of the Dirac
Hamiltonian based on results found in a 1949 paper by
Kato [12]. In that paper, Kato derives upper as well as
lower bounds to the eigenvalues of an operator, by mak-
ing use only of the self-adjointness of the operator, i.e. ,
without requiring its half-boundedness. The efficiency
of Kato's bounds [12] has recently been demonstrated in
calculations of the nonrelativistic energies of hydrogenic
atoms in strong magnetic fields. Very accurate upper and
lower bounds have been obtained for the low-lying levels
in strong magnetic fields [13] and for the Rydberg states
in magnetic fields B = 4.7x 104 G [14]. Relativistic vari-
ational calculations have also been performed to obtain
accurate relativistic corrections [11], although eigenval-
ues are obtained to high precision by optimization tech-
niques, as no bounds are preserved in the calculation.

In this paper we apply Kato's bounds to the one-
electron Dirac Hamiltonian; these bounds are described
in Sec. II. Their efficiency is then confirmed analytically
in the case of a Coulomb potential and numerically in the
case of hydrogenic atoms in very strong magnetic fields
in Sec. III. We finally discuss the results in Sec. IV.

II. KATO'S BOUNDS

As mentioned in the Introduction, a remarkable feature
of Kato's upper bounds is that, unlike the Rayleigh-Ritz
bounds, they do not require the boundedness from be-
low of the operator but only its self-adjointness. Thus,
in principle, Kato's upper bounds can be applied to the
Dirac Hamiltonian HD for an electron in the presence of
an arbitrary potential, as long as HD is self-adjoint. A
rigorous functional-analysis definition of self-adjointness
is presented, for instance, in Ref. [15]. Notice that this
definition is not analogous to the one usually reported
in quantum-mechanics textbooks. In this context, the
self-adjointness of the Dirac Hamiltonian is not an obvi-
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ous property (for an exhaustive review of the problem,
see Ref. [16]). In the present paper we deal with the
self-adjoint Hamiltonian (in a.u.):

(H~) = (@IHDI &) (2)

and the root-mean-square deviation

HD HD

( 1 ), Z
HD = ca.

( p+ -A )+Pc' ——,
c ) r

where n and P are the standard 4 x 4 Dirac matri-
ces, Z is the nuclear charge, and A = 2B x r, where
B = Bz is the magnetic field measured in units of
(e/h)sm c 2.35 x 10s G. A proof of the self-adjointness
of H~ in (1) can be found in Ref. [17]. Reference [12]
presents formulas related to the upper and lower bounds
of eigenvalues (Weinstein's formula; formulas for nonde-
generate and for degenerate or densely crowded eigen-
values) as well as formulas to estimate the error of an
approximate wave function, which apply in a straightfor-
ward way to the Hamiltonian (1). In this section we shall
present only the formulas used in the present paper.

We first evaluate, for an arbitrary normalized function
g C B(H~) (domain of H~), the quantities

set of N approximate normalized variational eigenfunc-
tions vP;~ corresponding respectively to the exact eigen-
values E;, i = 0, 1,2, . . . , N —1. There is, however, a
fundamental difference between the relativistic and non-
relativistic Hamiltonians. In the nonrelativistic case, the
quantity (H),~ ——(@;~~H~ @;N ) is itself an upper bound
to E;: the Rayleigh-Ritz upper bound (Poincare's theo-
rem [18]). Moreover, the upper bound (H),~ is indeed
more accurate than E„p. In the relativistic case, on the
other hand, (H),~ is not in general an upper bound of
the eigenvalue E; of the Dirac Hamiltonian, while Kato s
upper bound E„z given by Eq. (5) is.

III. APPLICATIONS

A. Coulomb potential

In this section we obtain analytical upper and lower
bounds (5), in a most pathological one-electron example
that exemplifies the problem of variational collapse in
the case of the Dirac Hamiltonian. For an electron in a
Coulomb potential, the radial Dirac Hamiltonian has the
form

f 1/nz —Z/r (1/a) (e/r —d/dr) l
g (1/a) (e/r + d/dr) —1/o.2 —Z/r

We can now state the following
Theorem (the Kato theorem). Consider the interval

(a, 5), where

a&(Hri) &b (4)

+2
Ei = (Hg))

Suppose that this interval contains as a unique point of
the spectrum of H~ only a nondegenerate eigenvalue (say
E;) and that the quantities (H~) and 0 satisfy the in-

equalities

where n = 1/c is the fine structure constant and tc is the
Dirac quantum number. For the ground state (e = —1),
using the (wrong) radial trial function (without lower
component)

@ =2k ~ rexp( —Ar)
~~0

where A is a positive variational parameter, we obtain
the variational energy (including the rest-mass energy)
for the electron:

(HD) = 1/nz —AZ,

then

+2
E„p —— (Hgp) +

Eloper + Ei + Eup .

(5)

(6)

which collapses to —oo as A ~ oo.
We can use the same "bad" trial function to calculate

the Kato bound E„p. The expectation value of HD for
~ = —1 is readily obtained

(HD) = 1/a'+ 2(AZ)'+ (1/a') [A' —2AZ]. (10)

Formula (6) is called the generalized Ritz-Temple for-
mula, because Kato's lower bound E~ extends the
old Temple formula to excited states and to operators
that are not necessarily half-bounded, while Kato's up-
per bound E„p generalizes the usual Rayleigh-Ritz up-
per bound. Notice that E„p is an upper bound for any
choice of vj, with the accuracy of the upper bound de-
pending on the specific choice of vP. A convenient choice
of variational wave functions, both in nonrelativistic as
well as in relativistic calculations, is given by the N-
dimensional Rayleigh-Ritz method in which we obtain a

We thus have

HD2 HD 2 P o. O.Z 2+1.

0 & A & 2/(o. 'Z). (12)

We thus obtain the following Kato's upper bound on the

The parameter a in Kato's theorem can be chosen as
—1/a, since there are no energy levels between the
ground-state and the negative continuum below —1/o. ;
the condition (4) is satisfied if
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ground-state energy (subtracting the rest-mass energy):

A2[1+ (nZ)2]E„, AZ+

For A satisfying inequality (12), the minimum of E„~ is
found to be

with

2Z2
min E„~

(gl + 2b + gl + b)2
(14)

min(E„p) ) —Z /2 ) Eo ——Z /(1 + gl —b), (15)

where Eo is the relativistic ground-state energy. In other
words, E„~ is an upper bound on the relativistic energy.
Moreover, min(E„~) yields the exact nonrelativistic value
—Z3/2 for b = 0; this result is expected, since our trial
vector is exact in the nonrelativistic limit (a ~ 0).

It should be noted that a minimum value of o with
respect to a variation of the nonlinear parameter A does
not always correspond to the optimized value for the vari-
ational bounds on the energy. For example, 0 in Eq.
(11) approaches 0 as A ~ 0, given that when A is very
small, the normalized wave function 2A / e ""r is close
to zero everywhere in space giving an unphysical solution
in which only the rest-mass term in the Dirac Hamilto-
nian has a nonzero expectation value.

To check the lower bound E~, [Eq. (5)] for the ground-
state energy, we can use the exact first excited-state en-

ergy

Z2

2(1 + ~) + V 2(1 + ~)3~'

with p = gl —(nZ)2, as parameter b in the Kato theo-
rem. The lower bound can then be written as

A2 [1 + (aZ) 2]

n2(AZ+ Eg)

The maximum of E~ for A satisfying the condition
—2/n2 & —AZ & Eg —1/a2 [see (4)] is

(gl + b+ gl+ 2b)
max(E~ ) =— (n' [2(l + p) + ~2(1+p)'/']

with

&max =
(!+ Ql + b/Ql + 2b) (!+ y (!+ p!/2)

This result confirms that E~ is below the true energy
—Z /(1+ gl —b) [Eq. (15)] as long as nZ & 1, which is
required by the Dirac equation for the Coulomb potential
of a point nucleus. The difference between this lower
bound and the true energy, however, is very large due to

1 —Ql + b/Ql + 2b
min Z )

where b = (aZ)2. For 0 & b = (nZ)2 & 1, we obtain
then

N =l.;
1 1

!
I I

-0.46 ~
I

!

N =4

!' / !
/
1

/
!,/ j l

/
'/

I / N„=lI

,

'

I i0,58 s
~

s i ~ i ~ i ~

0,2 0.4 0.6 0.8 1.0 1

-0.50—
a5

-0.54—

N=2:

N, =2 N„=3 N =4

2 1,4 1.6 1.8 2.0

the absence of the lower component in the basis vector.
A much better lower bound can be obtained with both

lower and upper components in the basis vectors. For
example, if we use standard Slater-type basis vectors

i( 4a

i+r ' (18)

with

2P3/2 —A! P+(i —1)

and i = &, 2, . . . , X„, we obtain the upper and lower
bounds coinciding with the exact energy for the opti-
mized value of A (the wave function is exact in this case
consisting of the single basis vector i = 1). The depen-
dence of the bounds on A is plotted in Fig. 1. It shows
that the best upper and lower bounds can be obtained
by minimizing E„~ and maximizing E~ with respect to
the nonlinear parameters.

B. Strong magnetic fields

A relativistic variational method based on basis sets
suitably chosen to represent the spatial symmetries was
successfully applied to hydrogenic atoms in strong mag-
netic fields [11],giving very accurate relativistic energies
for low-lying states. The method, however, fails to give
upper bounds on the energies. The search for the opti-
mized parameters in the basis set is based on the station-
ary properties of the eigenstates rather than the simple
minimization procedure used in the nonrelativistic case.
In the following, we will apply the method presented in
Sec. II to this problem to obtain both upper and lower
bounds on the ground-state energy.

The same basis set as the one in Ref. [11]is used, which,
in spherical coordinates, can be written as

C
(Ig) ~(k)
nI. nl

FIG. 1. Kato's upper and lower bounds on the relativistic
ground-state energy of hydrogen (in a.u. ) for B=O. A is the
nonlinear parameter and N„ is the number of radial basis
functions in the basis set. The dotted line denotes the exact
energy.
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with

——N„& fe(r, p)r"cos8 " (sin8)

&xi &

(0~
& x-i

0 )'
o

~4 =
I( &x-i )

f (r p) = r e "" ~

n = 0, 1, . . . , N„, I(. = 1, 2, 3, 4,

where p = r sin 8, ms = p, —vs j2, vq = vs = 1, &2 = &4 =
—1, A and P are nonlinear variational parameters, and
the parameter p is determined by the boundary condition

as r ~ 0 to be /+2 —(aZ)2 with e taking the values
corresponding to the B = 0 limit. The normalization

constant N„& is determined by

IF(,„)I'r2drdx = 1,

where g = cos8. The four component spin functions mA,.

have the form

For even (odd) parity states, the value of l for the large
components (k = 1, 2) takes an even (odd) number

greater or equal to Im&I up to 2Ns (for even parity) or
2Ns + 1 (for odd parity), while for the small components

(k = 3, 4) it takes an odd (even) number greater or equal
to ImsI up to 2Ns + 1 (for even parity) or 2Ns (for odd
parity), since the small component has a different non-
relativistic parity than the large component, where Ng is
an integer used to determine the maximum value of l in
the basis set.

The Hamiltonian HD for the problem is given by ex-
pression (1). This Hamiltonian commutes with the z
component of the total angular momentum, and with
the parity operator so that the corresponding quantum
numbers p and x are conserved.

The matrix elements of HD with respect to the basis
vectors are calculated in Ref. [11) and are given as

(Cn!~ IHD IOta'I ) = —c r drdxF
&
F,

& (p —1 + n' —ls) ——Ax +(&) (3) 2 (&) (3) / X lg —ImsI

(4'„&,IH~I4'„,
& ) = c r drdxF„& F„,

& (p —1+n' —l4) ——Ax+(2) (4) 2 (2) (4) f X l4 —Im4I
"lQ "l r z

(4„& IHDI4,
& ) = c r drdxF„& F„,

& (p —1+n' —l4) —Asin8 — 2P+ —p+(i) (4) 2 (i) (4) I sin 8 B Im4I —m4

P
(19a)

(4„(,IH~I4„,(, ) = c r drdxF„( F„,) (p —1+n' —lg) —Asin8 — 2P ——p+(2) (3) 2 (2) (3) I sin 8 B Imsl+ ms
nip n l3

)
(19b)

In order to calculate the bounds we also need to calculate the matrix elements of HD. Using the relation

cr
I p+ —A = p +Bl, + Bp +—Bo,

c ) 4

where the o; are the Pauli spin matrices, the nonvanishing matrix elements of HD can be written as

2

(4„/ IHg)IC'„$ ) = bye F„$ I

———
I

+ —
I p y Bp + B(m$, + cr—g) I

F(k) 2 (lg') (k) ( 1 Zl 1 f 2 1 (s)
a2 rp n2 ( 4 nl

for I(., A.
" = 1, 2,

2

(@.i IHr I@.i ) =~» F.
I
—,+ —

I
+ —,

I p +-B p +B(mr+~I)
I
F.i(k) 2 (k ) (k) (~)

)r) a' ( 4

for I(, I(.' = 3, 4, and
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1

(4'-i I
IIr' I@.'

i ) = — F.'i '
[~ —2(r + n' —l')] —+»——2(l' —lms I)0,'

(c".)'IHAI~" )).= —(~')' I3 —2(~+"' —')I „—,+»—„—2(' —I~)I)„,

(@.'&'III'' IC". i ) = (—F.'t'I [3 —2(r + n' —l')], +» + (4& —&)»ne —2(lm4I+ m4), . IF."I') (»a)

with

(F„, (p IF„, ) = (F„, I 4P(p+
I

msl +n —l) —A + 2A(p+ n)/r
—(q —1+n —l)(q+ n+ l)/r' —(l —Im„l)(l —Im„l —1)/z'
—4P(p —1+n —l)y —4APr sin 8 —4P r sin 8IF„I ). (20b)

Since the Hamiltonian HD is self-adjoint and all the matrix elements are real, we can obtain the other matrix elements
using the symmetry property

All the matrix elements can be expressed in terms of the integral

T(j, l, m) = dr dyr~y'(1 —y ) exp[ —2Ar —2Pr (1 —y )],
0 —1

1
= (8P)- ~ 1(j+1) dq '(1 — ')-- ~ U ' 2' 2P(1 —~2)

(21)

where I' is the gamma function and U(c, d, e) is the con-
Huent hypergeometric function which can be evaluated by
Kummer's formula or by an asymptotic expansion [19].

Usual variational procedures [20] are applied here: the

overlap matrix (4„I IC'„,I, ) is first diagonalized to obtain(a) (a'~

the orthogonal basis vectors; the matrix elements of H
and H in the orthogonal basis set are then obtained by
the corresponding unitary transformation; the Hamilto-
nian is then diagonalized and the expectation value of
H is calculated for the selected energy level.

-0.90

Choosing in the Kato theorem the parameters a =
—1/a2 and b = Ei„, for the ground state, where Ei
is the optimized variational energy for the 6rst excited
state, we can then calculate the upper and lower bounds
on the energies according to Eq. (5). The uncertainty
introduced by using E1„,as parameter 6 is given by

o 2
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FIG. 2. Comparison of Kato's upper bound with the varia-
tional energy of the ground-state of hydrogen for B = 4.7 x 10
G with %=2 basis vectors (one radial basis function).

FIG. 3. Kato's upper bound on the relativistic
ground-state energy of hydrogen for 8 = 4.7 x 10 G. A

is the nonlinear parameter and N„ is the number of radial
basis functions.
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TABLE I. Relativistic variational calculations of the binding energies (—E„,) and their upper

(—E ~) and lower bounds (—E& ) (in atomic units) for the ground state of hydrogenic atoms in
an intense magnetic Beld B (in units of 2.35 x 10 G). N, and Ne give the number of radial and
angular basis functions used, respectively. The squared root of the variance for the Hamiltonian is
given by o..

B E'vBI' E„p Ne

0.1

20

1.0222180290

2.21540091

200 4.7271233

1.0222180290

2.21540088

4.7271233

1.0222182

2.2155

4.72716

10 5

0.5475324083429 0.5475324083429 0.547532408344 10 6.83 x 10

2.73 x 10

8.99 x 10

7.37 x 10

which is of order of 10 . The dependence of the vari-
ational energy E on the nonlinear parameter A for a
basis set with N = 2 vectors is plotted in Fig. 2. We
show Kato's upper bounds as a function of A for di8erent
sizes of the basis set in Fig. 3. The figures show that E p
is always above the true energy (choosing for the "true
energy" the best available numerical value [11]), while
the variational energy can have values above or below
the true energy. In Table I we list the upper and lower
bounds calculated for various values of the magnetic field
B and compare them with previous results [11].The ac-
curacy for the upper bounds is similar to that obtained by
direct variational calculations (which lack bounds) with
the advantage that since E„p is almay8 an upper bound,
we can search for the optimal variational parameters by
a minimization of E p.

IV. CONCLUSION

The present paper shows that the Kato theorem pro-
vides a simple and effective way to find upper and lower
bounds to the eigenvalues of the Dirac Hamiltonian.
From this point of view, if one considers the quantity
E„~ [Eq. (5)] instead of the usual variational energy, vari-
ational collapse is avoided and relativistic variational cal-
culations share with the nonrelativistic counterparts the
property of providing rigorous upper bounds. A crucial
requirement for obtaining Kato's upper and lower bounds
is the knowledge a priori of the two parameters a and b,
satisfying the conditions in the Kato theorem. In the case

of hydrogenic atoms in strong magnetic fields, we have
found accurate upper and lower bounds on the ground-
state energy, by choosing a = I/o'. —and b = Ei „,
(optimized variational energy for the first excited state).
Of these two choices, the former is rigorous, due to the
fact that —I/a~ represents the beginning of the negative
continuous spectrum, whereas the latter is not. More-
over, in the case of excited-states calculations, the prob-
lem of determining a and b is even more difBcult, be-
cause the previous choice of a is no longer possible. A
simple and rigorous method for finding a and b for any
state can be found in Ref. [14]. This method can also
be extended to the Dirac Hamiltonian. Work on this ex-
tension is currently in progress and will be reported in a
next paper dealing with excited states. Finally, it should
be observed that the Kato theorem provides an effective
way to search for the optimal nonlinear parameters in
relativistic variational calculations by the minimization
of E„p. The method can be readily extended to other
one-electron potentials, in particular to the description
of many-electron systems based on the (screened one-
electron) Dirac-Hartree-Fock Hamiltonian.
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