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Starting from very accurate many-body wave functions, we have constructed essentially ex-
act densities, exchange-correlation potentials, and components of the total energy for helium and
two-electron ions. These density-functional results are compared to the corresponding quantities ob-
tained from a variety of commonly used approximate density functionals, namely, the local-density
approximation and various generalized gradient approximations, in order to test the accuracy of the
approximate functionals. Although the generalized gradient approximations yield improved energies
compared to the local-density approximation, the exchange and correlation potentials (especially the
latter) obtained from the generalized gradient approximations are in poor agreement with the corre-
sponding exact potentials. The large-distance asymptotic behavior of the exact exchange-correlation
potential to O(1/r*) is found to agree with theoretical predictions. The short-range behavior of the
exchange-correlation potential is very close to quadratic. The prospects for improved generalized

gradient approximations are discussed.

PACS number(s): 31.20.Sy, 31.10.+2z, 71.10.+x

I. INTRODUCTION

Density-functional methods [1-3] are commonly used
to study the electronic structure of both extended sys-
tems such as solids and solid surfaces and finite systems
such as atoms and molecules. Until recently, the vast ma-
jority of density-functional calculations have employed
the local-density approximation(LDA) for the exchange
and correlation energy [2]. Whereas the local-density
approximation has been remarkably successful given its
simplicity, it has well-documented limitations, such as
its tendency to yield binding energies of molecules and
solids that are too large and bond lengths of weakly in-
teracting systems that are too small. In the last decade
a large number of generalized-gradient-approximation
(GGA) functionals have been proposed [4-12] that em-
ploy not only the local value of the density, but also its
derivatives in the expression for the exchange-correlation
energy functional. There exists a rapidly growing body of
literature on applying these functionals to calculate var-
ious properties of atoms, molecules, and solids. Whereas
it is necessary and useful to build a body of informa-
tion concerning which properties of which materials are
treated more accurately or less accurately in GGA rel-
ative to LDA, it is unsatisfactory that, at the present
time, there is very little understanding of why the var-
ious GGAs, in the various applications, do or do not
succeed in improving upon LDA. Also, the number of
proposed GGA functionals is large and growing and it
is both very time consuming and not particularly en-
lightening to test each of them in a large number of cal-
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culations. Furthermore, the presence of various other
approximations in the calculations sometimes results in
significantly different results when the same material is
calculated with the same functional using different com-
putational schemes. It is the purpose of this paper to
test the various approximate functionals for a set of sys-
tems for which the exact density-functional quantities
can be calculated. The commonly used functionals have
been constructed to accurately reproduce the exchange-
correlation energy, which is an integrated quantity. In-
stead, we study not only the exchange-correlation energy,
but also the exchange-correlation energy density and po-
tential, which contain far more detailed information. We
note that whereas the exchange-correlation energy den-
sity is not uniquely defined, the exchange-correlation po-
tential is, making the latter the more important quantity
in our study.

In this paper we obtain essentially exact density-
functional quantities for the hehum isoelectronic se-
quence and use these to assess the adequacy of the LDA
and the various GGAs. There are several earlier pa-
pers [13-16] that have also used helium and two-electron
ions as test cases, but all of them have lacked sufficient
accuracy to observe the correct short-distance or long-
distance behavior of the exchange-correlation potential,
both of which are very sensitive to fine details of the
charge density.

Of the several LDA parametrizations that have been
proposed over the years, the two that are presently ac-
cepted as being accurate [17,18] are in rather close agree-
ment with each other since they are both fitted to the
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same Green's function Monte Carlo [19] data and are
constrained to reduce to the known high-density expres-
sion [20]. On the other hand, the commonly used GGAs
[4-9] are significantly different from each other. In this
paper we have systematically tested all the proposed
GGAs (that have received any appreciable measure of
use in electronic structure calculations and that have not
been superseded by more recent versions due to the same
authors) on the exact (non-self-consistent) densities. In
addition, we have tested the recent Perdew-Wang 1991
functional [6] in self-consistent calculations. We select
this particular GGA because (a) it is a recent improve-
ment to an earlier GGA [5], both of which have received
considerable attention, and (b) it satisfies a large number
of the known properties of the exact density functional
(see Table IV of Ref. [21]).

The layout of this paper is as follows. In Sec. II
we describe the form of the very accurate wave func-
tions. In Sec. III we describe the calculation of the den-
sity from the wave functions and compare the almost
exact density with that obtained from the LDA, from
the Perdew-Wang 1991 GGA, and from the Hartree-
Fock approximation. In Sec. IV we evaluate accurate
exchange-correlation potentials for five members of the
helium isoelectronic series and discuss the short-distance
and long-distance asymptotic behavior, both of which are
very sensitive to fine details in the density. In Sec. V
we compare the accurate exchange and correlation po-
tentials, energy densities, and energies with those ob-
tained from approximate functionals, evaluated for the
exact (non-self-consistent) density for helium. In Sec. VI
we compare the accurate exchange-correlation potentials
and components of the total energy to those obtained
self-consistently from (a) the local-density approxima-
tion, (b) the Perdew-Wang 1991 generalized gradient ap-
proximation, and (c) the Hartree-Fock approximation.
Finally, in Sec. VII we discuss various features of the ex-
isting GGAs and the possibility of constructing a more
accurate GGA by including terms containing the Lapla-
cian of the density.

II. WAVE FUNCTIONS

It is necessary to employ very accurate wave functions
in order to observe the true short-distance and long-
distance behavior to O(1/r) of the exchange-correlation
potential. The form of the wave function used is that of
Ref. [22]. The criteria for the selection of terms in the
wave function are those of Ref. [23] and are motivated by
the analytic structure of the Fock expansion [24]. The
wave functions of S states of the helium isoelectronic
sequence can be written in terms of three independent
coordinates, which may be chosen to be the interparticle
distances 71,72, 712 or equivalently the Hylleraas coordi-
nates

S=7‘1+’I‘2, t=’!‘1-—7'2, U ="Tio. (1)
The wave functions are expanded in the basis func-

tions @n 1,m,j(2Zks,2Zkt,2Zku), where Z is the nuclear
charge, k is a scale factor, and
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bntm, (8, t,u) = s"t'u™ (ln s)iel=4/2), (2)

where the integers n,l,m, j obey the constraints
0<l, 0<m, 0<2<n+l+m (3)

and negative values of n are permitted only if 25 + 2 <
n+1+m. These restrictions [23] follow from the analytic
structure of the Fock expansion [24]. Antisymmetry of
the wave functions implies that for singlet states [ must
be even and for the triplet states it must be odd. The
values of the scale factor k used are those of Ref. [23],
k = 0.39,0.8,0.96,1.0, and 1.0 for H~, He, Be?*, Ne?*,
and Hg"®*, respectively.

Most of the calculations were performed with a 491-
term wave function, corresponding to (n + ! 4+ m)max =
6 and (I + M)max = 12. The accuracy of the results
was checked by employing smaller bases with 166 terms
corresponding to (n+!+m)max = 4 and (I +m)max = 10
and 286 terms corresponding to (n + ! + M)max = 5 and
(Il + M)max = 11 [25]. The relative error in the energy
for a fixed basis size goes down with increasing Z. The
difference in energy between the 166-term and the 491-
term wave functions is 1 part in 107 for H~, 2 parts in
10! for He, and 3 parts in 105 for Hg’®+. The difference
in energy between the 286-term and the 491-term wave
functions is 1 part in 10° for H-, 7 parts in 10® for
He, and 1 part in 10'7 for Hg’*. The energy of the
491-term wave function is estimated to be better than 3
parts in 10*! for H—, 1 part in 10® for He, and 1 part in
1019 for Hg"®*. In order to achieve this high accuracy,
the calculations of the wave functions were performed
using 128-bit (quadruple-precision) arithmetic. In the
case of H™, where one of the two electrons has a high
probability of being far from the nucleus, yet a better rate
of convergence can be obtained by including additional
basis functions that are well suited to describe the in-
out correlation of the two electrons, as were employed by
Frankowski [26] and Baker, Hill, and Morgan [27] in the
study of excited states.

III. DENSITIES
The charge density is

n

p(ry) = 27 / dry 72 / d6; sinf; ¥2(r1,r2).  (4)
(1]

0

If the integrals are performed using a Newton-Cotes inte-
gration formula (e.g., Bode integration), then the integral
converges rather slowly owing to presence of the electron-
electron cusp in the integrand. A more rapid convergence
of the integrals can be obtained by instead evaluating the
charge density as

p(r1) = p(r1) — Ip?(ry, 1), (5)
where

p(r1) = 27r/dr2 3 /d02 sin 8, [?(r1,r2) + ¥3(T1,T1)

_{,12+(£:éxli}
xe ls

ria)2
I =4r /dT12 ’f‘fz e"{"12+___u_(z 1 ) } (6)
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The first term in the exponent removes the cusp in the
square of the wave function while the second term ensures
that the function that is added in decays more rapidly
than 2(ry,r;) for large r1,. With this change, the rate
of convergence of the integrals, performed by Bode inte-
gration, is 1/n®, where n is the number of points in each
coordinate direction. This method was successfully im-
plemented, but it was found that it is more efficient to use
instead an adaptive Gauss-Legendre method to perform
the integrals in Eq. (4), which introduces additional inte-
gration points as needed to achieve the desired accuracy.
The results presented here used the latter method.

In Fig. 1 the self-consistent densities obtained from
LDA, the Perdew-Wang 1991 GGA [6], and the Hartree-
Fock approximation are compared to the accurate den-
sity. The LDA density is less peaked than the true den-
sity, while the Hartree-Fock density is very close to and
slightly more peaked than the true demsity. Figure 2
shows the error in the LDA, GGA, and Hartree-Fock den-
sities. Note that the Hartree-Fock density is considerably
more accurate than the LDA and the GGA density.

IV. ACCURATE EXCHANGE-CORRELATION
POTENTIALS AND ENERGIES

The total ground-state energy of a system of N in-
teracting electrons in an external potential vex: is given
in the Kohn-Sham formulation [1,2] of density-functional
theory by the expression (we use atomic units A =e =
m=1 throughout)

——E/¢.V2¢, dr+/ o (F) Vet (r) dr

/ / dr dr’ + Ex.[p], (7
where
1.8 — v —
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FIG. 1. Comparison of the LDA, the GGA (Perdew-Wang
1991), the Hartree-Fock approximation, and exact densities
of He. The difference between the Hartree-Fock and exact
curves is barely discernible.

3829
0.04 v v
Nonrelativistic Charge Density of He
—
s
«, 0.02
S)
a e D
= N PN -7 =
=] s
3 0.00 A ~ L
= <2 o=
\ e
F \ .
\ e

L o002 N ’
5 S LDA—Exact

— — — HF—Exact

—-—-— GGA(PW91)—Exact

-0.04 |
—0.08 A N R N N
0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0

r (units of ao)

FIG. 2. Errors in the LDA, the GGA, and the Hartree-Fock
densities of He.

p(r) = Z Ie(e)1” - (8)

The single-particle orbitals 1(r) are solutions of the equa-
tion

{——V + Vext(T) + /|

e+ (] )}

=€&i, (9)

where vyc([p];r) is the functional derivative of the
exchange-correlation energy functional E,.[p].

Given the exact density of some arbitrary many-
electron system, it is possible to determine the exact
density functional vxc(r). In general, the exact vc(r)
can be determined by expanding vy.(r) in a complete set
of basis functions and varying the expansion coefficients
such that Egs. (9) and (8) yield the exact density [28].
If the exact energy FE is also known, then the exact Ey.
can be obtained from Eq. (7).

In the special case of the singlet ground state of a two-
electron system a simpler procedure suffices because the
single occupied orbital is simply related to the electronic
density

1/2

$(r) = [9] (10)

and the eigenvalue is given by € = E + Z2/2. The latter
relation follows from the fact that the highest occupied
Kohn-Sham eigenvalue of a many-body system equals
the ionization energy [29]. The total energy E is ob-
tained variationally using the wave functions described
in Sec. II. Hence v, can be obtained by inverting the
single-particle Kohn-Sham equation

1V
vxe([o]5T) = exs + 5—1!} Vet (T /Ir- dr'. (11)
The exchange energy for two-electron systems can be
written directly in terms of the density
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_ p(r’ ) it. The inset is a plot of vyx/Z versus Zr.
Exlol = / / Ir — dr dr’ (12) Figure 4 is a plot of v, versus Z7. In contrast to other

= /p(r)ex(r) dr, (13)
where
__Lroel) o
)= 4/\r—y|“ (14)
is the exchange energy density per electron. Note that

one could consider a definition of exchange energy in term
of the Hartree-Fock density instead of the exact density.
In Sec. VI we will compare these two slightly different
definitions.

vx([p] ; r) is the functional derivative of Ey with respect
to the density, which gives

< ([o];T ‘h/lr

It cancels the self-interaction term in the Hartree poten-
tial. The correlation energy and potential are obtained
by taking the difference

(15)

E [p] = Exc[p| — Ex[p] (16)
and
ve ([p];1) = vxe ([0l 5T) — vx ([0]5T) - (17)

A. Comparison of the exact v, and v. for the
isoelectronic sequence

Approximate trial wave functions of the form ¢ =
exp[—¢(r1+72)] have a minimum in the expectation value
of the energy for ( = Z — 5/16. The Hartree potential
at the origin resulting from the density corresponding to
this wave function is 2(Z — 5/16). Motivated by this,
in Fig. 3 we plot the exact v/(Z — 5/16) obtained from
Eq. (15) versus (Z — 5/16)r for the helium isoelectronic
sequence. The curves for different Z nearly lie on a sin-
gle universal curve; only H™ deviates appreciably from

quantities of interest, the magnitude of v. gets smaller
with increasing Z. This is clearly different from the LDA
v, which must get deeper with increasing p and conse-
quently increasing Z. Since the external potential, at a
given value of Zr, scales as Z2, an accurate evaluation of
v, for large Z requires calculations of progressively higher
accuracy.

B. Short-distance behavior of v, and v,

Since the exchange potential vy for a two-electron sys-
tem in its ground state is just minus half the Hartree
potential, it is apparent that v, must be quadratic at the
nucleus. However, from Fig. 9 it is apparent that even
v, is nearly quadratic at the nucleus, though we know of
no theoretical reason why this must be rigorously true.
Earlier evaluations of v, lacked sufficient accuracy to ob-
serve this nearly quadratic behavior. In fact, some earlier
work found a spurious divergence [14,15] in vy because
of the failure of the density to satisfy the cusp condi-
tion [30,31] at the nucleus. Other papers [13,16] found
that vy is finite at the nucleus, but failed to observe the
nearly quadratic behavior. For a two-electron system it
follows from Eq. (11) that near the nucleus

3 "
’ch(l') =€—’UH( )+ 51 —Z2
H n
+ (%+2Z%— Z3)r+0(1'2) (18)
or equivalently, using Eq. (10),
3p" 5
Uge(r) = € —vg(0) + Z% 522
111 Z 11
+ (’;— L2 623) r+0(r?),  (19)
p 2 p

where the primes denote derivatives with respect to r.
For all the two-electron systems studied here, the coeffi-
cient of the linear term in r is close to zero.

FIG. 3. Exchange potentials for the He iso-
14 electronic sequence.
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Although we do not have a proof that the true den-
sity functional v, must be quadratic at nuclei, it is worth
noting that the Harbola-Sahni potential [32], which is
related to (at least for exchange) but different from the
true density-functional potential [33], is quadratic. The
Harbola-Sahni potential is the work done by the elec-
tron in the field of its (dynamically changing) exchange-
correlation hole as it moves from infinity to the position
of interest. By symmetry, the exchange-correlation hole
must be spherical when the electron is at the nucleus.
Also, when the electron is close to the nucleus, the dis-
placement of the center of the exchange-correlation hole
from the electron is linear in the distance of the electron
from the nucleus. Hence the field acting on the electron
is linear in its displacement from the nucleus and the
potential is quadratic.

C. Long-distance behavior of v, and v,

Since vy = —vy/2, it is clear that at large distances
vx ~ —1/r plus exponentially small terms, since the den-
sity decays exponentially. It has been shown in Ref. [29]
that, in the case of an n electron atom or ion with or-
bitally nondegenerate n and n—1 electron ground states,
ve ~ —a/2r* as 7 = oo, where a is the dipole polariz-
ability of the n — 1 electron system. In the case of the
two-electron systems treated here, the dipole polarizabil-
ity of the residual one-electron system is a = 9/(224).
Due to the rapid 1/r* falloff, this asymptotic behavior is
not discernible in a plot of v, versus r such as Fig. 4. In
Fig. 5 we plot r%v. for H~, which converges to -9/4 at
large r as expected. Note that v. becomes negative and
approaches its asymptotic behavior only at very large r,
in a region that contributes very little to the total en-
ergy. It is possible to see this asymptotic behavior only
because we have used very accurate wave functions to
construct the density. All earlier papers [13-16] lacked
sufficient accuracy to observe this asymptotic behavior
or even that v, is negative at large distances.

Since in the asymptotic region the electron is well sep-
arated from the rest of the system, classical arguments

V. (hartree
S
o
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Z r (units of ag)
FIG. 4. Correlation potentials for the He isoelectronic se-

quence.
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FIG. 5. Asymptotic behavior of the correlation potential
ve of H™.

can be used to deduce v.. It is then clear that v. will have
contributions from all even negative powers of r, smaller
than or equal to —4. Hence the next higher-order term
will be O(1/r®), which will contain contributions from
both the quadrupole induced by the gradient of the elec-
tric field and the octupole induced by the electric field. In
addition, v, will contain an exponentially decaying con-
tribution arising from the fact the potential is not due to
pointlike multipoles, but an exponentially decaying den-
sity. A plot of In(v. + a/2r*) versus r shows that even at
the largest distances shown in Fig. 5, the O(1/r®) term
is smaller than the exponential term, though of course at
sufficiently large distances the O(1/r®) term must domi-
nate. The exponent is the same as that of v, + 1/r, since
both exponents arise from the exponential decay of the
density.

It is worth noting that v. is sensitive to the details
of the problem. Although v, has qualitatively the same
behavior for the two-electron atom and ions (i.e., it is
negative at small 7, positive at intermediate 7, and nega-
tive at large 7), it has qualitatively the opposite behavior
for closely related systems consisting of two electrons in
harmonic potentials [34].

V. COMPARISON OF EXACT AND
APPROXIMATE QUANTITIES FOR THE
EXACT DENSITY OF HELIUM

A. Comparison of &y, €., vx, and v,

The various GGAs express the exchange-correlation
energy as

ESSA g = / exc (1, |Vpl, V2p) dr. (20)

In Fig. 6 we compare the LDA and various GGA ex-
change energy densities per electron e = ex/p from
Eq. (20) with the exact exchange energy density per elec-
tron from Eq.( 14). The definition of the exchange energy
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FIG. 6. Comparison of the exact and the various approxi-
mate exchange energy densities per electron. Both the exact
and the approximate energies are evaluated for the exact den-
sity of He.

density is not unique, but a natural definition, which
follows from writing the Hartree-Fock exchange energy
in terms of the first-order density matrix, results in an
€x that at large distances goes as —1/2r [35]. In the
case of ground states of two-electron systems, this defini-
tion reduces to Eq. (14). At large r, the approximate
€x go to zero exponentially with the exception of the
Langreth-Mehl functional, which diverges, and the Becke
functional, which has the correct asymptotic behavior
—1/2r for exponentially decaying densities. However, as
also noted by Engel et al. [10], the Becke ¢, achieves its
asymptotic behavior at much larger distances than does
the true €,. This is because the correction to the leading
—1/r term is exponentially small for the true functional
but O(1/r?) for the Becke functional. Note also that
the Becke ex has a wrong asymptotic behavior —1/r for
densities that have a Gaussian decay [34].

In Fig. 7 we compare the LDA and various GGA cor-
relation energy densities, €. = e./p. They differ greatly
from each other.

We note that the exchange-correlation energy density
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FIG. 7. Comparison of the various approximate correlation
energy densities per electron. The approximate energies are
evaluated for the exact density of He.
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is not uniquely defined, but the integrated quantity Ey.
and the functional derivative vy, are unique. Accordingly
the differences of approximate energy densities from each
other and from the “true” exchange energy density are
not necessarily indicative of a failure of the approximate
functionals. It is v.. that controls the self-consistent
charge density; accordingly we study vx and v. next.

The exchange-correlation potential is the functional
derivative of Eq.( 20)

O exc 0 exc
dp v <8Vp)
de
2 xXC
+v (3V2p)

In Fig. 8 we compare v, obtained from LDA and the vari-
ous GG As evaluated for the exact charge density with the
exact vy obtained from Eq. (15). The approximate poten-
tials differ significantly from the exact potential. At large
r, all the potentials do not reproduce the correct —1/r
asymptotic behavior: they go exponentially to zero with
the exception of the Becke functional [7], which behaves
as (—const/r?) [10], and the Langreth-Mehl functional,
which diverges [4]. The Perdew-Wang 1991 functional
has a spurious minimum between 2.5a¢ and 3.5 ao. It
also has spurious oscillations near quadratic extrema of
the charge density [34]. This is due to the fact that the ef-
fective coefficient of the |V p|? term increases very rapidly
from the known value specified by the second-order gra-
dient expansion at £ = 0 to a value that is 2.1 times as
large at ¢ = 0.04, where ¢ = [Vp/(2kFpp)]? and kr is the
Fermi wave vector, as can be seen in Fig. 2 of Ref. [36].

At the origin, the exact exchange potential has a
quadratic minimum because it is simply proportional to
the negative of the Hartree potential. In contrast all
the proposed GGA exchange potentials diverge at the
nucleus while the LDA exchange potential has a finite
value and slope there. Hence, very close to the nucleus,
the various GGA potentials are an even poorer approx-
imation to the true potential than the LDA potential,

vxe ([0]5T) =

(21)

p(r),Vp(r),V2p(r)

Exchange Potentials of Helium

— —=1/r
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— - — Perdew—Wang '91
----- Becke '88
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FIG. 8. Comparison of the exact and the various approx-
imate exchange potentials. Both the exact and the approxi-
mate potentials are evaluated for the exact density of He.
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but the more negative values of the GGA potentials at
short and intermediate distances is a step in the right
direction.

In fact it is possible to show that any GGA that has
terms containing Vp, but no higher derivatives of p must
yield a vy, that diverges at nuclei. If p ~ const+r?® near
the origin, then Vp ~ r®~!, If the leading behavior of
exc in the gradient, near an extremum of the density, is
|Vp|™, then

6exc m— 8—1)(m—

av, ~ Ve o plemmeD) (22)
and

V- (_zg‘;) ~ ,,.(a—l)(m——l)—l. (23)

Hence the exchange-correlation potential diverges at the
origin when

(s—-1)(m-1)-1<0, (24)
where s and m are positive. Thus the exchange-
correlation potential diverges at extrema of the density
for all values of sif m < 1, as is the case for the Wilson-
Levy potential [8] and for all values of m if s < 1. At
nuclei, s = 1 and vy, always diverges. The divergence for
atoms can be eliminated by including appropriate terms
containing V?p [37].

Pedroza [15] observed the divergence of the Langreth-
Mehl vy, but since his “exact” vy, also had a spurious
divergence, he viewed the divergence of the Langreth-
Mehl v, in a positive hight.

In Fig. 9 we compare approximate correlation poten-
tials of He, obtained from Eq. (21), to the exact corre-
lation potential obtained from Eq. (17). At large r, the
approximate potentials go to zero exponentially with the
exception of the Wilson-Levy potential [8], which goes to
a positive constant, and the Langreth-Mehl functional,
which diverges. All of the GGA correlation potentials
diverge at the origin. It follows from Eq. (24) that this
must be the case for all the GGAs which do not con-
tain derivatives higher than first order. Of the GGAs
proposed so far, only the Lee-Yang-Parr GGA contains
Laplacian terms, but not in the form necessary to elimi-
nate the divergence in the correlation potential.

B. Comparison of E,, E., and E,.

Table I shows the nonrelativistic total energy and its
components for five members of the helium isoelectronic
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FIG. 9. Comparison of the exact and the various approxi-
mate correlation potentials. Both the exact and the approxi-
mate potentials are evaluated for the exact density of He.

series. The total energies given are those for the 491-term
wave function. The kinetic contribution to E. can be
obtained as the difference of the true many-body kinetic
energy (which equals the negative of the total energy,
by the virial theorem) and the true Kohn-Sham single-
particle kinetic energy. It ranges from 0.027 882 hartree
for H- to 0.046 403 hartree for Hg’®*. From Table I
we see that the heavier systems approximately satisfy
the simple form of the virial theorem, which is that the
kinetic contribution to E. is —E.. In fact this siniple form
has been shown to apply in the high-density limit [38,39].
This result follows from the general form of the virial
theorem for correlation [40] and the work in Ref. [41].

For the heavier systems there appears to be an ap-
proximate virial theorem, i.e., the kinetic contribution to
E. is approximately —FE.. In fact such a theorem has
been proven in the high-density limit by Perdew [38] and
Gorling et al. [39).

In Table IT we compare the approximate E,, E., and
E,. evaluated for the exact density with the correspond-
ing exact quantities. As is well known, LDA yields values
of E, that are too small in absolute magnitude and values
of E. that are too large in absolute magnitude, resulting
in a cancellation of errors for Ey.. With the exception
of the Langreth-Mehl correlation energy for the heavier
ions, all the GGAs yield improved energies compared to
LDA. The correlation energies are nearly independent of
the nuclear charge Z and the exact exchange energies
scale approximately linearly with Z — 5/16. This former
behavior is not universal; e.g., for the Be isoelectronic
sequence E. scales approximately linearly with Z.

The conventional quantum chemistry definition of Ey

TABLE I. The nonrelativistic total energy and its components for the helium isoelectronic series. All energies are in hartrees

and are accurate to all digits quoted.

Ion Etot El'(in Een EH Exc

H™ -0.527751016 5 0.499 869 -1.366 524 0.761 796 -0.422 892

He -2.903724377034118 2.867082 -6.753 267 2.049137 -1.066 676
Be?* -13.655 566 238 423 582 13.614 084 -29.502 003 4.553 255 -2.320902
Ne®t -93.906 806 515 037 541 93.862 251 -193.750 849 12.054 968 -6.073176
Hg7s+ -6350.157 557832474 797 6350.111155 -12750.000 108 99.555 863 -49.824 467
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TABLE II. Comparison of exchange and correlation energies of the helium isoelectronic series for LDA and the various GGAs
with those for the exact density functional. The approximate functionals are evaluated for the exact (not the self-consistent)

densities. The numbers in parentheses are the percentage errors.

Exact LDA
(Perdew-Wang)

Functional Ion

Langreth-Mehl Perdew-Wang 1986 Perdew-Wang 1991 Becke 1988

Wilson-Levy Lee-Yang-Parr

Ex H~ -0.380898 -0.337 (12%)  -0.387 (-2%)  -0.400 (-5%) -0.393 (-3%) -0.395 (-4%)
He -1.024568 -0.883 (14%) -1.014 ( 1%) -1.033 (-1%) -1.016 (1%) -1.025 (-0%)

Be?t .2.276628 -1.957 (14%)  -2.246 (1%) -2.279 (-0%) -2.245 (1%) -2.265 (1%)

Ne®t .6.027484 -5.173 (14%)  -5.940 (1%) -6.015 (0%) -5.927 (2%) -5.982 (1%)

Hg"®t -49.777931 -42.699 (14%) -49.036 (1%)
E. H™ -0.041995 -0.072 (-71%) -0.049 (-16%)
He -0.042107 -0.112 (-167%) -0.050 (-19%)

Be?t -0.044274 -0.150 (-240%) -0.025 (43%)

Ne®t -0.045692 -0.202 (-342%) 0.082 (279%)

Hg™®t -0.046536 -0.326 (-600%)

-49.605 (0%)

-0.038 (10%)
-0.044 (-4%)
-0.049 (-12%)
-0.084 (-83%)
1.833 (4038%) -0.299 (-543%)

-48.889 (2%) -49.348 (1%)
-0.032 (24%)

-0.046 (-9%)

-0.053 (-21%)

-0.062 (-35%)

-0.081 (-73%)

-0.032 (25%) -0.030 (29%)
-0.042 (1%) -0.044 (-4%)
-0.045 (-2%) -0.049 (-10%)
-0.047 (-3%) -0.050 (-9%)
-0.048 (-3%) -0.050 (-8%)

Exc H~ -0.422893 -0.408 (3%) -0.435 (-3%)  -0.438 (-4%) -0.425 (-0%)
He -1.066676 -0.996 (7%) -1.064 (0%)  -1.077 (-1%) -1.062 (0%)

Be?t -2.320902 -2.107 (9%) -2.271 (2%)  -2.328 (-0%) -2.298 (1%)

Ne®t .6.073176 -5.375 (11%)  -5.858 (4%)  -6.099 (-0%) -5.989 (1%)

Hg"®t -49.824467 -43.025 (14%) -47.203 (5%)

-49.904 (-0%)

-48.970 (2%)

is that it is the exchange energy in a Hartree-Fock calcu-
lation. We prefer instead to define Eyx and E. in terms
of the true density rather than the Hartree-Fock den-
sity. The difference is minor; for He, E, using pur
is —1.025769 hartree, whereas E, using p is -1.024 568
hartree.

VI. COMPARISON OF EXACT AND
APPROXIMATE QUANTITIES FOR THE
SELF-CONSISTENT DENSITY OF He

A. Comparison of v, and v,

The approximate functionals in the preceding section
were evaluated for the exact density. Here we study the
effects of self-consistency. In Fig. 10 we compare the self-
consistent LDA and the Perdew-Wang 1991 exchange-
correlation potentials, for helium, to the exact one. Since
the change in the exchange-correlation potentials for the
approximate functionals is small compared to the differ-

V. (hartree)
1
5
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FIG. 10. Comparison of the LDA, the Perdew-Wang
1991 exchange-correlation potentials, and the exact ex-
change-correlation potential. The approximate potentials are
evaluated for the self-consistent densities.

ence between the exact and approximate functionals, we
do not present results for the complete set of function-
als studied in the preceding section. In Fig. 10 we also
present the exact v, evaluated from Eq. (15), which is
very close to the self-consistent Hartree-Fock exchange
potential (which is a local potential for helium). Since
the electrons in Hartree-Fock theory do not interact with
themselves, the Hartree-Fock potential has the correct
long-distance —1/r behavior, whereas the LDA and the
Perdew-Wang 1991 potentials do not.

In Fig. 11 we compare the self-consistent LDA and the
Perdew-Wang 1991 correlation potentials, for helium, to
the exact one computed from Eq. (17). The solid line
is obtained using the true charge density in constructing
v, while the dotted line is obtained by constructing vy
from the Hartree-Fock density. They are very close to
each other. Amusingly, the Perdew-Wang 1991 potentials
would bear a closer resemblance to the true potential if
the sign were reversed.

e — -
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T e "Exact" Ve = Vie[p]—Valpnr]
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r (units of ag)
FIG. 11. Comparison of the LDA, the Perdew-Wang

1991 correlation potentials, and the exact correlation po-
tential. The approximate potentials are evaluated for the
self-consistent densities.



50 ACCURATE EXCHANGE-CORRELATION POTENTIALS AND . ..

B. Comparison of components of the total-energy
and single-particle eigenvalues

In Table III we compare the self-consistent total en-
ergy and its components, the density weighted expecta-
tion value of the exchange-correlation potential, and the
single-particle eigenvalue from the LDA and the Perdew-
Wang 1991 GGA to the corresponding exact values. Al-
though the differences between the approximate and ex-
act densities in Fig. 1 appear small visually, the eff .t
of self-consistency upon the energy components is not
completely negligible. The values of E., and Ef depend
solely on the charge density, and so their errors, given in
the last two columns of Table III, reflect the difference
between the true charge density and the self-consistent
charge densities. Comparing the values in Tables II and
IIT we observe that the LDA and the Perdew-Wang 1991
GGA values of Ey. for He are in error by 0.071 and 0.005
H, respectively, when evaluated for the exact density, but
by 0.093 and 0.012 hartree, respectively, when evaluated
for the self-consistent densities.

In contrast to the potential, the values of the total-
energy and total-energy components are much improved
by the Perdew-Wang 1991 GGA relative to the LDA.
On the other hand, the single-particle eigenvalue is not
appreciably improved, since wvy. is not much different
for this GGA and LDA, except close to the nucleus.
Though not shown in Table III, we have verified that the
Perdew-Wang 1991 GGA yields improved total energies
and total-energy components for self-consistent calcula-
tions of BeZt, Ne®*, and Hg"®* also. (It is not possible
to perform a self-consistent calculation of H™ with ei-
ther functional without immersing the ion in an external
potential to localize the second electron.)

Note that in Table III all the components of the to-
tal energy (except E., which is insensitive to density
changes) from the LDA are smaller in absolute magni-
tude than the corresponding exact values. Also, note
that in Fig. 2 the LDA density is too small near the
nucleus. The effect of the lower value of the GGA vy
at short distances and of the negative divergence in the
GGA vy at the nucleus is to increase the charge density
near the nucleus and thereby increase the magnitude of
all the components of the total energy. This explains
why the GGAs yield not only improved values of E,. but
also modest improvements in other components of the to-
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tal energy despite, or maybe one should say because of,
the spurious divergence of vy at nuclei. In fact we have
found the same to hold true for heavier atoms [21,28].

VII. DISCUSSION AND CONCLUSIONS

We have used very accurate wave functions for the
helium isoelectronic series to calculate essentially exact
values of several density-functional quantities, which are
then used to test the accuracy of several approximate
functionals. The Hartree-Fock density is more accu-
rate than the LDA or GGA densities. Although the
exchange and correlation energies calculated from the
various GGAs (with the exception of the Langreth-Mehl
GGA for heavy ions) are considerably more accurate than
those from LDA, the situation is not as clear for the
exchange and correlation potentials. The various GGA
exchange functionals have certain features in common.
They correctly lead to more negative total energies and
reduced binding energies, relative to LDA, by favoring re-
gions with large density gradients. They yield a lower po-
tential than the LDA at short and intermediate distances
from nuclei—a step in the right direction—but they also
introduce a spurious divergence at the nuclei. Whereas
the various GGA exchange functionals have some com-
mon features, the GGA correlation functionals are very
different from each other and none of them yield corre-
lation potentials that bear any resemblance to the true
correlation potential.

Correlation is more subtle than exchange as manifested
in several ways. (i) v. can be either negative or positive
in different regions of space whereas LDA can only give a
negative v.. (ii) For helium isoelectronic series, v, varies
less over space for heavy ions than for light atoms. This is
also contradictory to the behavior in LDA. (iii) While v,
has qualitatively the same behavior for all members of the
helium isoelectronic series (negative at short distances
and long distance, positive at intermediate distances), it
has qualitatively the opposite behavior [34] for the closely
related model system of two electrons in a harmonic well.

The Perdew-Wang 1991 functional satisfies (see Table
IV of Refs. [21] and [43]) more of the uniform scaling [40]
and nonuniform scaling [41,42] conditions than the other
functionals considered here. However, it does so in a
somewhat tortured way that introduces spurious oscil-

TABLE III. Comparison of the self-consistent LDA (both Vosko-Wilk-Nusair and Perdew-Wang) and the Perdew-Wang 1991
GGA to the corresponding exact values for various components of the Kohn-Sham total energy, the density-weighted integral

of vxc, and the single-particle eigenvalue of He.

Property LDA LDA GGA Exact ArLpa Agca

(VWN) (PW) (PW91) (PW) (PW91)
Eiot = E;, + Een + En + Exc -2.834836 -2.834455 -2.900 001 -2.903724 0.069 269 0.003723
El-xin 2.767923 2.767 389 2.862874 2.867 082 -0.099 693 -0.004 207
Een -6.625 564 -6.624 884 -6.737527 -6.753 267 0.128 383 0.015 740
En 1.996 120 1.995 861 2.029109 2.049137 -0.053 276 -0.020028
Een + En -4.629 444 -4.629 023 -4.708 420 -4.704 130 0.075107 -0.004 290
Ex -0.861847 -0.861 740 -1.009 488 -1.024 568 0.162828 0.015 080
E. -0.111 467 -0.111 080 -0.044 969 -0.042107 -0.068973 -0.002 862
Ex. = Ex + E. -0.973314 -0.972 820 -1.054457 -1.066 676 0.093 856 0.012219
f dr p(r) vxc(r) -1.275448 -1.274739 -1.350079 -2.019537 0.744 798 0.669 458
€1, -0.570425 -0.570 256 -0.583 257 -0.903 724 0.333468 0.320 467
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lations of the potential near quadratic extrema of the
charge density [34] and in the near tails of charge densi-
ties.

Since Ey and E. are integrated quantities, it is pos-
sible for GGAs to improve upon them without making
comparable improvements to v, and v., which contain
more detailed information. It is vy, that controls the
self-consistent charge densities. The electron-nucleus and
Hartree energies E., and Ex depend solely on the charge
density. Since E., and Ey have smaller errors in GGA
than in LDA, by this measure, the GGA vy, is a small
improvement over the LDA v, despite the fact that the
GGA vy has a spurious divergence.

None of the existing GGAs yield a potential with
the correct long-distance asymptotic behavior of vy, and
none of them improve appreciably the energy of the high-
est occupied orbital, which equals the ionization energy
for the true functional. Any GGA that includes deriva-
tives of the density no higher than first order cannot si-
multaneously satisfy both the correct —1/r behavior of
vxc and the correct —1/(2r) behavior of €. at large dis-
tances [10]. Further, we have shown in Sec. IV that any
such GGA must have a spurious divergence in vy, at nu-
clei. However, by including the Laplacian of the density
in an appropriate way, it is possible to construct a GGA

C.J. UMRIGAR AND XAVIER GONZE 50

that has the triple advantage that it satisfies both of the
long-distance asymptotic conditions and also does not
suffer from a spurious divergence at the nuclei [37]. We
are presently searching for good parameter values in such
a functional. The importance of Laplacian terms has also
been recently pointed out by Engel and Vosko [44], who
show that inclusion of Laplacian terms in a fourth-order
gradient expansion (which does not correctly represent
any of the above three asymptotic conditions) results
in improved exchange potentials for atoms and jellium
spheres.

ACKNOWLEDGMENTS

We thank John Morgan and Jonathan Baker for gen-
erously making available their program for calculating
very accurate wave functions and John Perdew for pro-
viding the subroutines for calculating the Perdew-Wang
1991 functional. We benefited from several useful discus-
sions with Claudia Filippi, Mel Levy, Raphaele Resta,
and Seymour Vosko. The computations were performed
on IBM RS-6000 workstations provided by the Cornell
Theory Center. This work was supported by the Office
of Naval Research.

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964).
[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1976).
(3] See, e.g., R.G. Parr and W. Yang, Density Func-
tional Theory of Atoms and Molecules (Oxford University
Press, New York, 1989)
[4] D.C. Langreth and M.J. Mehl, Phys. Rev. B 28, 1809
(1983).
[5] J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986);
J. P. Perdew, ibid. 33, 8822 (1986); 34, 7406(E) (1986).
[6] J. P. Perdew, in Electronic Structure of Solids ’91, edited
by P. Ziesche and H. Eschrig (Akademie-Verlag, Berlin,
1991); J. P. Perdew and Y. Wang (unpublished).
[7] A. D. Becke, Phys. Rev. A 38, 3098 (1988).
[8] L. C. Wilson and M. Levy, Phys. Rev. B 41, 12930
(1990).
[9] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785
(1988).
[10] E. Engel, J. A. Chevary, L. D. Macdonald, and S. H.
Vosko, Z. Phys. D 23, 7 (1992).
(11] A.E. DePristo and J.D. Kress, J. Chem. Phys. 886, 1425
(1987).
[12] D.J. Lacks and R.G. Gordon, Phys. Rev. A 47, 4681
(1993).
[13] D. W. Smith, S. Jagannathan, and G. S. Handler, Int. J.
Quantum Chem. Symp. 13, 103 (1979).
[14] C.-O. Almbladh and A. C. Pedroza, Phys. Rev. B 29,
2322 (1984).
[15] A. C. Pedroza, Phys. Rev. 33, 804 (1986).
[16] E. R. Davidson, Int. J. Quantum Chem. 37, 811 (1990).
(17] S. H. Vosko, L. Wilk, and M. Nussair, Can. J. Phys. 58,
1200 (1980).
(18] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244
(1992).

[19] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1981).

[20] M. Gellman and K.A. Bruekner, Phys. Rev. 108, 364
(1957).

[21] C.J. Umrigar and X. Gonze, in High Performance Com-
puting and its Application to the Physical Sciences, Pro-
ceedings of the Mardi Gras 1993 Conference, edited by
D. A. Browne et al. (World Scientific, Singapore, 1993).

[22] K. Frankowski and C.L. Pekeris, Phys. Rev. 146, 46
(1966); 150, 366(E), 1966).

(23] D.E. Freund, B.D. Huxtable, and J.D. Morgan, Phys.
Rev. A 29, 980 (1984).

[24] V. Fock, Izv. Akad. Nauk. SSSR, Ser. Fiz. 18, 161 (1954)
[D. Kngl. Norske Videnskab. Selsk. Forh. 31, 138 (1958)].

[25] The 230-term basis of Ref. [23] omitted 56 of the 286
terms.

[26] K. Frankowski, Phys. Rev. 160, 1 (1967).

[27] J. Baker, R.N. Hill, and J.D. Morgan, in Relativistic,
Quantum Electrodynamic and Weak Interaction Effects
in Atoms, edited by W. Johnson, P. Mohr, and J. Sucher,
(AIP, New York, 1989). The wave functions we used have
the form given in this reference, but included a larger
number of terms.

[28] C.J. Umrigar and X. Gonze (unpublished).

[29] C.-O. Almbladh and U. von Barth, Phys. Rev. B 31, 3231
(1985).

[30] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).

[31] E. Steiner, J. Chem. Phys. 39, 2365 (1963).

[32] M.K. Harbola and V. Sahni, Phys. Rev. Lett. 62, 489
(1989).

[33] Y. Wang, J.P. Perdew, J.A. Chevary, L.D. MacDonald,
and S.H. Vosko, Phys. Rev. A 41, 78 (1990).

[34] Claudia Filippi, C.J. Umrigar, and M. Taut, J. Chem.
Phys. 100, 1290 (1994).



50 ACCURATE EXCHANGE-CORRELATION POTENTIALS AND ... 3837

(35] N.H. March, Phys. Rev. A 36, 5077 (1987).

[36] E.Engel and S. H. Vosko, Phys. Rev. B 47, 13164 (1993).
[37] C.J. Umrigar (unpublished).

[38] J.P. Perdew, Phys. Lett. A 165, 79 (1992).

[39] A. Gorling, M. Levy, and J.P. Perdew, Phys. Rev. A 47,
1167 (1993).

[40] M. Levy and J.P. Perdew, Phys. Rev. A 82, 2010 (1985).

[41] M. Levy, Phys. Rev. A 48, 4637 (1991).

[42] A. Gorling and M. Levy, Phys. Rev. A 45, 1509 (1992).

[43] M. Levy and J.P. Perdew, Phys. Rev. B 48, 11638,
(1993).

[44] E. Engel and S.H. Vosko (unpublished).



