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Energies and fine structures of 1s2 2snp (n=2, 3) 1P and aP2 0 states of Be-like ions
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The energies and wave functions of the Be-like ls 2snp (n=2, 3) 'P and P2 r 0 states are cal-
culated with a full-core plus correlation method for ions from BII to Nevis, MgIx, and Six'. The
relativistic corrections and fine structures are calculated with the first-order perturbation theory.
Higher-order effects are estimated. The calculated excitation energies (relative to the 1s 2s ground
state) are compared with the experiment. Intermediate coupling between the Pr and Pi states is
also considered. Most of the predicted PJ energies agree with the experiment to within a few cm
The fine-structure splittings of the 18 282p Pg y 0 states calculated in this work all agree with the
best experimental data in the literature. Our results show that for systems of Z ) 9, it is critically
important to consider intermediate coupling. For Six?, it shifts the 2s2p ' P~ levels by 86 cm
and the 283p ' Pz energies by 193 cm . The predicted 2s2p 'P energies are slightly higher than
the experimental data; the discrepancy increases from 14 cm for Z=G to 93 cm for Z=14.
PACS number(s): 31.20.Di, 31.20.Tz, 31.30.Jv, 31.50.+w

I. INTRODUCTION

The accurate oscillator strengths and lifetimes of the
Be-like ions are of experimental interest. Their impor-
tance in astrophysics has also been emphasized in the
literature [1,2]. To obtain a reliable oscillator strength
and lifetime, accurate energies and wave functions of the
excited state of Be-like ions are needed. A considerable
amount of theoretical work has been done on the ls228np
excited states of the Be-like isoelectronic sequence [3—10].
An interesting feature of the Be-like 2s3p states is dis-
cussed by Kim, Martin, and Weiss [7]. In normal cases,
a 283p P will give a lower energy than the 283p P due
to the exchange interaction. However, this ordering is in-
verted for Z & 6 in Be-like systems and this inversion is
reversed again at about Z=22.

Edlen [11,12] has made a detailed study of the 1s 2L2l'

excited states of Be-like ions by combining the multicon-
figuration Dirac-Fock (MCDF) calculation [3] with ex-
perimental observation. His analysis leads to rather ac-
curate results for the excitation energies and fine struc-
tures. The transition energies between different excited
states are also given in other works [13—16]. Most of these
works are interested in the calculation of atomic oscil-
lator strengths. Although a nonrelativistic approach is
adopted by some workers, relatively few accurate nonrel-
ativistic energies are published in the literature. One of
the most elaborate computation on the 1s 282p P non-
relativistic energies is given by Sims and Whitten [13].
Their upper bounds for C III and 0 v are higher than the
upper bounds calculated in this work by approximately
0.15 eV.

There is much experimental interests in the study
of Be-like 2s3p P systems, for example, the differen-
tial lifetime measurements of the 2s38 Si-2s3p PJ and
2p Pg 2s3p P&, transition-s [17]. If one tries to measure
the lifetime of the upper level, one needs to know the
transition probabilities to all lower levels. Furthermore,
one needs to find transitions which permits the resolution

of the decays from the three fine-structure components
of the 1s 283@ P2 i p This task is complicated by not
knowing the exact fine structure and the position of the
ls 2s3p Pz level as well as its relative position to the
18 283@ Pi level. The needed spectroscopic information
on term values of the levels involved is not available for
many of the ions of interest such as Mg and Si. Accurate
theoretical energies can be very useful in these experi-
mental studies. For larger Z, the results from difFerent

authors in the literature disagree with each other. Es-
pecially for 1s 2s3piP and P2 y 0 states. Some of the
experimental data are quite approximate and others are
lacking.

Recently, we have calculated the energies and fine
structures of the 2snl (n ( 3) excited states of the
Beryllium atom [18] using a full-core plus correlation
method (FCPC). Most of the predicted energies agree
with the experiment to about 1 cm . The predicted
fine-structure splittings for 2s2p PJ and 283p PJ agree
well with those in the experiment [19]. One would like to
find out whether the FCPC method is also effective for
Be-like excited systems as Z becomes larger. For beryl-
lium, the relativistic perturbation is small. By carrying
out a calculation along the isoelectronic sequence, we can
study how the relativistic effects increase with Z. In this
work, we use FCPC for the Be-like 2snp (n = 2, 3) iPi
and P2 z 0 states for ions with Z=G —14. We will compare
our results with the available experimental and theoreti-
cal data in the literature whenever possible.

II. THEORY

The Hamiltonian and perturbation operators used in
this work are the same as these of Chung, Zhu, and Wang
[20]. They are not repeated here. Multiconfiguration
interaction wave function and LS-coupling scheme are
adopted. A restricted variational method [21] is used to
saturate the functional space of the wave function as in
Ref. [18]. In this method, one first obtains a "basic wave
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and

4o (1,2, 3, 4) = A@y,],(1,2)@2,„„(3,4)

4g (1,2, 3, 4) = A ) C;4„(;))(;)(1, 2, 3, 4).

(2)

(3)

l(i) represents a particular angular component, and n(i)
represents the various terms of the wave function asso-
ciated with this l(i). A is the antisymmetrization oper-
ator and C; are the linear parameters. e'q, q, (1,2) is a
predetermined 1818-core wave function. It is the same
as in Ref. [20]. @2,„„(3,4) represents the wave func-
tion of the outer electrons. Only two [lz, l2] angular
components, [0,1] and [1,2], are included in 42,„~(3,4).
Most of the other correlation effects are included in 4'q,
which accounts for the intershell as well as the intrashell
correlations. In this work, 4'q(1, 2, 3, 4) contains about

function, " @p, and an energy upper bound Ep using the
conventional variation method. We have

4's(1, 2, 3, 4) = 4'o(1, 2, 3,4) + @y(1,2, 3, 4),
where

910—1162 terms of basis functions and O2, „(3,4) con-
tains 49 terms. The angular and spin components of the
wave function in @q are similar to those of Ref. [18]. The
radial basis functions in each angular component contain
a set of nonlinear parameters which are determined in
the energy optimization process.

To carry out the restricted variation calculation, the
basic wave function 4g is used as a single term in an
improved wave function that is given by

@(1 2 3 4) = Do@a(1 2 3 4) + 4'2(l 2 3 4) (4)

where

I
@2(1,2, 3, 4) = A ) D;4„(;))(;)(1)2) 3) 4).

By solving the secular equation constructed from Eq. (4),
one can compute the energy improvements over the basic
energy E~. For details of this method, we refer the reader
to Ref. [18,21].

The relativistic and mass polarization operators are
&om Pauli-Breit approximation which are the same as

TABLE I. Nonrelativistic energy of the 1s 2snp (n = 2, 3) ' P states of Be-like system (b E „
is the extrapolated energy from the restricted variational calculation).

10

14

State

2s2p 'P
2s2p P
2s3p 'P
2s3p P
2s2p 'P
2s2p P
2s3p P
2s3p P
2s2p 'P
2s2p P
2s3p 'P
2s3p P
2s2p 'P
2s2p P
2s3p 'P
2s3p P
2s2p P
2s2p P
2s3p P
2s3p P
2s2p P
2s2p P
2s3p 'P
2s3p P
2s2p P
2s2p P
2s3p 'P
2s3p P
2s2p 'P
2s2p P
2s3p 'P
2s3p P

Upper bound E
(a.u. )

-24.014 074 6
-24.178490 6
-23.692 068 6
-23.692 570 7
-36.068 386 8
-36.296 097 9
-35.355 1978
-35.351 581 6
-50.627 766 6
-50.916576 0
-49.380 442 8
-49.373 6136
-67.689 687 2
-68.038 666 6
-65.767 3175
-65.757 823 0
-87.253 1068
-87.661 736 9
-84.515 610 7
-84.503 8154
-109.317546 3
-109.785 445 1
-105.625 2119
-105.611323 3
-160.948 035 0
-161.534 073 0
-154.928 083 6
-154.910478 8
-222.579 848 5
-223.283 673 5
-213.675 693 3
-213.654 724 0

Core Corr.
(p a.u. )
-247.6
-247.6
-247.6
-247.6
-259.8
-259.8
-259.8
-259.8
-268.8
-268.8
-268.8
-268.8
-275.7
-275.7
-275.7
-275.7
-281.3
-281.3
-281.3
-281.3
-285.8
-285.8
-285.8
-285.8
-292.7
-292.7
-292.7
-292.7
-297.9
-297.9
-297.9
-297.9

+Ehighev l

(p, a.u. )
-136.52
-26.90
-23.70
-20.34

-194.82
-36.51
-29.14
-23.19

-233.07
-43.23
-34.00
-25.52

-263.29
-48.17
-38.56
-28.02

-289.06
-52.49
-42.71
-30.89

-308.51
-55.83
-46.03
-33.54

-335.00
-60.57
-51.33
-36.02

-355.91
-64.24
-55.31
-38.12

AE„
(p a.u. )
-168.30
-123.49
-102.75
-124.08
-214.44
-145.74
-123.80
-135.76
-246.33
-210.74
-135.22
-161.52
-287.95
-232.98
-149.93
-185.84
-327.04
-251.35
-160.23
-181.97
-294.32
-269.19
-167.81
-194.52
-296.70
-286.94
-191.18
-207.19
-309.26
-306.87
-190.84
-207.56

Totaj Enorav el

(a.u. )
-24.014 626 9
-24.178888 6
-23.692 442 7
-23.692 962 7
-36.069 055 8
-36.296 539 9
-35.355 6105
-35.352 000 4
-50.628 514 8
-50.917098 7
-49.380 880 8
-49.374 069 5
-67.690 514 1
-68.039 223 5
-65.767 781 7
-65.758 312 6
-87.254 004 2
-87.662 322 0
-84.516094 9
-84.504 309 5
-109.318434 9
-109.786 056 0
-105.625 7115
-105.611837 1
-160.948 959 5
-161.534 7132
-154.928 6189
-154.911014 8
-222.580 8116
-223.284 342 6
-213.676 237 4
-213.655 267 7
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those in Chung and Zhu [18]. The relativistic pertur-
bation operators include: P, the Darwin term, the
electron-electron contact term, the orbit-orbit interac-
tion, the spin-orbit, spin-other-orbit, and spin-spin in-
teractions. The explicit expressions of the operators are
given in Refs. [20] and [18]. The mass polarization cor-
rection to the nonrelativistic energy is calculated by in-
cluding the mass polarization operator in the Hamilto-
nian and rediagonalized the secular equation. The wave
function with this mass polarization is used to calculate
the relativistic corrections using first-order perturbation
theory. The results obtained are not very different &om
the ones using the conventional first-order perturbation
theory. The isotopes used in the present work are B,
12C 14N 16P 19F 20Ne 24Mg and Si The
are taken from Wapstra and Audi [22].

The contribution from @ED effect is estimated using
the same approach as in Ref. [20] for the 2s electron
and in Ref. [18] for the p electrons. Since the relativis-
tic corrections are only computed in the context of first-
order theory with the Pauli-Breit operators, the possible
higher-order contribution needs to be considered. The
higher-order relativistic effect and nuclear size effect are
estimated by using a method described in Chung et al. ,

[20]. The effective nuclear charges used for ls22s3p are
determined by considering that the 28 electron is in the
field of 1sls core and the 3p electron is in the field of
181s2s. But for 18 2s2p, we assume that the 28 is the
outer electron. The main reason is that, for a hydrogen-
like system, the radius of a 2p orbital is smaller than that
of the 2s orbital (see, e.g. , Bethe and Salpeter [23]). A
more ideal solution is if one can determine the 1s1828 and
18182p &actional parentage percentages in the 1s182s2p
states. However, we do not have a good method to deter-
mine these percentages for our wave function. Hence, our
calculated @ED and higher-order relativistic corrections
are subject to this uncertainty.

For the fine structure, the perturbation operators are
the same as Ref. [18]. We use first-order perturbation
theory to calculate the 2snp P& splittings. The /ED
and higher-order relativistic efI'ects are estimated using
the same method as before. For J = 2—0 splittings, this
gives a rather accurate result. However, the J =- 2—1
splittings will not be accurate if we do not consider the
shift due to the coupling of the P1 and P1 states. This
shift is given by

I&@('P )IH-+ ~--I@('P )) I'

E('P ) —E(sP )

where H, and H, are the spin-orbit and spin-other-
orbit perturbation operators, respectively. This energy
shift is positive for the higher state and negative for the
lower state. In computing this shift, the relativistic cor-
rections are included in E ( Pi ) and E ( Pi ).

III. RESULTS AND DISCUSSION

As in Ref. [18], we first calculate the nonrelativistic
energy upper bound for the excited states with the ba-
sic wave function, 4t, . These upper bounds give sub-

stantial improvement over those in the literature. For
example, for 282@ P, the multiconfiguration results in
Hibbert [14] are —24.1274 a.u. for Z=5, and —109.7288
a.u. for Z=10. Our upper bounds are —24.178491 and
—109.786 056 a.u. , respectively. Similar improvements
are also obtained for other states. Sims and Whitten [13]
calculated the 282p P states of CIII and Ov. Their re-
sults, —36.062 83 and —67.684 33 a.u. are higher than the
upper bounds in this work, —36.068387 and —67.689687
a.u. by about 0.15 eV.

In the next step, we make significant improvements
over these upper bounds with the restricted variation
calculation. For example, for 1s 2s2p P, the contri-
butions from the restricted variation calculation ranges
from —168.30 pa. u. to —309.26 p, a.u. from B II to SiXI.
Similar improvements are also obtained for other states.

As in Ref. [18], the orbital angular momenta of the
electrons in our wave function only range from l = 0 to
6. The energy contributions &om the l & 7 terms may
also be appreciable. They need to be extrapolated. %e
use the same procedure as in Ref. [18] to extrapolate the
higher l contributions. In addition to the restricted vari-
ation and higher l contribution, we also need to include
the core correction for the FCPC results. These core
corrections are discussed in Ref. [20]. By combining the
extrapolated results and the corrections, we obtain the
nonrelativistic energy. These results are given in Table I.

In Table VIi we give the mass polarization (DEMI )
and relativistic corrections of the 2s2p systems. For
282p PJ only center of gravity energy is given in this
table. By subtracting these from the 181s core results,
they give the corresponding 282@ double-electron ioniza-
tion contributions. The results for the 1sls cores are the
same as those of Ref. [20]. In addition to the relativis-
tic perturbations considered in this reference, we have
also included the effect &om the intermediate coupling
between the 3P and P states. Adding the estimated
corrections from @ED, higher-order relativistic and nu-

clear size effects, we obtain the total two-electron (2s2p)
IP. The IP of the 2p electron is obtained by subtracting
the predicted 2s IP [20] from the 2s2p Ip. The excita-
tion energy of the 2s2p state is obtained by subtracting
the 2s2p IP from the IP of 2s2s [20]. The corresponding
results for the 2s3p states are presented in Table VII .

In Chung and Zhu [18], the contribution of the rela-
tivistic efFects of the nl electron in a Be 28nl atom to the
"binding" or "antibinding" of this electron is tabulated

See AIP document no. PAPS PI RAAN-50-3818-8 for eight
pages of ionization potential and excitation energy of Be-like
282@ ' P and 283@ ' P states Tables VI and VII. Order by
PAPS number and journal reference from American Institute
of Physics, Physics Auxiliary Publication Service, 500 Sunny-
side Blvd. , Woodbury, NY 11797. The prepaid price is 51.50
each micro6che (60 pages), or $5.00 for photocopies of up to
30 pages, and $0.15 for each additional page over 30 pages.
Airmail additional. Make checks payable to the American
Institute of Physics,
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z
5
6
7
8
9

10
12
14

2s2p P
17.5
28.9
17.5

-21.7
-104.1
-277.5

-1 006.1
-2 521.0

2s2p P
11.4
9.5

-16.1
-81.8

-215.0
-438.4

-1 308.4
-3 030.0

2s3p 'P
7.4

12.8
11.5
0.1

-25.7
-77.7

-301.4
-764.6

2s3p P
1.3
0.8

-7.1
-39.6
-79.5

-155.5
-478.5

-1 152.9

and discussed. The conclusion is that for the beryllium
atom, the relativistic efFects of the np (n = 2, 3) electrons
are small by themselves, but their presence contributes
to the shielding of the 28 electron &om the nucleus. This
shielding reduces the relativistic correction of the 28 elec-
tron. Thus, the overall relativistic correction of the np
orbital reduces its binding energy. In this work, we can
also study this effect along the isoelectronic sequence. We
subtracted the relativistic correction of the 18228 state
[24, 25) from that of the Is22snp as in Ref. [18]. The re-
sults are shown in Table II. For small Z ions such as B II
and C III, the shielding of 28 electron is more significant
than the np relativistic contribution. The net result is

TABLE II. Relativistic perturbation contributions to the
binding of np electron in Be-like system (in cm ). The en-

tries in this table is equal to EE„,~(ls 2snp) —EE„,~ (1s 2s),
where EE„,~ is the sum of the expectation values of relativis-
tic perturbation operators. DE„,~(ls 2s) are from Refs. [24,
25].

antibinding. As Z gets larger, the relativistic correction
of the np electron becomes more significant which low-

ers the overall energy. The effect becomes binding. The
transition &om antibinding to binding occurs at Z=7 for
the triplets and at Z=8 for the singlets. The results in
Table II seem to suggest that the shielding of the singlets
are more significant than the triplets.

In Table III, we give a comparison of the 18 28np P
excitation energies calculated in this work with those
of the experiment and other theoretical results. As in
Chung and Zhu [18], we are still facing a challenge that
our predicted energies are a few cm too high even for
low Z systems. This discrepancy increases somewhat as
Z increases. It is interesting to note that, the predicted
Six' 282p P excitation energy agree with the experi-
ment almost exactly before the intermediate coupling is
considered. However, the inclusion of this coupling raises
the 282p Pz excitation energy by 86.4 cm to 329772
cm . This is 82 cm higher than the datum quoted in
Bashkin and Stoner [26] and Kelly [27], and it is 93 cm
higher than that of Martin and Zalubas [31].

The effect &om intermediate coupling is even stronger
between the 283p ' Pz states. The main reason is that
E(2s3psPf) lies much closer to E(2s3p ~Pf ) in compar-
ison with the 2s2p states. For example, for Z=10, 12,
and 14, the factor ~(2s2p PP ~H,~+ H, ~~2s2p P&)~, is
about sixteen times that of the 2s3p states, but the en-

ergy factor is more than 33 times larger. Consequently,
the shift of the 283p ' Pz energy due to the intermediate
coupling is more than twice as that of the corresponding
282p Py states.

The fine-structure splittings of the 2snp (n
2, 3) st q o states are tabulated in Table IV for 2s2p

TABLE III. Comparison of excitation energy of Be-like 1s 2snp P (n=2, 3, in cm ).

This
work

73 410.7
102 370.2
130710.2
158817.4
186879.0

10
12

214 987
271 750

14 329 772

Expt.

329 690"
329 679'

82
93

AE
2s2p 'P

73 396.60" 14.1
102 352.04" 18.2
130693.9" 16.3
158 797.7" 19.7
186841" 38
186844 35
214 952 35
271687 ' I 63

Other
theory Edlenb

73 396.6
102 351
130694
158 797
186 845

271 650"
214 954
271 697

329 712" 329 678

This
work

144 112.1
258 939.9
404 534.1
580 841.0
787 870.1

1 025 655
1 593 744

2 285 653

Expt.
2s3p 'P

144 103.17"
258 931.29"
404 522.4"
580 824.9"
787 833"
787 844

1 025.69x 10
1 593.6x10
1 593 908
2 285.04 x 10
2 285 040'"

8.9
8.6
11.7
16.1
37
26

-164

613

Other
author

258 942'
404 557'
580 897

1 593 279"
1 593 662

2 285 057"
2 285 432

EE= This work — experiment.
Edlen [11,12].

'Bashkin and Stoner [26].
Kelly [27].

'Kim, Martin, and Weiss [7].

Engstrom [29].
sMartin and Zalubas [30].
"Ando, Safronova, and Tolstikhina [5].
'Martin and Zalubas [31].
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TABLE IV. Fine-structure resolved excitation energy and splitting for the ls 2s2p Pz states of Be-like system [in cm
Ez is the excitation energies from Brst-order perturbation theory. b.Ez (H.R.) is the higher order relativistic contribution].

J value Splitting

JgJ
EEg (H.R.)
EEg (/ED)

Theor. (this work)
Expt. b

Theor. -Expt.
Edlen'
LCV

gJ
b.Eg (H.R.)
bEg (/ED)

Theor. (this work)
Expt.

Theor. -Expt.
Edlen'
LCV
FHS'

gJ
b,Eg (H.R.)
b,Eg (/ED)

Theor. (this work)
Expt. b

Theor. -Expt.
Edlen'
LCV

gJ
b,Eg (H.R.)
DEg (/ED)

Theor. (this work)
Expt."'

Theor. -Expt.
Edlen'
LCV

gJ
Inter. coupling

bEJ (H.R.)
AEg (+ED)

Theor. (this work)
Expt.

Theor. -Expt.
Edlen

Other Expt.

Inter. coupling
b.Eg (H.R.)
b Eg (+ED)

Theor. (this work)
Expt. b

Theor. -Expt.
Edlen'

37 361.5
0.003
0.025

37 361.5
37 358.3

3.2
37 358.3

52 452.76
0.019
0.077

52 452.86
52 447.11

5.75
52 447

67 413.3
.070

0.186
67 413.6
67416.3

-2.7
67417

82 379.6
.207

0.382
82 380.2
82 382.0

-1.8
82 386

97 440.1

0.517
0.700

97 441.3
97441

0
97452

97 437
97 427

1.144
1.181

112689
112700

-11
112700

Z=5
37 345.4

-0.003
-0.025

37 345.4
37 342.4

3.0
37 342.4

Z=6
52 396.74

-0.019
-0.077

52 396.64
52 390.75

5.89
52 391

52 369

Z=7
67 270.2

-0.070
-0.186

67 269.9
67 272.3

-2.4
67 272

Z=S
82 075.5

-0.207
-0.382

82 074.9
82 075 ~ 3

-0.4
82 079

Z=9
96 868.7

-2.0
-0.517
-0.700

96 865.5
96 867

-1
96 876

96 867
96 850

Z=10
111703

-5.0
-1.144
-1.181

111696
111706

-10
111708

37 339.4
-0.007
-0.050

37 339.3
37 336.7

2.6
37 336.7

52 373.33
-0.037
-0.154

52 373.14
52 367.06

6.08
52 367

67 207.6
-0.140
-0.372

67 207.1
67 209.2

-2.1
67210

81 938.9
-0.413
-0.763

81 937.7
81 939.2

-1.5
81 942

96 607.5

-1.034
-1.399

96 605.1
96 605

0
96 615

96 601
96 590

111248

-2.288
-2.363

111243
111251

111254

16.1
15.9
0.2

15.9
17.70

56.22
56.36
-0.14

56
61.19

143.7
144.0

-0.3
145

153.38

305.3
306.7

-1.4
307

322.63

575.8
574

2
576
570
577

993
994

-1
992

22.2
21.6
0.6

21.6
24.42

79.72
80.05
-0.33

80
86.76
78.9

206.5
207.1

-0.6
207

220.49

442.5
442.8

-0.3
444

467.57

836.2
836

0
837
836
837

1 446
1 449

-3
1 446
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TABLE IV. (Continued)

Other Expt.
I,CV'

g~
Inter. coupling

EEg (H.R.)
b,Eg (+ED)

Theor. (this work)
Expt. ~

Theor. -Expt.
Edlen'

Other Expt.

AST'

g~
Inter. coupling

b,Eg (H.R.)
EEg (/ED)

Theor. (this work)
Expt."

Theor. -Expt.
Edlen'

Other Expt. '

AST'

112704

144 085

4.321
2.829

144 092
144 091

1
144 096

144 162
144 162
144 306

177303

12.817
5.757

177322
177318

4
177309
176810
177617

1 value

111710

Z=12
141661

-24.0
-4.321
-2.829

141630
141631

-1
141636

141700
141980

141 775
Z=14

172 255
-86.1

-12.817
-5.757

172 150
172 144

6
172 141
171560
172 346

111255

140 520

-8.642
-5.658

140 506
140 504

2

140 508
140 575
140 528

140 625

169852

-25.633
-11.513
169815
169802

13
169800
169 140
169973

994
1 097.3

2 462
2 460

2

2 460
2 462
2 182
2 531

5 172
5 174

-2
5 168
5 250
5 271

Splitting

1 449
1 607.5

3 586
3 587

-1
3 588
3 587
3 634
3 681

7 507
7516

9
7 509
7670
7644

Kelly [27].
Bashkin and Stoner [26].

'Edlen [11,12].
Laughlin, Constantinides, and Victor [6].

'Fleming, Hibbert, and Stafford [8].

Engstrom [29].
sMartin and Zalubas [30].
"Martin and Zalubas [31].
'Ando, Safronova, and Tolstikhina [5].

and Table V for 2s3p. The experiment data for the
ls 2s2p P2 q 0 splittings are comparatively more com-
plete [26—31]. Edlen [11,12] has also recommended the
energy values of the J levels on the basis of his analysis.
Laughlin, Constantinides, and Victor [6] predicted the
splittings using a model potential. Ando, Sa&onova, and
Tolstikhina [5] also calculated the spittings for Z ) 10
systems using MCDF and MZ. MZ is a 1/Z expansion
method. In Table IV, we compare our prediction with
the experiment. The effect of the intermediate coupling
is quite apparent. For example, before intermediate cou-
pling, our Mg Ix J =2—1 splitting, 2438 cm, is different
from the 2460 cm ~ of Martin and Zalubas [30] and 2462
cm ~ of Kelly [27]. The coupling lowers the 2s2psPP
by 23.97 cm and changes the J = 2—1 splitting to
2462 cm which agrees with the experiment alxnost ex-
actly. Similar improvements are also obtained for Ne vII
and Sixr. The predicted 2s2p P& excitation energies
agree with the experimental data very closely for all Z
considered. This is unexpected, considering the possible
uncertainty in our /ED and higher order relativistic cor-
rections. Nevertheless, this agreexnent seems to suggest
that the method we used is suitable for 2s2p~PJ states.
In comparison with other theoretical prediction, we note

that our fine-structure splitting results differ from those
of Laughlin et at. [6] by about 5—8%. percent. Consider-
ing the simplicity of the model potential, this agreement
is quite good. The MCDF and MZ results in Ando et
al. [5] are somewhat different and they consider the MZ
results to be more reliable. Some of their MZ results
are also given in Table IV. Their fine-structure split-
tings for MgIx and Six' differ from ours by less than
three percent. Recently, the excitation energy of the C III
ls 2s2p Pz is predicted to be 52369 cm by Fleming
et al. [8] and 52343 cm by Fischer [9]. They agree
well with our result, 52396 cm, and the experimental
result of 52 390 cm

The excitation energies and fine-structure splittings
for the 2s3p3P& states are given in Table V. For higher
Z, the experimental data for these states are less com-
plete. For Z=5 —9, our results for EJ agree with the
data quoted in Bashkin and Stoner [26] and Kelly [27]
quite well. The discrepancies range from 0.3 to 5 cm
The agreement on fine-structure splitting is excellent in
all cases. For Z=10, the data quoted in Bashkin and
Stoner [26] and Kelly [27] are quite different. Our results
agree much better with those of Bashkin and Stoner. For
Mg IX, the EJ quoted in Bashkin and Stoner is very ap-
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TABLE V. Fine-structure resolved excitation energy and splitting for the 18 2s3p PJ states
of Be-like system [in cm, Eq is the excitation energies from first order perturbation theory.
AEz(H. R.) is the higher-order relativistic contribution].

gJ
Inter. coupling

b Eg (QED)
Theor. (this work)

Expt.
Theor. -Expt.

gJ
Inter. coupling

EEg (H.R.)
b,Eg (QED)

Theor. (this work)
xp

Theor. -Expt.
KMW'

gJ
Inter. coupling

EEg (H.R.)
b.Eg (QED)

Theor. (this work)
Fxp

Theor. -Expt.
KMW'

gJ
Inter. coupling

AEg (H.R.)
AEg (QED)

Theor. (this work)
Expt. '

Theor. -Expt.
KMW'

gJ
Inter. coupling

EEg (H.R.)
b,Eg (QED)

Theor. (this work)
Expt.

Theor. -Expt.
Other Expt.

gJ
Inter. coupling

b,Eg (H.R.)
AEg (QED)

Theor. (this work)
Expt.

Theor. -Expt.
Other Expt.

gJ
Inter. coupling

EEg (H.R.)
EEg (QED)

143994.19

0.002
143 994.19
143 993.89

0.30

259 726.50

0.001
0.009

259 726.51
259 724.30

2.21

406 027.0

0.007
0.027

406 027.0
406 022.8

4.2

582 915.9

0.026
0.063

582 916.0
582 917.0

-1.0

790 477.5

0.074
0.126

790 477.7
790 474

4
790 460

1 028 758.0

0.182
0.227

1 028 758.4
1 028 754.7

3.7
1 028 775

1 597 804.8

0.666
0.534

2 value

1

Z=5
143 990.85

-0.06
-0.002

143990.79
143990.45

0.34
Z=6

259 713.38
0.11

-0.001
-0.009

259 713.48
259 711.22

2.26
259 736
Z=7

405 991.4
0.4

-0.007
-0.027

405 991.8
405 987.5

4.3
406 024
Z=8

582 837.7
1.4

-0.026
-0.063

582 839.0
582 839.8

-0.8
582 908
Z=9

790 327.2
3.9

-0.074
-0.126

790 330.9
790 326

5
790 312
Z=10

1 028 495.3
10.1

-0.182
-0.227

1 028 505.0
1 028 499.3

5.7
1 028 519

Z=12
1 597 144.0

50.2
-0.666
-0.534

143989.60

-0.004
143989.59
143989.15

0.44

259 707.92

-0.003
-0.018

259 707.90
259 705.55

2.35

405 975.8

-0.014
-0.054

405 975.7
405 971.6

4.1

582 802.5

-0.052
-0.126

582 802.3
582 803.1

-0.8

790 258.5

-0.149
-0.252

790 258.1
790 253

5
790 240

1 028 373.7

-0.364
-0.455

1 028 372.9
1 028 366.5

6.4
1 028 386

1596832.9

-1.332
-1.069

Splitting

2—1

3.40
3.44

-0.04

13.03
13.08
-0.05

35.2
35.3
-0.1

77.0
77.2
-0.2

146.8
148

-1
148

253.4
255.4

-2.0
236

4.60
4.74

-0.14

18.61
18.75
-0.14

51.3
51.2
0.1

113.7
113.9

-0.2

219.6
221

-1
220

385.5
388.2

-2.7
369
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TABLE V. (Continued)

Theor. (this work)
Expt.
AST'

Eg
Inter. coupling

AEg (H.R.)
b,Eg (QED)

Theor. (this work)
AST'

1 597806
1 598.4 x 10

1 597 926

2 290 743.6

2.562
1.292

2 290 747
2 290 887

J value

1 597 193
1 597.7x 10

1 597 287
Z=14

2 289 349.4
193.1

-2.562
-1.292

2 289 539
2 289 640

1 596 830
1 597.4 x 10

1 596 917

2 288 6S6.0

-5.123
-2.583

2 288 678
2 288 771

Splitting

613
0.7x 10

639

1 208
1 247

976
1.0 x10

1009

2 069
2 116

Bashkin and Stoner [26].
Kelly [27].

'Kim, Martin, and Weiss [7].
Engstrom [29].

'Ando, Safronova, and Tolstikhina [5].

proximate, our prediction does not agree with these data.
On the other hand, our prediction is close to the predic-
tion of Ando et al. [5] with the largest discrepancy being
120 cm . The predicted fine-structure splittings only
differ by about 3%.

For SiXI 2s3p PJ, no experimental data is available.
Our Eg differs from that of Ando et al. [5] by less than
140 cm . Again, our fine-structure splittings are smaller
than theirs by about three percent.

IV. CONCLUSION

The purpose of this work is to carry out a FCPC calcu-
lation for the 2snp ' P& states to test the accuracy of the
method along the isoelectronic sequence and to provide
some reliable theoretical Mg IX and Si xI 2s3p P& data
for experimental workers. From the agreement between
our E(2s2p sP&) and experiment and that of E(2s3p sP&)
for Z & 10, the predicted Mglx and Six? E(2s3psP&)
are probably quite accurate. They should be useful for
experiments on these systems.

In obtaining an accurate nonrelativistic energy, it is
necessary to consider the higher t contributions. The re-
stricted variation method also provides an effective pro-

cedure to saturate the functional space. The results in
Table I shows how important they contribute to the final
energy.

There has been much interest in the coupling of Pz
and st in the literature [7, 32—38]. Our results show
that this coupling is strong and it is critically important
for the fine-structure splitting for Z & 9, especially for
283p ' P&. In general, the inclusion of this coupling leads
to results which are in close agreement with experiment.
The predicted fine structures in this work are probably
quite reliable.

As in Chung and Zhu [18], the predicted 2snp ~PP en-
ergies do not agree with experiment closely. The fact
that this discrepancy increases with Z seems to suggest
that the main problem is not insufficient correlation in
the nonrelativistic wave function. Most of the discrep-
ancy may still come from errors in /ED. However, we do
not have a better method to handle this problem at this
time.
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