
PHYSICAL REVIE%' A VOLUME 50, NUMBER 5 NOVEMBER 1994
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The energies of the bound states and energies and widths of autoionizing resonant states of helium are
calculated within the s-wave model, where the individual orbital angular momenta of both electrons are
zero. The energies of the bound 1sns states difFer from the corresponding energies in real helium only via

a small n-independent shift hp in the quantum defects, which amounts to Lp=0.011 for singlet states
and hp=0. 004 for triplet states. The quantum defects of more than 50 bound and resonant states with

singlet or triplet symmetry are reproduced by an empirical four-parameter formula to within an rms de-

viation of less than 0.016. The normalized widths of the autoionizing Nsns resonant states increase with

the smaller quantum number N, and the widths of the singlet states tend to become larger than the sepa-
ration of successive resonances in the Rydberg series for N =8. sects of interference of Rydberg series
can be described in the framework of multichannel quantum-defect theory. In the 7sns singlet series of
resonances, interference due to the 8s8s perturber inhibits autoionization by more than three powers of
10. Semiclassical quantization based on unstable periodic orbits reproduces the energies of states with

equal or similar quantum numbers rather well in a standard application of the cycle-expansion technique
and very well in an application using only three nonretracing periodic orbits.

PACS number(s): 31.10.+z, 31.50.+w, 32.80.Dz, 03.65.Sq

I. INTRODUCTION

Since Madden and Codling's detection of doubly excit-
ed states of the helium atom [1] and the first interpreta-
tion of their results [2], there has been a continuing in-
terest in two-electron atoms. Despite their seeming sim-

plicity, the correlated motion of two electrons in the
Coulomb field of a nucleus is still largely an unsolved
problem. There has been considerable experimental [3,4]
and theoretical [5—23] progress in recent years, but the
energy region just below the two-electron ionization
threshold, where many Rydberg series and continua in-
teract, is still only partly understood. Classically the
motion of the two electrons in the helium atom is chaotic
in large parts of phase space, and two-electron atoms
serve as a realistic physical example of chaotic classical
dynamics. Substantial progress has recently been made
in understanding the classical dynamics in various parts
of phase space [15,19,23] and in the semiclassical deriva-
tion of quantum-mechanical energy eigenvalues
[17,18,22].

Conservation of total linear and total angular momen-
tum reduces the number of independent (spatial) degrees
of freedom in two-electron atoms to 4 in the case of non-

vanishing total angular momentum, while for vanishing
total angular momentum, there are three independent
coordinates, e.g., the distances r„r2 of the two electrons
from the nucleus and the angle between the correspond-
ing displacement vectors. Simplification of the problem
can be achieved within approximative models reduced to
two degrees of freedom. Examples are the collinear mod-

el, which has been studied in detail in [17—19], and the s-

wave model, which is the subject of the present paper. In
this model both electrons are restricted to spherical
states, r, and r2 are the only two spatial coordinates, and

all angular correlations are eliminated. Classically this
corresponds to two spherical shells of charge —1 expand-
ing and contracting around a fixed nucleus of charge Z.
Comprehensive studies of the classical dynamics of two-
electron atoms in the s-wave model below and above the
two-electron ionization threshold have been published in
[24—26].

The present paper focuses on the quantum mechanics
of s-wave helium. Several authors have studied electron
scattering by hydrogen in the s-wave model [27—32], but
investigations of the spectrum of s-wave atoms for Z & 1

have so far been restricted to the helium ground state and
the lowest triplet state [33—37]. Since the bound states of
real helium (below the one-electron ionization threshold)
all have 1snl structure —with I =0 for vanishing total an-
gular momentum —the s-wave model is quite a good ap-
proximation of real helium for the bound 1sns states. For
the doubly excited states, which all lie above the one-
electron ionization threshold and hence are autoionizing
resonances, the increasing importance of angular correla-
tions makes a direct comparison of the s-wave model with
real helium less meaningful. Nevertheless, the s-wave
model is perhaps the simplest model for two electrons in-
teracting with each other and with a nucleus via long-
ranged Coulomb forces, and interesting features such as
the structure of the spectrum below the two-electron ion-
ization threshold and the relation between classical and
quantum mechanics are more easily studied in this simple
and transparent model. Furthermore, the s-wave model,
where all angular correlations are e1iminated, is in a sense
complementary to the collinear model, where angular
correlations are greatest, so perhaps the behavior of real
helium can be expected to lie somewhere in between.

After a brief definition of the s-wave model in Sec. II,
we describe and discuss in Sec. III the results of extensive
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numerical calculations of the energies of the bound states
and the autoionizing resonant states below the double-
ionization threshold. The widths of the resonant states
above the one-electron ionization threshold are discussed
in Sec. IV. In Sec. V we study the correspondence be-
tween the quantum-mechanical spectrum and classical
dynamics in the light of modern periodic orbit theory.

II. s-WAVE HELIUM

Assuming infinite nuclear mass, the Hamiltonian of the
real helium atom is, in atomic units,

H= —
—,V —

—,V—j 2
1 T. 2

1

In the subspace defined by individual angular momentum
zero of both electrons, the interaction potential

1 cl
H, = ——

dr (
Z (Z —1)

where

1=H)+H2+ l')

1 8H)= ——
Op'

Z ~ 1 8 Z
RV2

r& 2 Br2

In (3), r & and r & denote the larger and the smaller of the
two radii r& and r2, respectively.

As long as r, & r2 or r, & r2, the electrons move
without any coupling potential. The inner electron sees
the naked nuclear charge Z and the outer electron sees a
screened charge Z —1. The Schrodinger equation

H, V(ri, r2 ) =ET(ri, r2 ) (5)

is separable in these regions, but coupling is introduced
by the requirement of continuous matching at the bound-
ary r) =r2.

III. ENERGIES

Below the double-ionization threshold E =0, the spec-
trum of helium consists of Rydberg series converging to
the limits EN= —Z l(2X ), (Z =2). In s-wave helium
there is, for a given symmetry with respect to exchange of
r& and r2, just one Rydberg series converging to each lim-
it. Each series is associated with a channel defined by a
hydrogenic bound-state wave function P~ for one elec-
tron, and the contribution of this channel to the total
wave function approaches Piv times a highly excited or
continuum wave function for the second electron as the
energy approaches or exceeds the series limit. The struc-
ture of the total wave function is, for E (0,

00 p

,+, P, ( COOS)

r) —
r21 ) —0 r

contributes only the first term in the sum, and the Hamil-
tonian of s-wave helium is

0

%(r, , r, ) =A g P~(r, )glv {r,)+A @b(r, , r„},

where the sum X=1, . . . , No covers all open channels;

Pz stands for the bound hydrogenic function defining the
channel X; gN is the generally unbound channel wave
function in the open channel X; and 4b is a bound wave
function containing no contributions from the open chan-
nels. The operator A defined by

+4(rl r2)=[4(ri r2)+0(r2 rl )]l+2
ensures the correct spatial symmetry or antisymmetry of
the wave function for the singlet and the triplet case, re-
spectively.

For energies below the lowest series limit E& = 2 all
channels are closed and the bound states of the system
can be obtained by diagonalizing the Hamiltonian (3) in a
suitable basis. We chose the basis functions to be prod-
ucts p„(r, )y, (r2) of (normalized) Slater-type orbitals:

yk(r) ~ r exp( r la„} . —

This basis can be made suSciently dense in Hilbert space
if the length parameters are chosen so that the overlap in-
tegral between neighboring functions, (yk(r) ~g&+, (r) ) is
a constant near to 1. We used up to 25 single-electron
functions (that is, 625 product wave functions for the two
electrons) with an overlap of 0.98 between two neighbor-
ing single-electron functions. If the diagonalization is
carried out in a basis of no specified symmetry, both
singlet and triplet states are calculated simultaneously.
We found that an explicit symmetrization or antisym-
metrization of the basis does not improve the accuracy of
the calculations.

Up to now, the only energy eigenvalues available for s-
wave helium were those calculated by Winter, Laferriere,
and McKoy [35] for the ls ls ground state ( —2.879 035 0
a.u. ) and for the ls2s ( S) excited state (

—2. 174254 68
a.u. ). Our results for the lsns series are shown in Tables I
(singlet) and II (triplet). Our value for the ground-state
energy lies less than 10 a.u. above Winter, Laferriere,
and McKoy's result, which was obtained via extrapola-
tion in a calculation optimized for this state. Our lowest
triplet state is already an improvement of more than 10
a.u. over Winter, Laferriere, and McKoy*s result. In
Table I and II we also show values obtained for the ener-
gies of the 1sns bound states of real helium by Burgers
and Wintgen [38] for the singlet states and by Accad,
Pekeris, and Schiff [39] for the triplet states. The ener-
gies in real helium lie marginally lower than in s-wave
helium, because angular correlations allow a lowering of
the electron-electron repulsion.

An unperturbed Rydberg series of energies E„con-
verging to the series limit EN can be written in terms of
e8'ective quantum numbers v„=n —p„with slowly vary-

ing quantum defects p„as

The quantum defects p„of the 1sns singlet and triplet en-
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TABLE I. Energies E„and quantum defects p„of the 'So bound states of s-wave helium together with the corresponding results
of Burgers and Wintgen [38] for the real three-dimensional helium. The numbers in parentheses are not accurate to all digits
quoted —see text.

Configuration
( So)

s-wave helium

Energy (a.u.) Quantum defect
Real helium [38]

Energy (a.u. ) Quantum defect

1s ls
1s2s
1s3s
1s4s
1s5s
1s6s
1s7s
1s8s
1s9s
1s10s
1s ~s

'Reference [43].

—2.879 027 69
—2.144 188 10
—2.060 788 24
—2.033 391 81
—2.021 079 23
—2.014 507 40
—2.010590 97
—2.008 069 72

(—2.006 349 35)
(—2.005 11985)
—2.0

0.245 80
0.137 83
0.13203
0.13041
0.129 68
0.129 30
0.12904
0.128 53
(0.125 98)
(0.11774)
0.128

—2.903 724 377034 1189
—2.145 974 046 054 35
—2.061 271 989 70
—2.033 586 71686
—2.021 176 851 15
—2.014 563 097 4
—2.010625 775 2
—2.008 093 619 1
—2.006 369 551 1
—2.005 142 987 4
—2.0

0.256 18
0.14925
0.143 37
0.141 65
0.140 92
0.140 53
0.140 31
0.140 16
0.14006
0.13999
0.139'

ergies converging to the series limit E, = —2 are included
in Tables I and II for both the s-wave model and for real
helium. The effective quantum numbers in s-wave helium
are a little larger and the quantum defects corresponding-
ly a little smaller than in real helium. This small
difference in quantum defects is virtually independent of
n and amounts to hp=0. 011 for the singlet states and to
hp=0. 004 for the triplet states. The dependence of the
quantum defects on llv =2(E~, E) is dis—played in

Fig. 1. The fact that the quantum defects begin to drop
below the straight lines of convergence near n =10 indi-
cates that the subspace in which the Hamiltonian was di-
agonalized is starting to get too small to accurately de-
scribe such highly excited states; the energies tend to be
too large corresponding to quantum defects which are
too small. Extrapolation of quantum defects from the re-
gion of obvious convergence yields more accurate energy
values for these and higher states. Note that if the quan-
tum defect of a state is known to an accuracy 5p, then
the corresponding energy (8) is accurate to
5p lv„=5p I(n —p„) .

The 1sns states are the only exactly bound states. A11
other states lie above the ionization threshold E& = 2
and are hence autoionizing resonances. In this energy re-
gion the Schrodinger equation should in principle be

solved with unbound waves in the open channels, e.g., on
the basis of the coupled-channel equations. However, the
autoionization widths of the states above the ionization
threshold are very small, as long as at least one of the two
quantum numbers is small, and hence it is a fair approxi-
mation to calculate the energies of these states by identi-

fying them with bound states obtained by diagonalizing
the Hamiltonian (3) in a subspace orthogonal to the open
channels.

Consider a range of energies E at which the channels
N = 1 ~ ~ ~ Np are open, and all other channels are
closed, i.e.,

Let 6 be the operator projecting onto the space orthogo-
nal to the open channels, i.e., for any single-particle func-
tion P,

(p&(r&)l((r2)ll+(r), rz) &

=(P(r&)PN(rz)~6~%'(r&, rz))=0 for 1&& No .

If we expand the total wave function 4 in a complete or-

TABLE II. Energies E„and quantum defects p„of the 'S& bound state of s-wave helium together with the results of Accad, Pek-

eris, and Schitf [39] for the real helium.

Configuration
('S, )

s-wave helium

Energy (a.u. ) Quantum defect
Real helium [39]

Energy (a.u. ) Quantum defect

1s2s
1s3s
1s4s
1s5s
1s6s
1s7s
1s8s
1s9s
1s10s
1s oos

'Reference [43].

—2.174 264 80
—2.068 490 12
—2.036 438 58
—2.022 583 64
—2.015 357 90
—2.011 11794
—2.008 419 11

( —2.006 595 03)
(—2.005 302 38)
—2.0

0.306 13
0.298 09
0.295 72
0.294 69
0.294 17
0.293 86
0.293 59
(0.292 84)
(0.289 32)
0.293

—2.175 229 378
—2.068 689 06
—2.036 512 1
—2.022 619
—2.015 377 5
—2.011 129 9
—2.008 427 1
—2.006 601 5
—2.005 3108
—2.0

0.31080
0.30200
0.299 45
0.298 37
0.297 80
0.29747
0.297 26
0.297 1

0.2970
0.297'
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FIG. 1. Quantum defects of the lsns states.

thogonal basis of product wave functions gz (r, )gz (ri)
1 2

and choose the first No basis functions to coincide with
the hydrogenic bound-state wave functions!)(!!v defining
the open channels, then applying Q amounts to excluding
those terms in the expansion for which N& No or
N2 & No. For an arbitrary choice of the 11!!v, applying Q
amounts to orthogonalizing all single-particle wave func-
tions to the hydrogenic wave functions
N=1, . . . , No, defining the open channels.

Diagonalizing the Hamiltonian H, in the space orthog-
onal to the channels N=1, . . . , No amounts to diagonal-
izing the Hamiltonian QH, Q, which has only bound
states for E (—2/(No+ 1) . A considerable
simplification can be achieved by applying an idea intro-
duced by Saito [40,41] in the so-called orthogonality con
dition model in nuclear scattering. If we solve the eigen-
value equation for the (non-Hermitian) operator QH„

QH, V(r!,ri) =EV(r!,r2),

then the eigenfunctions %' automatically fulfill the
"orthogonality condition" (1—Q)!P=0 as long as EAO.
This follows immediately by applying (1—Q) to both
sides of (10):

(1—Q)QH, %'(r „r2 ) =O=E(1—Q)%(r „r2 ) .

Hence we only need to solve the eigenvalue problem for
QH„as long as we exclude the eigenvalue E =0. We
thus diagonalized QH, in the basis defined by the single-

particle wave functions (7). The operator QH, is invari-

ant under permutation of the two particle labels and its
diagonalization automatically yields the symmetric
(singlet) and antisymmetric (triplet) eigenstates. The re-
sulting energies and associated quantum defects for the
Rydberg series Nsns with N=2, . . . , 9 are listed in
Tables III and IV for singlet and triplet symmetry, re-
spectively.

When the lowest state of the (N+1)sns series lies
below the limit E&= —2/N of the Xsns series, it loses
its identity as an individual state and becomes instead a
perturber of the Rydberg series of states converging to
the limit E~. This happens first for N =5 in the singlet
spectrum where the "6s6s" state lies just below the series
limit E~ = —0.08. In our present method of diagonaliz-

ing the Hamiltonian H, in the subspace orthogonal to the
"open" channels N' = 1, . . . , S, we obtain an energy for a
6s6s state lying below E5 where the channel N'= S is ac-

tually closed. This energy is not really the energy of an
individual state, but corresponds to the position of the
perturber of the Ssns series. Similar considerations apply
to the 7s7s, SsSs, 9s9s, and 9s10s singlet states. In the
triplet spectrum the first case of a state appearing below
the series limit of the Rydberg series of the preceding
channel occurs when the Ss9s state perturbs the 7sns
series converging to E7 = —

—,', = —0.4082. Such fictitious

states, which are actually perturbers, are marked by as-
terisks in the Tables.

The presence of a perturber in a Rydberg series mani-
fests itself in a pseudoresonant jump of the quantum de-
fects of the individual states by unity in analogy to the

jump by ir of the phase shift near a resonance [42]. For
an isolated perturber the quantum defects p„ lie approxi-
mately on a curve p(E) given by

1 I"/2
p, (E)=)L!b ——arctan

g
R

(12)

Z' (Z —1)

2N 2[n p(N, n )]—
For n & Ã the outer electron sees a total charge Z = 1 due
to screening by the inner electron, and the quantum de-
fects p(N, n ) converge to an n-independent constant for
n ~~. The quantum defects depend essentially on the
quantum number Xof the inner electron and are virtually
independent of n as long as n &N or n )N+1 for the
singlet and triplet states, respectively.

Clearly the symmetrically excited states n =X play a
special role. If we picture both electrons as moving in-
dependently in the Coulomb potential of the nuclear
charge partially screened by the other electron, this leads

where pb is a smoothly varying background term and the
arctan term describes the effect of the perturber located
at energy E& with width I .

The quantum defects for the Nsns series with N =5, 6,
and 7 are displayed in Fig. 2 as functions of
1/v&=2(E~ E). The—effect of the lowest state of the

next series, viz. , the (N + 1)s(N + 1)s state perturbing the

series, causes the quantum defects of the singlet series to
increase towards the series limit, before numerical inac-

curacy leads to decreasing values. The 6s6s state per-

turbing the Ssns series lies close to the limit of the series

at high quantum numbers n out of the range of the

present calculation. The perturbation of the 6sns and the

7sns singlet series due to the 7s7s and the Ss Ss perturber,
respectively, is obvious. A best fit of the quantum defects

of the perturbed states to Eq. (12) is obtained for

Ez = —0.059 and I =0.0023 in the 6sns series and for

Ez = —0.045 and I =0.0016 in the 7sns series. The en-

ergies Ez obtained in this way agree within the accuracy

of the fits with the energies of the (fictitious) states ob-

tained by diagonalizing the Hamiltonian in the space or-

thogonal to the N=6 or 7 states ('7s7s and "8s8s in

Table III).
There have been a number of attempts to describe the

spectra of two-electron atoms by a double Rydberg for-
mula [3,5 —7, 12—14]. A natural choice, which should
work quite well for the spherical electrons of s-wave heli-

UIIl, is
(133
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to the modified Rydberg formula for the total energy:

(Z Io )2
NN (N )2

(14)

With the N-independent constants (Z') =2.90226 and

p, = —0.004027, Eq. (14) reproduces the energies of the
NsNs singlet states with an accuracy of roughly 2X 10
a.u. or better.

If we force the energies Ez~ from (14) into the form
(13), we obtain an explicit expression for the quantum de-
fects p(N, N), namely,

p(N, N) =0.2556N —0.0096— ' +0 . (15)
0.0001 1

N N2

In general, the quantum defects p(N, n ) increase with in-
creasing quantum number N of the inner electron, be-
cause its rms radius and its effect of modifying the poten-
tial seen by the outer electron increases with N. If we ex-
clude the NsNs singlet states and the Ns(N+1)s triplet
states, then a simple linear ansatz, p=aN+b with no
dependence on n, already gives a very good fit to our cal-
culated quantum defects. The deviations of the quantum
defects of the lowest states in each series from this simple
behavior can be accounted for by adding an empirical
term as in the following formulas:

TABLE III. Energies E„and quantum defects p„(modulo unity) of the Nsns('So) resonances with N=2-9. The asterisks mark
fictitious states, which are actually perturbers of the Rydberg series of states converging to the limit E&

Configuration
('So)

2s2s
2$3$
2s4s
2s5s
2s6s
2$7$
2s 8s
2s9s
2s10s
2$00 $

3$3$
3s4s
3s5s
3s6s
3$7$
3s8s
3s9s
3s10s
3$ 00$

4s4s
4s5s
4s6s
4s7s
4s8s
4s9s
4s10s
4s11s

Energy (a.u. )

—0.722 650 81
—0.571 881 95
—0.537 61540
—0.523 141 73
—0.515 667 37
—0.511 307 48
—0.508 543 59
—0.506 681 17

(—0.505 365 22)
—0.5

—0.321 419 57
—0.265 182 16
—0.247 779 31
—0.239 208 83
—0.234 331 20
—0.231 289 42
—0.229 264 60

(—0.227 846 40)
—0.22

—0.181 243 70
—0.153 730 82
—0.143 598 61
—0.138071 00
—0.134692 21
—0.132471 50
—0.130928 82

(—0.12979903)

0.501 44
0.362 61
0.354 12
0.351 78
0.350 80
0.350 30
0.349 94
0.349 15
(0.346 36)
0.348

0.754 90
0.588 44
0.576 87
0.574 60
0.574 14
0.574 11
0.573 93
(0.571 22)
0.573

0.01841
0.828 32
0.815 05
0.815 13
0.817 53
0.81948
0.81666

(0.792 76)

Configuration
('s, )

6s6s
6s7s
6s Ss
6s9s
6s10s
6s11s
6s12s
6s13s
6s14s

7$7$
7s 8s
7s9s

7s10$
7s11$
7s12s
7s 13s
7s14s

8s8s
8s9s
8s10s
8s11s
Ss 12s
Ss13s
8s14s

Energy (a.u. )

—0.080 549 70
—0.070 892 52
—0.066 603 86
—0.063 96812
—0.062 205 68
—0.060 97642
—0.060096 10

(—0.059 41902)
(—0.058 886 89)

—0.059 220 97
—0.052 758 37
—0.049 733 16
—0.047 824 63
—0.046 553 99
—0.045 711 73

(—0.045 063 55)
(—0.044 431 12)

—0.045 368 21
—0.040 81340
—0.038 600 29
—0.037 198 50
—0.036 31621
—0.035 670 99

(—0.034 99347)

0.527 34
0.290 27
0.272 76
0.290 60
0.328 98
0.39603
0.506 24
(0.623 82)
(0.748 88)

0.787 80
0.529 38
0.511 76
0.553 47
0.66493
0.893 73

(0.14993)
(0.239 03)

0.048 93
0.769 32
0.752 30
0.831 86
0.065 56
0.306 32

(0.442 93)

5s5s
Ss6s
5s7s
SsSs
Ss9s
Ss10s
Ss11s
Ss12s

—0.115921 21
—0.100443 06
—0.094 068 02
—0.090 333 17
—0.087 921 35
—0.086 264 99
—0.085 071 00

(—0.084 17995)

0.269 14
0.05448
0.038 32
0.043 86
0.055 16
0.06643
0.070 25
(0.062 97)

9s9s
9s 10s

9s11s
9s12s
9s13s
9s14s

—0.035 850 25
—0.032 509 29
—0.030 840 97
—0.029 794 41
—0.029 138 32

(—0.028 525 89)

0.306 17
0.002 78
0.983 02
0.101 49
0.39640

(0.580 98)
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p(N, n)= '

0.2331'—0. 1178+
(n —N) +0.050

for singlet states

0.2444N+0. 2828+
( n —N) +2.768

for triplet states.

(16)

(17)

The (n N)—term in the denominator suppresses the
correction for n & N in the singlet case and for n & N + 1

in the triplet case and thus does not destroy the good fit
of the linear ansatz for higher states.

The empirical formulas (16) and (17) are of course only
expected to work well in unperturbed Rydberg series.
EfFects of interchannel perturbations should be described
within the framework of multichannel quantum-defect
theory, or, more simply, by a formula like (12). On the
other hand, the nature of unperturbed Nsns resonances

coupled mainly to the open channel (N —1) is closely re-
lated to the nature of a possible low ¹Nsor ¹ (N + 1)s
perturber below the series limit of the (N —1)sns series.
Hence the energies and associated quantum defects of the
fictitious states labeled by asterisks in Tables III and IV
can be expected to fit into the general behavior described
by Eqs. (16) and (17). The four parameters in Eq. (16)
were determined by fitting to the quantum defects of the
Xsns singlet states with N=1, . . . , 9 and n running from
N to nmgxy with nmgx 0 or 3~ n'og/ for N 4
and 5, and n,„=9for N=6, . . . „9; the behavior of the
quantum defects for larger n is distorted due to perturba-
tions or the limits of numerical accuracy. The four-
parameter formula (16) reproduces the 52 quantum de-
fects involved with an rms deviation of 0.010. Formula
(17) reproduces the quantum defects of 55 triplet states
(up to n, „=10for N ~ 3, n,„=1 1 for N=4 and 5, and

n,„=12 for N &6) to within 0.016. The good agree-
ment between calculated and empirical quantum defects
is illustrated in Fig. 3.

TABLE IV. Same as Table III for the Nsns('S
& ) resonances with N =2-9.

Configuration
( s, )

2s 3$
2s4s
2s Ss
2s6s
2$ 7$

2s 8s
2s9s

2s10s
2$ (x) s

Energy (a.u. )

—0.584 854 77
—0.542 002 74
—0.525 156 24
—0.516759 46
—0.511 965 85
—0.508 971 19
—0.506 975 05

(
—0.505 575 73)
—0.5

0.572 57
0.549 78
0.541 77
0.537 96
0.535 82
0.534 48
0.533 36
(0.530 35)
0.530

Configuration
('S) )

6s7s
6s 8s
6s9s
6s10s
6s11s
6s 12s
6s ~$

Energy (a.u. )

—0.073 000 50
—0.067 614 19
—0.064 498 32
—0.062 477 92
—0.061 079 24

( —0.060 057 26)
—0.055

0.646 35
0.560 74
0.522 63
0.501 20
0.485 84

(0.461 08)
0.427

3s4s
3s5s
3s6s
4s7s
3s8s
3s9s
3s10s
3$ 00$

—0.272 252 33
—0.250 564 39
—0.240 605 13
—0.235 13364
—0.231 793 83
—0.229 602 01

{—0.228 080 90)
—0.22

0.838 67
0.799 81
0.784 72
0.777 03
0.772 43
0.768 80
(0.761 85)
0.758

7s 8s
7s9s

7s 10s
7s11s
7$12s

—0.054 329 66
—0.050 506 01
—0.048 198 S8
—0.046 647 29

{—0.045 528 46)

0.91720
0.81660
0.770 18
0.739 92
{0.69908)

4s5s
4s6s
4s7s
4s 8s
4s9s
4s10s
4s 11s
4s Dos

—0.157 981 47
—0.145 418 12
—0.139022 70
—0.135 252 44
—0.132 829 15
—0.131 171 85

( —0.129 977 91)
—0.125

0.10641
0.051 46
0.028 70
0.016 53
0.008 51
0.999 28
(0.977 84}
0.982

*8s9s
8s 10s
8s11s
Ss12s

—0.042 017 74
—0.039 200 47
—0.037 440 84

( —0.036 216 94)

0.185 68
0.069 72
0.01309

(0.966 78)

Ss6s
Ss7s
Ss8s
5s9s
5s10s
Ss 1 ls
5s Dos

—0.103 383 58
—0.095 418 80
—0.091 055 91
—0.088 342 69
—0.086 S25 98

( —0.085 243 23)
—0.08

0.375 88
0.305 45
0.275 07
0.258 38
0.246 90
{0.234 70)
0.208

*9s10s
9s 115

9s 12s

—0.033 438 69
—0.031 30S 50
—0.029 937 32

0.439 56
0.305 43
0.237 24
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solving the coupled-channel equations for the continuum
wave functions in the open channels. This can be done
without further approximation at energies with a finite
number of open channels, if we restrict the bound part of
the wave function (6) to lie within a finite-dimensional
Hilbert space. For just one open channel the wave func-
tion is

(E E, )
——H2+ f ~Q, (r, )~ dr, it/(»2)

= y a, ((t, ~H, ~a, )„,
j=1

(23)

where the subscript r
&

on the matrix element means in-

tegration over r, only. Multiplying the Schrodinger
equation from the left with a bound state 4k and in-

tegrating over r, and r2 yields

Ek )a/j; ( @/& l ~, I '(t i( r i W ( r p ) )

=(+/, I/», IP, (r, )g(»2)) . (24)

Note again that only the coupling term 1I» ) contributes
to the matrix elements of the Hamiltonian H, between
open-channel wave functions and the bound states 4k
(which are orthogonal to all open channels).

In the absence of channel coupling, Eq. (23) reduces to
the homogeneous equation (20) with the regular (energy-
normalized) solution P«(»2) and a corresponding irregu-
lar solution /t/;„(»2), which asymptotically differs from

only in a phase shift of ~l2. The Green's function of
this homogeneous equation is [42]

|I(„g(»2)i//;, f(»2) fo«p
G(r2, r2)= n.'—, , ) (25)

q«g(»2)y;„(rp) fo«2 —rp.

q(/r&, rz)=(()&(ri)g(rz)+ g a 4 (ri, r2) .
i=~

Here ((/i denotes the hydrogenic ls wave function (for
Z =2), f is a continuum wave function to be determined,
and 4 are the bound-state wave functions obtained by
diagonalizing the Hamiltonian in the space orthogonal to
the open channel as described in Sec. III. Inserting (22)
into the Schrodinger equation, multiplying from the left
with /t/,"(»i ), and integrating over r, yields

This Green's function can be used to formally solve the
inhomogeneous equation (23),

Ã

if/(»2) =Q„g(»2)+ g a G (r2),
j=l

where the abbreviation G (r2. ) is used for the following
double integral:

6/(r~)= f G(r2, r2) f P/(ri)(r) )

X 4/(ri, »2 )dr, dr2

Asymptotically (r2~ 00 ), we can assume r2 ) r2, and (26)
becomes

P(r )=g«(r ) ~g;„(r—) g a. (P,f„~(r ) '~4 ) .

(28)

Inserting (26) into (24) gives an inhomogeneous system of
N linear equations for the X coefficients a '
(E Ek)ak=—&@kl(r. ) 'l(ti(ri)g„g(»2))

+ y (~, l(r, )-'ly, (ri)G, (»2) )a, .
j=l

With the coefficients a obtained by solving (29), Eq. (28)
is an explicit solution for the asymptotic open-channel
wave function, and the quotient of the coefficients of the
irregular and regular solutions of the homogeneous equa-
tion is the tangent of the phase shift due to coupling to
the bound states 4'

A

tan5(E)= —
m g (P,f„g~(r) ) '~4, )a, . (30)

j=1

This result corresponds to the exact solution of the
Schrodinger equation in the space spanned by all wave
functions of the form (22) and involves no further approx-
imations.

Once the energy dependence of the phase shifts (30) is
known, the resonance energies Ez can be identified as
points of maximum gradient d5/dE and the resonance

TABLE V. The widths of the 2sns resonances. Method 1 is based on a full solution of the coupled-channel equations, method 2 on
the golden rule. The exponents (base 10) are in brackets. The last column shows the normalized widths I 2„=(n —p„) I z„.

Configuration
('s, )

2$2$
2$3$
2$4$
2s 5s
2s6s
2$ 7$
2s 8s
2s 9s

Method 1,
Width I 2n

4.400 [—4]
9.855 [—5]
4.046 [—5]
2.034 [

—5]
1.136 [—5]
6.990 [—6]

Width I „(a.u. )

4.802 [—4]
1.063 [—4]
4.289 [—5]
2.116 [—5]
1.191 [—5]
7.355 [—6]
4.854 [—6]
3.389 [—6]

Method 2
Normalized width I 2„(a.u. )

1.616 [—3]
1.950 [—3]
2.079 [—3]
2.125 [—3]
2.147 [—3]
2.163 [—3]
2.173 [—3]
2.194 [—3]
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TABLE VI. Partial and total widths of the Nsns('Sp) resonances for N=3-5. I &„(N') stands for the partial width for decay into
channel N, normalized in analogy to (32) by multiplication with the cube (n —p„) of the effective quantum number in the Rydberg
series. I z„ is the total normalized width and I z„ is the actual autoionization width without the normalizing factor.

Configuratio
('Sp)

Total width
I ~„ (a.u.)

Normalized total width
I N„ (a.u. ) I ~„(N—1)

Partial widths (a.u. )

r„'„(N—2) I N„(N —3)

3$3$
3s4s
3s5s
3s6s
3$7$
3s8s
3s9s

3s 10s

1.167 [—3]
3.293 [—4]
1.581 [—4]
8.665 [—5]
5.230 [—5]
3.387 [—5]
2.312 [—5]
1.630 [—5]

1.321 [—2]
1.308 [—2]
1.368 [—2]
1.384 [—2]
1.388 [—2]
1.387 [—2]
1.383 [—2]
1.366 [—2]

1.294 [—2]
1.271 [—2]
1.326 [—2]
1.340 [—2]
1.343 [—2]
1.342 [—2]
1.338 [—2]
1.321 [—2]

2.662 [—4]
3.629 [—4]
4.130 [—4]
4.346 [—4]
4.453 [—4]
4.512 [—4]
4.540 [—4]
4.509 [—4]

4s4s
4s5s
4s6s
4s7s
4s8s
4s9s
4s10s
4s 1 ls

Ss5s
Ss6s
Ss7s
Ss8s
Ss9s
5s10s
5s 1 ls
5s12s

6s 6s
6s7s
6s8s
6s9s
6s10s
6s 1 ls
6s12s
6s13s
6s14s

7$7$
757$
7s8s
7s9s
7s10s
7s 1 ls
7s12s
7s13$
7s14s

8s8s
8s 8s
8s9s

8$ 10$
8s 1 ls
8s12$
8$13$
8s14s

5.318 [—4]
1.287 [—4]
6.277 [—5]
3.497 [—5]
2.143 [—5]
1.415 [—5]
1.001 [—5]
1.092 [—5]

3.637 [—3]
9.262 [—4]
5.143 [—4]
3.112 [—4]
1.985 [—4]
1.327 [—4]
1.343 [—4]
1.050 [—4]

1.379 [—4]
1.579 [—3]
8.918 [—4)
5.476 [—4]
3.304 [—4]
1.668 [—4]
3.301 [—5)
1.281 [—5]
1.327 [—4)

2.196 [—4]
2.3 [—3]
2.740 [—3]
1.399 [—3]
8.160 [—4]
3.230 [—4]
3.746 [—7]
2.107 [—4]
2.573 [—4]

2.993 [—4]
1.6 [—3]

(7.548 [—2])
2.216 [—3]
1.086 [—3]
9.635 [—5]
2.377 [—4]
4.881 [—4]

1.410 [—21
9.341 [—3]
8.749 [—3]
8.273 [—3]
7.941 [—3)
7.748 [—3]
7.749 [—3]
1.099 [—2]

1.889 [—I]
1.120 [—I]
1.090 [—I]
1.047 [—I]
9.952 [—2]
9.460 [—2]
1.315 [—I]
1.373 [—I]

1.234 [—2]
2.939 [—I]
2.716 [—I]
2.509 [—I]
2.154 [—I]
1.477 [—I]
3.814 [—2]
1.885 [—2]
2.440 [—I]

3.109 [—2]
3.3 [—I)
7.422 [—I]
5.872 [—I]
4.917 [—I]
2.628 [—I]
3.867 [—4]
2.692 [—I]
4.187 [—I]

6.309 [—2]
3.37 [—I]

(2.854 [+I])
1.243 [+0]
8.370 [—I]
9.447 [—2]
2.859 [—I]
7.534 [—I]

1.372 [—2]
9.061 [—3]
8.526 [—3]
8.087 [—3]
7.781 [—3]
7.610 [—3]
7.637 [—3]
1.089 [—2]

1.879 [—I]
1.111 [—I]
1.083 [—I]
1.041 [—I]
9.889 [—2]
9.398 [—2]
1.306 [—I]
1.362 [—I]

2.805 [—I]
2.560 [—I]
2.353 [—I]
2.014 [—I]
1.382 [—I]
3.606 [—2]
1.670 [—2]
2.231 [—I]

7.094 [—I]
5.489 [—I]
4.551 [—I]
2.431 [—I]
2.815 [ 4]
2.404 [—I]
3.764 [—I]

(2.847 [+ I]1
1.169
7.753 [—I]
8.926 [—2]
2.533 [—I]
6.760 [—I]

3.533 [—4]
2.451 [—4]
1.832 [—41
1.450 [—4]
1.190 [—4]
9.700 [—5]
7.117 [—5]
4.879 [—5)

9.246 [—4]
7A21 [—4]
6.943 [—4]
6.539 [—4]
6.081 [—4]
5.950 [—4]
8.797 [—4]
1.028 [—3]

2.781 [—2]

2.875 [—2]
3.334 [—2]
3.170 [—2]
1.699 [—2]
8.501 [—5]
2.467 [—2]
3.617 [—2]

5.457 [—2]

5.290 [—2]
6.130 [—2]
4.976 [—2]
4.226 [—3]
2.584 [—2]
6.128 [—2]

1.223 [—2]
1.337 [—2]
1.539 [—2]
1.559 [—2]
1.390 [—2]
9.453 [—3]
2.067 [—3]
2.109 [—3]
2.074 [—2]

2.833 [—5]
2.451 [—51
3.937 [—5]
4.076 [—5]
4.105 [—5)
4.081 [—5]
4.021 [—5]
5.360 [—5]

1.364 [—6]
1.214 [—6]
5.082 [—6]
9.124 [—6]
1.345 [—5]
2.011 [—5]
4.663 [—5]
7.616 [—5]

4.038 [—3]
5.008 [—3]
4.932 [—3]
2.678 [—3]
1.946 [—5]
4.140 [—3]
6.083 [—3]

7.109 [—3]

8.532 [—3]
1.072 [—2]
9.053 [—3]
7.462 [—4]
5.107 [—3]
1.218 f

—2]

9.823 [—5]
5.601 [—5]
4.002 [—5]
2.885 [—5]
2.088 [—5]
1.277 [—5]
1.238 [—6]
1.252 [—5]
6.249 [—5]

3.277 [—3]
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widths I are defined via these maximum gradients:
' —1

d6
dE E =E~

(31)

Table V shows the widths for decay via autoionization of
the 2sns singlet series as calculated via exact diagonaliza-
tion and application of the formula (31) (method 1) in
comparison with the results obtained via the golden rule
(21). Agreement is good and suggests that the simpler
golden rule formula is sufficient to derive accurate values
for the widths, at least as long as they are substantially
smaller than the separation of successive resonances. The
widths of the triplet states are very small and no reliable
values could be obtained in the present calculations, so
we discuss only the widths of the singlet states in the fol-
lowing.

The partial widths of the Nsns resonant states with
3 N 8, calculated via the golden rule, are shown in
Table VI. I ~„(N') stands for the partial width for decay
into channel N', normalized by multiplication with the
cube (n —p„) of the effective quantum number in the
Rydberg series. In an unperturbed Rydberg series of res-
onances in channel N which can decay by autoionization
into the open channel N', the normalized (partial) decay
widths are typically given by [42]

=2 2I ~„(N')=(n —p,„)I ~„=—R~ ~, (32)
7r

where RN N is an essentially n-independent parameter
describing the coupling between channels N and N'. In
Table VI, I N„ is the total normalized width
I ~„=g~I'~„(N'), and I ~„ is the actual autoionization
width without the normalizing factor. Examining the
partial widths for decay of a given state Nsns into various
open channels shows that decay into the closest open
channel is by far most probable.

The normalized widths of the singlet states in Table VI
tend to increase with increasing channel label N and are

occasionally larger than unity for X =8. This means that
the individual widths are larger than the typical separa-
tion of successive resonances in the respective Rydberg
series, the resonances overlap, and a spectrum of indivi-
dual lines is replaced by a continuum. The application of
the golden rule can no longer be expected to be quantita-
tively reliable when the resulting widths are so large.

The smallness of the variations of the normalized par-
tial widths in the unperturbed parts of the Rydberg series
shows how well the approximate formula (32) is fulfilled.
However, the interference of different Rydberg series
leads not only to perturbations in the positions of the res-
onances, but also to dramatic effects on their widths.
%hen a Rydberg series of autoionizing resonances in
channel N is perturbed by resonances from a second
series, e.g. , in channel (N+ 1), dramatic deviations from
simple formulas like (32) occur. In particular, if all reso-
nances can decay into only one and the same open chan-
nel, destructive interference can lead to the total vanish-
ing of the widths of certain states in the perturbed series
of resonances [44]. This phenomenon, which has been
called "inhibited autoionization" [45] or "stabilization"
[46], is accurately described by multichannel quantum-
defect theory (MQDT) applied for two closed and one
open channel [42,47,48].

In the present case there are always several channels

open at energies for which interference of resonances
occurs, so an exact vanishing of autoionization widths is

improbable. However, since the decay of resonances in a
given channel N into the adjacent (open) channel (N —1)
is by far the dominant decay mode, perturbation of this
series of resonances by states from the closed channel
(N + 1) can lead to very strong inhibition of autoioniza-
tion and to anomalously stable states above the ionization
threshold. Restricting the description to three adjacent
channels, viz. , the open channel (N —1), and the closed
channels N and (N+1), the widths I of the resonances
are given approximately by [47,48]

2=2 2 z+ i ex+ i z i x+ i/Rw i x—)—
N —1,N 4 3 2 2Tv+i+Re~+i+(vs+i/vx) (Tv+i+1)Rex+&

(33)

where

TN + 1
=RN N + 1RN 1 N + 1 /R N (34)

Tw+ i
= tan[m (v~+ i+p~+ i ) ] .

The parameter pN+, describes the background effect of
the deviation of the perturbing channel N+1 from a
pure Coulomb problem in the absence of channel cou-

pling, v,.(E) stands for the continuous effective quantum
number v, =1/+2(E, E) in the closed .c—hannels i =N
and i =N+1, and R;j Rj are real coupling constants
describing the coupling between channels i and j. Points
of vanishing width of resonances or pseudoresonant per-
turbations occur whenever

and stabilization of a resonance occurs when its position
lies close to an energy fulfilling (34).

Figure 4 shows the normalized (total) autoionization
widths of the 6sns and 7sns singlet series plotted against
the continuous efFective quantum number
v~+, = 1/+2(E~+, —E ) of the perturbing channels
N+1=7 and N+1=8, respectively. The solid curves
show the results of an MQDT fit including the three
channels 5, 6, and 7 and 6, 7, and 8, respectively. The
MQDT parameters in the upper part of the Figure are
the coupling constants in the second column of Table VII
together with the background quantum defect p7=0. 79.
The MQDT parameters in the lower part of the Figure
are the coupling constants in the third column of Table
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TABLE VII. Three-channel quantum defect theory parameters for channels 5, 6, and 7 and 6, 7, and
8. The second to last column shows the coupling strengths ~R;, ~

derived from the partial widths (Table
VI) via (32); the last column shows the coupling strengths derived analogously from the widths of the
corresponding perturbers derived via (12).

Parameter

Rs6
R57
R67
R6s
R78

3QDT fit

(5, 6, and 7)

—0.63
—0.20
—0.53

3QDT fit

(6, 7, and 8)

—0.96
—0.29
—0.68

IR;J f
from

decay widths

0.61
0.23
0.84
0.29
0.88

/R;, /

f'rom

quantum defects

0.71

0.73

VII together with the background quantum defect
@8=0.05. Note that these quantum defects agree with
the quantum defects of the respective fictitious states

7s7s and '8s8s as listed in Table III. The coupling pa-
rameters R; 1 obtained in the MQDT fit are also con-
sistent with the partial widths for decay from the closed
channels into the open channel N —1, which approxi-
mately follow (32) in the unperturbed part of a Rydberg
series of resonances. The fourth column in Table VII

W ED

C)

0

lists the absolute values of the coupling constants as es-
timated according to (32) from the partial decay widths
in Table VI. The fictitious states 7s7s and '8s8s appear
as perturbers of the 6sns series and the 7sns series, respec-
tively, and the widths of these perturbers as derived from
the quantum defects of the perturbed series via (12) can
also be related to the (dominant} coupling constants Rs 7

and R~ s in analogy to (32}. The absolute widths of the
coupling constants estimated in this way are included in
the last column in Table VII. The entries in different
columns of Table VII do not agree exactly, because they
are based on different approximations. The qualitative
agreement does, however, show that the various approxi-
mate MQDT descriptions are consistent with each other
and with the results of the full scale calculation.

The perturbation due to the 7s7s state leads to a point
of vanishing width near v7=5. 15 in the 6sns series of res-

—3
4. 0 4. 5 5. 0 5. 5

TABLE VIII. Properties of periodic orbits of s-wave helium.
The orbits are represented by the corresponding code. S is the
(scaled) action, A, the Lyapunov exponent, and a the Morse in-

dex. C gives the character of the periodic orbit (h for hyperbol-
ic and ih for inverse hyperbolic).

(+,—) code
s-wave helium

S/2~ (a.u. ) A,

O

0

—4
4. 5 5. 0 5. 5

I

6. 0 6. 5

FIG. 4. Autoionization widths for the 6sns-('So) series,
which is perturbed by the 7s7s('So) state (top) and for the 7sns
('So) series perturbed by the 8s8s('So) state (bottom). The open
circles show the calculated normalized total autoionization
widths and the solid lines show the results of an MQDT fit
based on the three channels N —1, N, and N+1 corresponding~
to 5, 6, and 7 (top) and to 6, 7, and 8 (bottom). The dips in the
solid lines at low efFective quantum numbers vz+&, v7=4. 3
(top), and vs=4. 9 (bottom) are artifacts due to the periodicity of
the MQDT formulas; in these regions, where there are no per-
turbers, it is more physical to extrapolate the solid lines smooth-
ly as indicated by the arrows.
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onances (upper part of Fig. 4) and the perturbation due to
the 8s8s state leads to a point of vanishing width near
vs=5. 89 in the 7sns series of resonances (lower part of
Fig. 4). The dips in normalized width at lower values of
vN+1, viz. , near 4.3 and 4.9, respectively, are artifacts due
to the periodicity of the MQDT formula (33) in the
effective quantum number vz+ „in these regions, where
there are no perturbers, it is more physical to extrapolate
the solid lines smoothly as indicated by the arrows. In
the present case the widths of the 6s12s and 6s13s states
are roughly a factor 10 smaller than would be expected in
an unperturbed series of resonances with constant nor-
malized width; in the 7sns series the total autoionization
width of the 7s12s state is suppressed by a factor of
roughly 10

V. CLASSICAL-QUANTUM CORRESPONDENCE

6.0—

4.0—
2

[a.u.]
2.0

0 0 . I I ~ I

0.0 2.0 4.0 6.0
r, [a.u.]

6.0

4.0
"2

[a.u. ]
2.0

6.0

4.0
"2

[a.u.]
2.0

0.0
0.0 2.0 4.0 6.0

r, [a.u. ]

6.0

4.0
"2

[a.u.]
2.0

The study of the semiclassical behavior of classically
chaotic systems is a topic of great current interest, e.g. , in
connection with the general problem of how chaos mani-
fests itself in quantum mechanics. One access to semi-
classical quantization in chaotic systems is provided by
Gutzwiller's trace formula, which connects the
quantum-mechanical spectrum to a sum over the classical
periodic orbits. If the trace of the quantum-mechanical
Green's function

0.0
0.0 2.0 4.0 6.0

r, [a.u. ]

0.0
0.0 2.0 4.0 6.0

r, [a.u. ]

FIG. 5. Four periodic orbits together with their code and the
equipotential line at —1 a.u. The orbit "+++++—"grows
out of the alternating oscillation "—"by addition of a tail of se-
parable oscillations in the intermittent regions. The orbits"++ —+ ——"and "++ ——+ —"are the time-reversed im-
ages of each other; they and the orbit "+—+ ———"(which is
symmetric under time reversal) are the only three nonretracing
orbits up to code length 6.

oc

g(E)= g
j=1 J

(35)

(E are the eigenvalues of the quantum-mechanical Ham-
iltonian) is calculated in the semiclassical limit, it can be
expressed as a sum over the periodic orbits of the corre-
sponding classical system [49]:

gsc(E) = . y &po(E) y=1 1

po n =1 Qdet(M po
—1 )

Spo
Xexp in —ppo—

(36)

The first sum runs over all primitive (i.e., nonre)seated)
periodic orbits with period Tpo, action Spo= Pp dx,
and Morse index ppo. The second sum takes into ac-
count n-fold repetitions. M po is the stability matrix of
the respective periodic orbit. The periodic orbits of s-
wave helium are very similar to those of the collinear
configuration of the helium atom which have been inves-
tigated by Wintgen et al. [17,18]. They are all unstable
and can be enumerated by a symbolic binary code which
registers collisions of the orbits with the r, axis and the
r2 axis during one period. Two consecutive collisions
with the same axis are coded as "+," with different axes
as "—." Four examples of periodic orbits of s-wave heli-
um are shown in Fig. 5. The relevant properties of the
periodic orbits of s-wave helium are summarized in Table
VIII for all periodic orbits up to code length 6. For a
comprehensive description of the classical dynamics of s-
wave helium, see [24,26].

The imaginary part of the trace (35) is essentially the
quantum-mechanical level density and hence Gutzwiller's
formula (36) expresses the level density in terms of the
classical periodic orbits. Long-range correlations in the
energy spectrum are largely determined by short periodic
orbits with small actions SPQ. In the Fourier transform
of the quantum-mechanical spectrum, the long-range
correlations of the spectrum become visible as pro-
nounced peaks, which are located at the periods of the
short periodic orbits [49]. In the present case the equa-
tions of motion can be scaled to energy-independent form
and the energy-independent scaled action is
S"=& ES. In term—s of the scaled actions the ex-

ponentials in (36) have the form
exp[in[(S"/4)IV E — . ]]. If—we regard the spec-
trum as a function of 1/&~E~ and perform a Fourier
transformation, then the Fourier-transformed spectrum is

characterized by peaks located at the scaled actions of
the periodic orbits [50]. Figure 6 shows the Fourier
transform based on 18 singlet states of s-wave helium
with similar quantum numbers n =n. The actions of the
periodic orbits with code length up to 6 are marked with
arrows and it can be seen that the positions of the peaks
are in good agreement with these actions. Note, howev-

er, that the positions of the peaks also agree with multi-

ples of the action of the shortest orbit "—."
Beyond the usefulness of Gutzwiller's formula in un-

derstanding the role of short periodic orbits in chaotic
(and other) systems, there is currently keen interest in us-

ing this or related formulas to quantitatively derive, in
the semiclassical limit, the energies of individual levels of



50 ONE- AND T%0-ELECTRON EXCITATIONS OF HELIUM IN. . . 3805

15

10

5—

(

10
I

20
I

30 40

S("[a.u. ]

I

50
I

60 70

FIG. 6. Fourier-transformed spectrum based on 18 singlet

states of s-wave helium with similar quantum numbers. The ar-

rows mark the actions of the periodic orbits and the numbers

beside each group of arrows give the code length.

(37)

the spectrum [51]. In a chaotic system the number of
(unstable) periodic orbits proliferates exponentially with
increasing action of the orbits and the sum in (36) is in no
way convergent, at least for real energies E. Hence a
complete summation of the trace formula is impossible
and suitable approximations are necessary. Despite the
multifarious efForts and some success in special cases [51],
there is no established method for evaluation of this for-
mula in a general system.

One popular method of extracting eigenvalues out of
the trace formula is based on writing it as an infinite
product which has its zeros at the quantum energy eigen-
values [49,52]. In a system with two degrees of freedom
and only hyperbolic or inverse hyperbolic orbits, this
yields

the truncated sum. Alternately, one can include all prod-
ucts whose weighted periods g,.(2k,. +1)Tpo are less

t

than or equal to a maximum period T,„. In the present
case both prescriptions for truncation are equivalent, be-
cause the periods of the orbits are monotonically related
to the code lengths. We adopted this truncation scheme
and took T,„ to be the period of the orbit coded
CC +

The real parts of the zeros of the resulting expansion
should correspond to the resonance positions. There are,
however, problems, such as the appearance of "false
zeros" which clearly are not related to any level in the
quantum spectrum. Also, the imaginary parts of the
zeros do not agree with the widths of the resonant states.
We are, after all, approximating a divergent product.
The numerical results are nevertheless quite satisfactory,
as shown in Table IX. In the calculation of the triplet en-
ergies a phase of n has to be added in (38) for every time
the periodic orbit cross the line r

&
=r2 [18,49]. The ener-

gies obtained via cycle expansion, as explained above, are
listed in the columns of Table IX labeled "SC1." Except
for the lowest two singlet states, the energies of reso-
nances where both electrons have the same or similar
quantum numbers are reproduced with a deviation of ca.
3%%uo or less.

Whether or not a continuation of the cycle expansion
to longer code lengths leads to an improvement of the re-
sults and eventually to convergence against the exact
quantum-mechanical values is not known. In the other
direction Wintgen et (tl. [17,18] found that truncating the
cycle expansion to only the shortest collinear periodic or-
bit (code "—") yields rather accurate results for intrashell
resonances of real helium.

When we truncate the expansion of the product (37)
after just one term and neglect the instability exponent
A pp we obtain the condition

with

tpo=(kl) exp i —ppo—
PO

~PO PPO
(s)

Spo= = n+ 2M, (39)

1+—Zporpo
2

(38}

Here A, po stands for the Lyapunov exponent which is a
quantitative measure of the instability of a given periodic
orbit. The + sign applies to hyperbolic, the —sign to in-
verse hyperbolic orbits. The infinite product (37) is also
divergent, and its zeros are not just the zeros of the fac-
tors. Various techniques for a numerical evaluation of
the product (37} have been proposed in recent years.
Usually one expands the product into a sum of terms

+II ~ tpo and truncates the sum while arguing, e.g., that
I

the contributions from long periodic orbits are approxi-
mately accounted for by combinations of short orbits
[53—55]. This is the basis of the so-called cycle expansion
which yields good results for the anisotropic Kepler
problem [56,57] and for the helium atom on the basis of
collinear periodic orbits [17,18], and where all products

(k;)+II ~ tpo up to a given total code length are included in
1

which is just the conventional formula for semiclassical
quantization. The scaling property leads immediately to
a Rydberg formula,

(S(s) )2
(40)

h (n —
(((,, )

E =—
n

as in (14), with a modified Rydberg constant depending
on the scaled action of the periodic orbit, and a quantu~
defect essentially given by the Morse index. The scaled
action of the orbit "—"yields a modified Rydberg con-
stant of the right magnitude. For both real helium [17]
and s-wave helium, agreement with the calculated NsNs
levels is good for a quantum defect which is small or al-
most integer. In the case of s-wave helium, the Morse in-
dex of the orbit "—"is 2 (as in collinear helium), but
there is no third dimension and no justification for a
winding number contribution, so the quantum defect is
close to half-integer. This means that naive %'KB-type
quantization leads to virtually maximum deviations in
the energies of the symmetrically excited states in the
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TABLE IX. Semiclassical approximations of binding energies of singlet and triplet states in s-wave helium calculated with a cycle
expansion including periodic orbits up to the weighted period of the "+—————"orbit (i.e., up to code length 6) (SC 1) and with
a simpler truncation based on only three nonretracing orbits "++ —+ ——,""++ ——+ —," and "+—+ ———"(SC 2), togeth-
er with the corresponding values from the quantum-mechanical calculation (QM).
Configuration

lg

1s ls
2s 2$

2$3$
3$3$
3s4s
4s4s
4s Ss
4s6s
4s7s
5s5s
Ss6s
5s7s
5s8s

SC1

2.587
0.774
0.565
0.328
0.265
0.180
0.153
0.144
0.136
0.114
0.100
0.0958
0.0908

Binding energy (a.u. )

SC2

2.872
0.722

0.321
0.260
0.181
0.154
0.143

0.115
0.101
0.0954
0.0899

QM

2.879
0.723
0.572
0.321
0.265
0.181
0.154
0.144
0.138
0.116
0.100
0.0941
0.0903

Configuration

1$2s
25 3$

2$4s
3s4$
3s5s
4s5$
4s6s
5s6s
5$7s

SC1

2.116
0.604
0.526
0.278
0.253
0.158
0.146
0.102
0.0956

Binding energy (a.u. )

SC2

0.270
0.245
0.158
0.147
0.104
0.0977

2.174
0.585
0.542
0.272
0.251
0.158
0.145
0.103
0.0954

present case of s-wave helium. In order to obtain as good
agreement as reported for real helium on the basis of the"—"orbit alone [17], we would need an excuse for in-

cluding a further term —,
' in the quantum defect.

However, an alternate truncation of the cycle expan-
sion does work surprisingly well for s-wave helium. It is
based on the so-called intermittent regions of the poten-
tial where the motion is almost integrable. In the classi-
cal dynamics of s-wave helium the equations of motion
are separable in the regions r, &rz and r, &r2. The cou-

pling of the two degrees of freedom which makes the dy-

namics chaotic takes place only on the line r, =r2 [24].
So we have large intermittent regions where the motion is
not only almost, but exactly integrable. One consequence
hereof is the occurrence of infinite sequences of periodic
orbits which have a growing part in the intermittent re-
gion and whose Lyapunov exponent tends to zero. It has
been suggested [58] that these infinite sequences of
periodic orbits with diminishing instability have to be
considered separately, and that only the remaining
periodic orbits should be considered for the cycle expan-
sion.

There are basically two different types of periodic or-
bits in s-wave helium. In one type the periodic orbits
have two turning points where both electrons simultane-
ously reverse their direction of motion and then retrace
the orbit. The second type consists of those orbits which
have no such turning points but close in coordinate
space. A11 orbits of the first type can be grouped in
infinite sequences of periodic orbits which have a growing
part in an intermittent region by attaching further oscil-
lations to the turning points. This corresponds to an ex-
tension of the codes with sequences of "+"signs. The
second type of periodic orbits have no such "end" where
a "tail" of extra oscillations can be attached, and they are
the only periodic orbits which cannot naturally be includ-
ed in an infinite sequence. We therefore tried a trunca-
tion of the cycle expansion using only these second-type
orbits, of which there are just 3 up to code length 6
(namely, "++ —+ ——," "++ ——+ —," and

"+—+ ———"; see Fig. 5). The columns labeled "SC2"
in Table IX show the results of this quantization. The
symmetrically and nearly symmetrically excited states
and even the ground state are reproduced surprisingly
well and in fact better than in the cycle expansion based
on all periodic orbits (up to a given weighted period).

VI. DISCUSSION AND CONCLUSION

We have presented comprehensive results for the ener-
gies of the bound states and energies and widths of au-
toionizing resonant states in s-wave helium below the
two-electron ionization threshold. The 1sns bound states
can be considered as a fair approximation to the corre-
sponding bound states of real three-dimensional helium.
In fact, the difference between the 1sns states of s-wave
helium and real helium can be summarized in a small,
virtually n-independent shift Ap in the quantum defects,
which are slightly smaller in s-wave helium than in real
helium. The difference amounts to hp=0. 011 for the
singlet states and to Ay=0. 004 for the triplet states.

All ¹nsstates with N ) 1 (n ~X) lie above the one-
electron ionization threshold and form Rydberg series of
autoionizing resonances. The dominant decay mode of
these resonances is into the closest open channel, which
carries the label E —1 (for sufficiently large n) Perturba-.
tion of the Rydberg series Nsns of resonances by states
from the %+1 channel begin to appear at N =5 for the
singlet states and at N=7 for the triplet states. The
quantum defects of the bound states and resonances in
the unperturbed parts of the Rydberg series are well de-
scribed by an empirical double-Rydberg formula. For
each symmetry, singlet or triplet, a four-parameter for-
mula reproduces more than 50 quantum defects within an
rms deviation of less than 0.016.

The normalized widths of the autoionizing resonant
states increase with channel label N. The widths of the
singlet states begin to become larger than typical separa-
tions of successive states in the Rydberg series for N =8.
At high excitation energies, where the statistical proper-
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ties of the spectrum are expected to reflect the chaoticity
of the classical dynamics, the quantum spectrum does not
consist of many individual lines due to coupling large
numbers of Rydberg series as discussed in [59],but rather
has the form of a fluctuating continuum due to many
overlapping resonances [60] as originally described by Er-
icson [61].

In the region where a relatively small number of Ryd-
berg series interfere, there are typical perturbation effects
which can be described in the framework of multichannel
quantum-defect theory. Inhibited autoionization charac-
teristic of a perturbed series of autoionizing resonances is
observed, e.g., in the 7sns series, where perturbation due
to the 8s8s resonant state leads to a suppression of the to-
tal autoionization width by more than three powers of 10.

Semiclassical theories connecting the quantum-
mechanical spectrum to the unstable periodic orbits of
the corresponding classical system can be applied in the
present case. The scaled actions of the shorter periodic
orbits show up as peaks in the Fourier-transformed spec-
trum, as expected on the basis of Gutzwiller's trace for-
mula (36}. Attempts to reproduce individual low-lying
energy levels by summing the trace formula via the
cycle-expansion technique are about as successful as simi-
lar applications using collinear orbits to derive semiclassi-
cal approximations to the eigenvalues of real helium [18].
Remarkably good results are obtained with a truncation
of the cycle expansion based on only three nonretracing
periodic orbits.

s-wave helium is a model, and its relation to real heli-
um becomes less clear for higher excitations of both elec-
trons, where angular correlations become increasingly
important. However, as a model of two electrons in-

teracting with each other and a nucleus via long-range
Coulomb forces, it is perhaps the simplest system still
fulfilling this claim. Some of the results of the present in-
vestigation may be expected to be relevant for real two-
electron atoms, in particular regarding the following
points.

(i) The simple unperturbed Rydberg structure of the
bound states is virtually the same as in real helium.

(ii) EfFects of perturbations as described in multichan-
nel quantum-defect theory will also be seen in real heli-
um. Inhibited autoionization has in fact been observed in
a calculation of resonances in real helium by Burgers and
Wintgen [62].

(iii) The fact that the normalized autoionization widths
increase towards the two-electron ionization threshold
and that the line spectrum becomes a continuum below
this threshold may also show up in real helium; in real
helium this may be expected to happen at larger excita-
tions, because the diagonalization among the various

Rydberg series converging to the same threshold will

tend to reduce the effective influence of the electron-
electron interaction. In this context, it is interesting to
note, that the (lower} quantum number N =8, where the
singlet spectrum of s-wave helium begins to merge into a
continuum, corresponds to the highest doubly excited
states of real helium individually observed in the most re-

cent experiments [3].
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