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Numerical study of autoionizing states in completely correlated two-electron systems
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The structure of a one-dimensional two-electron model atom analogous to helium is examined. Pre-
dictions of Hartree-Pock and basis-state diagonalization methods are compared with results of exact nu-

merical techniques. Particular attention is given to the lowest-energy autoionizing resonance and to how
the autoionizing state can be defined. The dynamics of the autoionizing decay are examined with regard
to the time development of the spatial wave function and various population amplitudes. The photoab-
sorption line shape of the lowest-lying autoionizing state for dipole excitation from the first excited state
is also presented.

PACS number(s): 32.80.Dz, 32.80.Fb, 31.20.Di, 31.15.+q

I. INTRODUCTION

Multielectron atoms undergoing very strong interac-
tions that lead to rapid ionization present diScult ques-
tions in atomic theory. Whether the interaction is radia-
tive or collisional or something else, the ionization pro-
cess must involve very high-lying atomic states, possibly
including a wide variety of multielectron continuum
states. It is well known that the accurate description of
these states is largely an unsolved problem.

We are particularly concerned with the description of
ionizing interactions brought about by laser excitation,
which almost automatically means high-order theory is
required because several to many laser photons are typi-
cally required for ionization. For instance, ionization by
Nd: YAG or Nd: YLF lasers requires ten or more photons
to reach the first threshold of any of the noble gases (to
take common examples). However, not only are there no
satisfactory techniques for pursuing high-order mul-
tielectron perturbation theory, what is worse is that per-
turbative results could not even be expected to converge,
given the high laser intensities at which multiphoton ion-
ization experiments are now carried out (around 10'3

W/cm or higher). This means that the (n +2)nd-order
contribution to a matrix element can be expected to be
larger, not smaller, than the nth-order contribution,
effectively preventing any sensible theoretical predictions
at all through perturbation theory.

The high laser intensity that makes high-order process-
es both experimentally important and theoretically inac-
cessible by standard means also provides a justification
for at least two nonperturbative approximation methods.
If the photon frequency is sufficiently low, the ionization
process is almost the same as in a static field. This leads
to an approach associated with Keldysh [1]who first sug-
gested it almost 30 years ago. It has been further
developed and has provided formulas for ionization rates
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[2] that are in reasonable agreement with recent experi-
ments on a range of atomic species [3]. In these cases the
Keldysh approach is an extension of quantum tunneling
theory [1].

An alternative approach, designed for higher-
frequency processes in which tunneling approximations
cannot be applied, involves deriving an atomic wave
function in a direct ab initio fashion by numerical solu-
tion of the atomic Schrodinger equation on a spatial grid.
However, computational resources are still too limited to
permit this method to be applied even to the two elec-
trons in He or its isoelectronic partners without some re-
striction. We will adopt the restriction that the electrons
move along only one axis. The atom that results from
this restriction to one dimension is only a shadow of real
helium, of course, and cannot be expected to substitute
for helium in any respect that involves more than one
dimension —all questions regarding angular momentum,
angular correlations, light polarization other than linear,
etc., are out of range. However, the one-dimensional
(1D) model appears to have some relevance in regard to
questions of purely dynamical behavior —for example,
questions regarding single-photon or multiphoton transi-
tion rates, power-dependent scaling relations, resonant
absorption, ionization, radiated power in the dipole limit,
harmonics in light scattering, level occupation probabili-
ties for both bound and free electrons, etc.

If the laser is linearly polarized, we can be more
confident of the relevance of a one-dimensional approxi-
mation as the laser intensity becomes higher, because the
main effect of a strong linearly polarized electric field is
to cause linear motion of the electrons along the polariza-
tion axis. Experience with 1D calculations in the case of
one-electron atoms [4], where comparisons with existing
three-dimensional (3D) calculations [5] can be made,
gives further evidence that one-dimensional model calcu-
lations are not seriously misleading (indeed, can be semi-
quantitatively correct) in a wide variety of physical situa-
tions involving strong laser excitation where alternative
approaches are unavailable.

In this paper we wil1 extend two-electron work already
reported [6,7] that dealt with a 1D negative ion, an ana-
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log of H . We will use the same H model but increase
the nuclear charge from Z = 1 to Z =2 to obtain the cor-
responding helium analog. Just as in the real 3D world
this simple change has a profound effect. To take the
most prominent example, the 1D negative ion was found
to have only a single bound level, but the 1D version of
helium has a sequence of Rydberg levels below the first
ionization threshold. The results reported here are divid-
ed into two categories. In Secs. II and III we derive stat-
ic features of the atom in several ways. We present both
eigenenergies and wave functions using exact numerical
techniques, Hartree-Fock methods, and basis-state diago-
nalization. Examples are given for both bound and au-
toionizing resonance states. We consider in detail the
dynamical behavior of the lowest-lying autoionizing reso-
nance. In Sec. IV we consider various dipole matrix ele-
ments within the model atom and make connection with
the well-known work of Fano [8] concerning autoionizing
states. Finally, in Sec. V we provide an overview and
summary. We defer investigations of the system's dy-
namics in the presence of external laser fields to subse-
quent publications.

II. STATIC FEATURES
OF THE TWO-ELEC. IRON SYSTEM:

EXACT AND HARTREE-FOCK METHODS

We consider a system in which two electrons and a
fixed nucleus of charge Z interact through a screened
Coulomb potential, which was introduced in previous
studies [4,6,7]. The Hamiltonian for the system can be
written

Pi Pz
H(x, ,x2) = + + V(x „x~),

2

where

V(x „x2)=—
+1+x'+1+xf

1+ +1+(x
&

—xz)
(2)

The Hamiltonian describing two electrons in one dimen-
sion can also be interpreted as describing a single ficti-
tious particle which moves two dimensions and interacts
via the screened Coulomb potential with line charges on
each of the axes and along the diagonal x 2 =x, .
Correspondingly, a two-particle spatial wave function
'P(x &,x2 }describing the system is mathematically similar
to a wave function describing one particle in two dimen-
sions. Differences occur in physical interpretation and
possibly in symmetrization —because of the indistingui-
shability of the electrons, the two-electron wave function
must always satisfy %(x, ,x2)=karl(x2, x, ). In the ab-
sence of orbita1 motion there is no spin-orbital coupling,
so all spin quantum numbers remain conserved.
Throughout this work we shall assume the electron spins
to be antiparallel, so that the spatial wave function must
be symmetric with respect to exchange of the electrons:
%(x„x2)=+V(x2,x, ).
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FIG. 1. Contour plot of the potential of Eq. (2} for Z =2. In
this plot the shading darkens with increasing height.

A contour plot of the potential V(x, ,x2) of Eq. (2) ap-
pears in Fig. 1. The ridge along x2=x, which arises
from the electron-electron repulsion is clearly visible.
Since the lines xz=x, and x2= —x& are both lines of
symmetry for the potential, all nondegenerate eigenfunc-
tions of H must satisfy the condition 4(x&,xz)
=+4(—x„—xz). However, because of the electron-
electron interaction the system is certainly not invariant
under a 90' rotation, and we expect %(xz, x, )

P+%(x2,x& ).

A. Results from exact techniques

The restriction to one spatial dimension allows a num-
ber of features of our two-electron system to be calculat-
ed without approximation regarding electron correlation,
by direct numerical integration of Schrodinger's equation
for the Hamiltonian (1} on a large spatial grid. In this
way both static and time-dependent, as well as bare-atom
and field-dependent, wave functions can be obtained ac-
curately.

First we present a small summary of results for our
one-dimensional He analog. They have been obtained by
numerical methods described in detail in Ref. [7] for the
corresponding H analog. For numerical study the He
system is placed in a two-dimensional box, one dimension
for each electron, which is very large on an atomic scale
(axis lengths up to 800 a.u.}. The x, and x2 axes are
discretized (typically into 1024 mesh points each), and
the energies and wave functions for the lowest states are
calculated. For example, the ground-state energy is—2.23826 a.u. , the first excited-state energy is —1.704
a.u. , and the second excited-state energy is —1.626 a.u.
A 1ogarithmic contour plot of the He ground-state proba-
bility distribution is shown in Fig. 2 below the corre-
sponding plot for the H ground state previously report-
ed [7]. For H the ground state is much less localized
and has a more pronounced extension along the axes.
These axis extensions are confirmations of the familiar
mental picture of a negative ion having one of its elec-
trons much closer to the nucleus than the other electron.
The lack of invariance under a 90 rotation is evident in
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ionization thresholds for our helium analog. They are
—1.483 a.u. and —0.772 a.u. respectively. These
thresholds correspond to the bound-state energies of the
(single-electron) Hamiltonian for He+, whose bound
eigenenergies can be immediately obtained by a straight-
forward numerical diagonalization.

It is important to recognize that there are atomic states
with great conceptual usefulness that are to a degree
artificial and not directly properties of the atomic Hamil-
tonian. The most prominent example is an autoionizing
state, which is only a convenient discrete labeling for a
property that belongs to a range of continuum states. We
will be interested in calculating various parameters relat-
ed to decay and excitation processes for discretely labeled
autoionizing states, and so must have a method for con-
structing these states. We shall apply standard Hartree-
Fock (HF) and extended HF techniques for these pur-
poses. At the same time we shall have an unusual oppor-
tunity to check HF energies and HF wave functions for
lower-energy states against the actual values summarized
above.

-10 B. Hartree-Fock analysis
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FIG. 2. Logarithmic contour plot of the ground state for
Z=1 and Z=2. Contour lines are drawn at l4(x„xz)l'
= 10,10,etc., for both Z.

both cases [9].
We have also calculated the degree of correlation E for

the two ground states. This numerical quantity can be
uniquely determined for any wave function from the
number of relevant coefBcients in its canonical represen-
tation [10]. The single number K ~ 1 represents
an effective measure of how many different single-
electron orbitals are mixed (i.e., correlated) in a given
multiparticle quantum state. It is 1 for a simple product
state but can be an order of magnitude larger in some
laser-assisted interactions. We have determined E for the
1D He ground state and found E =1.018, which is not-
ably smaller than for the ground states of 1D H, which
has E = 1.094, although both are still close to 1. Because
of the smallness of these E values we can expect a
Hartree-Fock type analysis (which assumes a product
state and thus IC =1) to provide fairly accurate approxi-
mations to the wave functions and energies. We have
similarly examined E for Z =3—5, and have found E to
decrease monotonically toward 1 as Z increases, indicat-
ing that the electron-nucleus interactions dominate over
the electron-electron interaction.

We have numerically calculated the first and second

Because the excited states of this two-electron system
have not been studied previously, and comparisons with
experimental work or the results of other approximate
theories are not possible, we will now present a descrip-
tion of our approach to Hartree-Fock calculations in
greater detail than would normally be useful [11].

For a state featuring equivalent electrons we seek a real
state vector of the product form lg&=lj & lj &, where

lj & is to be determined. For such a state the expectation
value of the energy is

&jj IHljj &=2&j IH(He+)lj &+f "d», (x)0, (x)'

where H (He+ ) designates the one-electron Hamiltonian
of the singly ionized system (He+ for Z =2)

and

2

H(He+ )(x)=
1+x

(4)

g, (x')
v (x)=J dx'

+1+(x —x')

denotes an efFective electron-electron interaction for the
charge density g, (x) .

The calculus of variations can be used to find a state
lj& such that 5[(jj lHjlj &

—2s. (j lj&] =0, where 5
refers to arbitrary, small variations in the wave function
P~(x), and where e~ is a Lagrange multiplier that insures
that normalization is unafFected by the variations. Tak-
ing 5[ I

= [8/BQ [ ] ]5/ term by term we obtain

5[&jjlHljj& —2e, &jlj&]=f

ldll

—Z+ +v, (x)—c,, g, (x) 5$, (x)dx =0 .
1+x'
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~
+V',~~(x) f (x)= E g. (x. ),

dx
(7)

where

Since the variations 5$~(x) are arbitrary, fj(x) must
satisfy an effective, time-independent Schrodinger equa-
tion (the Hartree equation}

gesting that the system supports an autoionizing reso-
nance near this energy. The deviation of the l2, 2) state is
0.261 a.u. , indicating that the l2, 2) state is not as close
an approximation to a true eigenstate as is the

l 1, 1 )
state.

To find the wave functions for states featuring ine-
quivalent electrons, we take the same Hamiltonian as for
the equivalent-electron case, but now we look for states of
the form

V",g(x)= +v, (x) .
1+x

(8)
[Ijk &+ lkj &],

e, =&jj IHljj & &jlH(He—}lj& (9)

i.e., the difference in energy between the two-electron
state

ljj ) of He and the one-electron state
lj ) of He+. It

follows that le l is the binding energy of state ljj )—the
energy required to remove one electron while leaving the
other electron in state ttij(x).

For Z=2, the HF method provides an approximate
ground-state wave function of energy —2.2242 a.u. ,
which is 99.37 lo of the actual value. It gives the binding
energy l s, l

= —0.7502 a.u. , which is 99.39%%uo of the actual
value —0.7548 a.u. Although the calculated Hartree-
Fock energy of the wave function is very accurate, elec-
tron correlation effects are not well taken into account in
the wave function. This is made clear by noting that a
product-state wave function of the form g»(x „x2)
=pi(xi)g, (x2), which satisfies the necessary symmetry
relation g, ( —x ) =g, (x}, also satisfies f»(x„x2)
=f»(x2, —x i ), so that the wave function is invariant un-

der a 90' rotation. For such a wave function the elec-
trons are just as likely to be on the same side of the nu-
cleus as on opposite sides. The ground-state energies for
other Z values are presented in Ref. [7]. Naturally the
HF method becomes more accurate with increasing Z, as
the electron-nucleus interactions dominate the electron-
electron interaction.

We have tested the quality of our state vectors by cal-
culating the rms energy deviation

(10)

which would be zero for a true eigenstate. For the
Hartree-Fock ground state l 1,1), the calculated devia-
tion is 0.160 a.u. , or about 7% of the total binding ener-
gy. Applying the method to state l2, 2) gives a solution
of energy —1.032 a.u. , which lies well above the actual
value of the first ionization threshold of —1.483 a.u. , sug-

This nonlinear equation can be solved numerically for
vj(x) and gj(x) using an iterative procedure in which the
output wave function of one iteration is used to calculate
the effective potential for the next iteration. There are
numerous possible solutions, corresponding to all the
ljj ) states. Which of these states is obtained depends on
the initial seed state chosen for the iteration procedure.
The Lagrange multiplier e plays the role of an eigenval-
ue in the equation if we ignore the fact that the effective
potential is dependent upon the "eigenvector" g . It fol-
lows from Eq. (3) that e is related to the total energy of
the product state

ljj ) by

which satisfy

8[ & f,k I &If,k & s, &j jl—&
—sk & k

I
k & ejk

—
&j I

k & ]=o

(12)

for arbitrary, small, independent variations in P (x) and
pk(x). Here ej and ek are Lagrange multipliers intro-
duced to preserve normalization, and cjk is a Lagrange
multiplier introduced to preserve orthogonality. Equa-
tion (12) leads to the coupled equations (the Hartree-Fock
equations)

J

dx

—Z +vkk(x) —e gj(x)1+x
—[Tsjk vjk ] Pk(x),

(13)
1 " |('k —Z+ +v j(x) ek gk(x)—

1+x

0.0

I1,E& I2,E& I3S&

l3,3&

$ 0 r

I2,3&

I2,2&

-2.0-

FICx. 3. Energy-level diagram of Hartree-Fock states lf;~)
for i,j~3 and of the ll, E), l2, E), and I3,E}continua. The
threshold energies were obtained through a direct diagonaliza-
tion of the one-electron Hamiltonian for He+.

=[—,'s k
—vjk]f (x),

where the electron-electron interaction v has been gen-
eralized to a matrix
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TABLE I. Energies, binding energies (EzE), predicted thresholds, and rms-energy deviations of
Hartree-Fock states for Z =2.

State
&H)
{a.u. )

—2.224
—1.702

—1.636

—1.032
—0.808

—0.546

Binding energies
(a.u. )

0.750
0.223
1.058
0.161
1.227
0.272
0.039
0.580
0.101

n=1
—1.474
—1.479

—1.475

(H)+EsE (a.u. )

n=2

—0.644

—0.760
—0.769

n —3

—0.408

—0.228
—0.454

Deviation
(a.u. )

0.160
0.065

0.195

0.256
0.085

0.261

Actual continuum thresholds (a.u.): —1.483 —0.772 —0.465

(x')P„(x')
v „(x)= dx™

+1+(x —x'}
(14)

7.5

co 50
I1,2)

2.5

0

-2.5

-5.0

-7.5
-7.5 -5.0 -2.5 0 2.5 5.0 7.5

x~ (a.u.)

If the diagonal elements vj, (x) and vkk(x) represent the
averaged electrostatic electron-electron interaction, then
the off-diagonal elements constitute an effective "ex-
change potential. " The Lagrange multipliers c, and c.k
can be interpreted as (minus) the binding energies of the
electrons.

The coupled equations (13) can also be solved by an
iterative numerical procedure. Which solution is ob-

tained depends again critically on the initially chosen
seed vector. Examples of states we have found for helium
include the singly excited states

~ $,2 ) and
~ g» ) and the

doubly excited state ~$23). In Fig. 3 we present a dia-
gram showing the energies of all Hartree-Fock states
~g, ) for i,j (3 and of the three lowest threshold con-
tinua of He+. Table I summarizes the result for the
discrete states. Included in the table are the sums of the
total energies and the binding energies. These sums cor-
respond to the energy which the residual electron would
have if the other electron were suddenly to disappear.
Because no adjustment in the residual electron's wave
function is made, the residual wave function is not an
eigenvector of one-dimensional He+. For example, if the
lower-energy electron of the ~1,3) state were to disap-
pear, the remaining electron would have energy —0.408
a.u. , whereas an electron in the n =3 state of He+ would
have energy —0.465. This illustrates clearly that the
excited-state component of ~1,3) is a higher energy state
than the n =3 excited state of He+.

The small rms energy deviation shown in Table I for
states ~1,2) and ~2, 3) is noteworthy. In these states, one
electron is in an even-parity state and one in an odd-
parity state. Such combinations need not be invariant
under a 90' rotation. For example

0

2 4
x) (a.u.)

0,k(x —x }=(1&&2)[g,(x)g ( x)+g„(x)g,( ——x)]
= ( I &&2)[g, (x )l(k (x ) —gk (x )P, (x ) ]

=OX/1k(x, x} .

It follows that electron-electron correlation effects can be
taken more fully into account for these states than for
even-even or odd-odd combinations. This alternative
symmetry is clearly seen in the contour plots of the spa-
tial wave functions of the Hartree-Fock

~ 1,2) and ~2, 2 )
states (Fig. 4).

C. Basis-state diagonalization

FIG. 4. Linear contour plots of the Hartree-Pock ~1,2) and

(2, 2) states. The spatial scales and contour heights differ in the
two plots.

The Hartree-Fock method can be extended in various
ways to account more fully for the electron-electron in-
teraction and for correlation„which is manifested
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mathematically as a coupling between the solutions of the
Hartree-Fock equations. Because the "effective poten-
tials" in the HF equations vary from state to state, some
effort is required to find each solution, and the solutions
obtained for different states need not be orthogonal to
each other. To avoid the difBculties associated with these
nonorthogonalities, one can select a single, complete
orthonormal basis set with which to work. We have
worked with two such basis sets. For the first set, which
we shall refer to as the HF basis set, we began by solving

Eq. (8) for the HF ground state ~1) and for the corre-
sponding effective potential V",~(x) defined in (8}. We
then defined a single-electron Hamiltonian using this par-
ticular effective potential,

2H'=P +V"elf (15)

and we numerically solved the eigenvalue equation
H

~j j =s
~j j for the full set of eigenvalues and eigenvec-

tors. We thus obtained the two-electron basis set

f k(x &,x2 ) = (x &xz ~jk j, where

j=k
( Ij j Ik j + Ik j Ij j },j+k .

(16)

\

The state
~
11j thus corresponds to the HF ground state,

but the other states are not solutions of the Hartree-Fock
equations. Since V',tr'(x} has even parity, the basis states
satisfy g,„(—x„—xz) =( —1)I+"P,k(x„xz) The fu. ll

Hamiltonian H is related to H by

H(x„x2)=H (x, )+H (x2)+W(x„x2},
where

W(x„xz)=V(x„xz)—V",~ (x, )
—V',Ir'(xz),

(17)

Ql+(x& —xz)
—v„(x,) —v, i(xq) . (18)

The residual electron-electron interaction W couples
the basis states. However, because W( —x„—x z )
= W(x „x2}, the interaction does not mix states of oppo-
site symmetry.

For a chosen N-point x-axis grid, there are N states
~j j

and (N +N)/2 unique basis states. In order to find the
exact eigenvectors it would be necessary to find the ma-
trix elements of W between all such states and to diago-
nalize the full Hamiltonian matrix H. We have limited
our number of basis states to approximately 775 states of
each symmetry and have diagonalized the Hamiltonian in
the resulting limited Hilbert space. The calculation time
is greatly reduced by taking advantage of hermiticity and
by noting that in the spatial integrations we usually need
not go far from either axis. We have found that this size
basis set is suitable for our present purposes.

The lowest-energy eigenvector ~a) of the Hamiltonian
in the limited Hilbert space spanned by the truncated HF
basis has eigenvalue —2.2355 a.u. , which is 99.88%%uo of
the actual value. The rms-energy deviation cr of the state
[recall Eq. (10)] is 0.094 a.u. , or 4.2% of the binding ener-

gy. All the eigenvectors of course are obtained as linear
combinations of the basis states

~ jk j. For the ground
state ~g ) we find that the seven largest expansion coef-
ficients are [l, l~g) =0.9959, [2,2~g) =0.0623, [2,4~g)
=0.0281, I2, 6~g) =0.0152, [2,8)g) =—0.010, I1,3~g )
= —0.009, and I3,3~g ) =0.008. The importance of the
doubly excited basis states in the ground state can easily
be understood. Since JY does not mix states of opposite
symmetry, the expansion coefficient [jk~g ) is nonzero
only if j+k is even;

~j j and
~
k j can both be even-parity

states (in which case the indices j and k are both odd), or
~j j and ~k j can both be odd-parity states (in which case
the indices are both even). If

~j j and ~k j are both even-

parity states —as is the case for the entire manifold
~
lk j

of singly excited or singly ionized states —then

p~k(x, x)=g—jk(x,x). On the other hand, if ~jj and ~kj
both have odd parity, then gjk(x, —x)= fjk(x—,x). It is

only by taking a linear combination which includes both
even-even and odd-odd basis states that we can have
~%'(x, —x)~ A~%(x, x)~ . It is the electron correlation
effects which produce this inequality and which our
Hartree-Fock ground and basis state ~1, 1 j was missing.

The diagonalization of the odd-parity Hilbert space of
basis states gives a first excited state ~P) of energy
—1.704 a.u. and rms-deviation 0.042 a.u. , which can be
compared with the respective values —1.702 a.u. and
0.065 a.u. , which were quoted above for the Hartree-
Fock first excited state.

A second basis set which we have used consists of
product states of He+ eigenstates. Thus, the H
of Eq. (15) is replaced by p /2 —2/(1+x2)'~2, and
IV(x„xz) becomes simply 1/[1+(x, —xz) ]'~ . We
have found that using the same size basis set as before
gives slightly better results than the previous ones. We
obtain a ground state of energy —2.23801 a.u. , which is
99.99% of the actual value, and rms-deviation 0.047 a.u. ,
or 2.1% of the energy. The first excited state has energy—1.705 a.u. and deviation 0.018 a.u.

III. AUTOIONIZING STATES

A. Static structure

The diagonalization procedure described in Sec. IIC
provides a sequence of singly excited bound states leading
into the single-ionization continuum, and eventually into
the double-ionization continuum. We shall denote the
continuum eigenstates by ~

e, ), where s is the total, two-
electron energy. Doubly excited "bound" states were
part of the basis set, but the diagonalization process has
enfolded them into the continuum so that they do not ap-
pear explicitly in the sequence, and are manifested only
as continuum resonances. Figure 5 shows the square of
the continuum wave functions (x&x2~E) for three ener-
gies: c, = —1.30 a.u. , c= —1.05, a.u. near the energy—1.03 a.u. of the Hartree-Fock

~ 2,2 ) state, and
E= —0.90 a.u. (The states were calculated using the HF
basis. } If there were no resonance, one would expect the
wave function to exhibit no sharp features near the ori-
gin. Such featureless wave functions were obtained, for
example, in an earlier study [7] of the corresponding
Z =1 atom (negative ion). Some structure near the origin
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is present in all three plots, indicating a very broad ener-

gy range for the resonance. The wave functions are real
and standing-wave superpositions of incoming and outgo-
ing scattering states.

In order to define discrete autoionizing states and to
describe the resonance in the manner introduced by Fano
[8], the autoionizing states must be distinguished from
the continuum. They should be orthogonal to each other
and to the continuum in which they are embedded.
Ideally, the only coupling would be between each au-
toionizing state and the continuum, without any coupling
between the autoionizing states or between continuum
states of difFerent energy. Then each autoionizing state
could be said to decay independently into the continuum.
%e can achieve such a situation by partitioning our Hil-
bert space of basis states into two orthogonal subspaces,
one part which we shall cal1 I' consisting of the continu-
um ~1,E] (i.e., our basis-state approximation to those
states in which one electron is in the ground state and the
other is not bound), and the second part g consisting of
all remaining states, namely, the basis-state approxima-
tions to the ground state, to singly excited but unionized
states, and to a11 doubly excited and doubly ionized
states. The P subspace can then be diagonalized to obtain
a single-electron continuum I ~

e) t I, and the Q subspace
can be diagonalized to obtain a set of states ~a)&,

~ P ) Q
. , consisting of close approximations to the

ground state and the singly excited states, and also con-
taining the autoionizing states, the remaining single-
electron continua, and the doubly ionized continuum.
Each state in one subspace is then coupled by W [recall
(18)] to each state of the same parity in the other sub-
space. Because this partitioning of the Hilbert space is
directly dependent upon which basis set has been chosen,
the states one obtains from a diagonalization of the Harn-
iltonian within the individual subspaces will also depend
upon the basis set. %e shaB return to this point later.
For now we proceed using the Hartree-Fock basis de-
scribed in the previous section.

Through the above procedure we can easily identify
the lowest-energy doubly excited state, which we shall
call ~a ). Other autoionizing states are also present, but
are of much less importance, and we shall focus our dis-
cussion on ~a ). A random-dot stereogram of the spatial
wave function is shown in Fig. 6. Three-dimensional and
contour plots of the square of the wave function are also
shown in the first row of Fig. 7. This state has energy
E, = (H ) = —1.054 a.u. and rms-energy-deviation 0.162
a.u. , which is 38 lo less than the deviation of the ~2, 2)
state that was obtained by solving the Hartree equation.
The latter state was invariant (to within a sign) under a
90' rotation. The new state ~a ) clearly lacks the invari-
ance, while still preserving the necessary symmetry about
the lines xz=x& and x2= —x, . Thus effects of the
electron-electron interaction are clearly present in state
~a), although of course incompletely since the state
would be unstable if they were fully taken into account.
The remaining correlation effects result in a coupling W
between ~a ) and the singly excited continuum j ~e ) t ]. It
is this coupling which allows the state

~
a ) to autoionize,

as discussed in Sec. IIIB and shown in the remaining
rows of Fig. 7.

B. Time dependence of the autoionizing state

e = -1.05

-10
0

x, (a.„)

20

10
'() x2 (a.u.)

-10

20-20

To further understand the lowest-energy autoionizing
state, we investigate the dynamical behavior of the sys-
tem for the initial condition %(x„x2,'0) = (x„x2~a ), i.e.,
we study the dynamics of the autoionization of state ~a )
by numerically solving the Schrodinger equation

Pi Pz+ + V(x&,xz) %(x&,xz, t)

e = -0.90

-20
-10

0
x~ (a.u.) 10

20
10

0 x2(a.u.)

-10

20-20

FIG. 5. Square of the continuum wave functions, (xi&2le&
for energies c= —1.30, —1.05, and —0.90. The three plots
have the same vertical scale.

on the two-dimensional, 1024X 1024 spatial lattice de-
scribed above. In principle we could determine the time
dependence of the wave function from its expansion in
the energy eigenbasis. However, this would not be prac-
tical due to the very large storage requirements or com-
putational time that would be required. Each of the 775
basis states would either need to be stored as a
1024X 1024 dimensional matrix, or frequently recalculat-
ed as the appropriate linear combination of product
states. Further, it is not clear that our 775 basis states
would be sufFicient to give accurate results —the full sys-
tem contains over 5 X 10 basis states.
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FIG. 6. Three-dimensional image of the spatial wave function of Ca ) vs x, and x~, seen directly from above. To see the image, one
should focus one's eyes behind the plane of the page in such a way that the two large black spots near the top center of the field are
seen as three (not two or four) spots. This can often be done by first holding the page near one's face with the eyes relaxed and then

slowly moving the page outward while watching the large spots [12]. A plot of the square of the wave function is shown in the top
row of Fig. 7.

To circumvent these computational difficulties we have
performed a direct calculation of %(x„xz,t) by solving
the time-dependent Schrodinger equation on a
1024X1024 spatial grid. For each individual time step
the time-evolution operator is split into the actions of the
kinetic-energy operator and the spatial potential

exp( —iHb t ) =exp[ —i (p f +p 2 )ht l4]

Xexp[ —iV(x, x~)br]

Xexp[ i(p, +p—z)b, t/4]+O(ht3) . (20)

Fast-Fourier transforms of the wave function are per-
formed as needed so that action of the kinetic-energy
operators is determined in momentum space. Details
about the numerical techniques can be found in Ref. ['7].

We use ql(x „x2,t) to examine the time dependence of
various spatial probabilities and various bound-state
probabilities for the decay rate from the initial state.
Some of our results are shown in Figs. 7 and 8. The left-
hand column displays the spatial probability density
Cq'(x&, x2;t)C vs x& and x2 at various times, and the
right-hand column displays contour plots of the same
quantity.

The first row in Fig. 7 shows the probability density for
the initial state, as discussed in Sec. II A. By t =2 a.u. ,

p(x;t)= Jdx2CV—(x,x2 ,t)C' (2l)

Figure 9 shows the time development of this density on
the time scale of Figs. 7 and 8. The Sgure shows clearly
the change from the initial two-peak structure charac-
teristic of a first excited state to a single-peak structure
characteristic of the ground state of the remaining He+.

The sequence begun in Figs. 7 and 8 is continued in
Fig. 10, which shows the spatial probability density for
the longer times t=20 a.u. and t=50 a.u. on a larger
scale than was used for the shorter times. The t =20 a.u.

shown in the second row, each of the two peaks which
were along the e-e repulsion line x2=x& has split into a
doublet, and population has traveled to the energetically
favored diagonal x2= —x, . By t=4 a.u. , a small peak
has formed at the origin, and peak heights begin to di-
minish as the population becomes less localized in space.
Figure 8 continues the sequence. The seven-peak struc-
ture is maintained at longer times as the population be-
gins to move outward along the axes. A small amount of
"sloshing" is also visible in the outgoing population.

One can define an effective single-electron density from
the two-electron wave function by integrating over either
of the two spatial variables, say xz,
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P(t) =
I & +(0)I+(t) &

I'=
I & u I+(t) & I' . (22)

The best exponential fit [exp( ydt)] to—the data is

shown as the dashed curve. We find yz =0.050 a.u. We
also note that the decay curve exhibits oscillations.
These oscillations can be understood by analyzing the de-
cay process using the alternative basis site of product
states of the one-electron He+ Hamiltonian. This alter-
native set, which totally ignores the electron-electron in-

plot shows the first "pulse'* of population going out along
the axes. The concentration of the probability along the
axes clearly indicates that only one electron can escape
from the nucleus. Figure 11 shows p(x; t) for times t =50
and 150 a.u. and clearly shows the spatial form of the
population distribution for the outgoing, autoionized
electron. These packets move with a kinetic energy
which corresponds to the energy of state la ) above the
first threshold. The narrow peak at x =0 which goes
beyond the vertical scale of the graph corresponds to the
He+ ground state. After 150 a.u. the area under the
curve between +10 a.u. is only 0.01 greater than its
asymptotic value of 0.50.

In Fig. 12(a) we show the time development of the pop-
ulation of the decaying state,

teraction, describes weH the final, asymptotic state of the
autoionization process as one electron escapes to infinity.
We chose in Sec. II to use a particular basis set whose
lowest-energy state was the Hartree-Pock ground state.
However, the "decay continuum" I ls)t, J, which resulted
from that choice of basis, does not correspond directly to
the actual asymptotic state of the decay process.

In Fig. 12(b) we display the time-dependent probabili-
ties for finding at least one electron in the three lowest-

lying bound states of the core system He+ during the de-

cay of state la ). These probabilities can be easily ob-
tained by appropriate projections [7]. The probability of
finding at least one electron in the He+ ground level,
denoted by P„is vanishingly small for the t =0 autoion-
izing state. Clearly as the autoionizing state decays, one
electron drops into the He+ ground level, and P, (t) in-

creases with t to its final value of 1. The quantities P, ,

P2, and P3 correspond respectively to the total popula-
tions of the l+I, n), l+2, nI, and l+3, n) (n =1,2, . . . )

manifolds of He+He+ product states, where we have
included a + sign in the ket to designate states of the
He+ basis. (Some overcounting occurs since states such
as l

+ 1,3I are in both the P, and P3 manifolds. ) Our ini-

tial state la ) is mainly a linear combination of states in

t=0

5 p
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-5
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5
xl (a.u. )

t = 2a.u. i5
Cil

5 p

x2 (a.u.)

FIG. 7. Three-dimensional and contour
plots of the two-electron probability
l%(xi, x& , t)l as a f'unction of the electron
coordinates x ~ and x2 at time t =0, 2, and 4
a.u. The vertical scaling and contour levels are
consistent for the different times.
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t= 6 a.u.
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x~ (a.u.) 5
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0

FIG. 8. Similar to Fig. 7, but at times t =6,
8, and 10 a.u. Scales are the same as in Fig. 7.
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the Pz and P3 manifolds, with 93% of the population ly-

ing in the P2 manifold and 7% in the P3 manifold. The
state

~
+2, 3 j, which lies in both manifolds, has the in-

correct symmetry to be populated. Important individual
states are

~
+2, 2 j with 81% of the population and

~+3,3j with 7%, or nearly all the population of the P3
manifold. The decay process defies simple description be-
cause of the very large number of states and couplings
(discrete state —discrete state, discrete state —continuum,
and continuum —continuum) which are present. We note,
however, that the difFerence in energy-expectation values
[+3,3/H/+3, 3j —I+2,2/H/+2, 2j =0.492 a.u. and the
matrix element I +2,2~H~+3, 3 j =0.114 a.u. combine to
give an efi'ective "Rabi frequency" [0.492 +4(0. 114 )]'~
a.u. =0.542 a.u. , which is within 3% of the frequency
0.561 a.u. which we obtain from the oscillations in Fig.
12(b) by noting that the period of the oscillation is 11.2
a.u.

These oscillations would be greatly diminished if we
had worked from the beginning with the He+ basis
states. The decay continuum would then correspond to
the actual asymptotic continuum. Our patitioning of the
full Hilbert space would result in a slightly difFerent sub-

space for defining the autoionizing state, which we denote
by ~+a ). In this case the couplings between all the
discrete states of the ~+2,nj and ~+3,nj manifolds
would be acounted for in defining the new autoionizing
state ~+a ). This autoionizing state can be thought of as
a single "dressed state" which decays into the

~
+ 1E )

continuum [13]. The state has energy (+a~H~+a)= —1.045 a.u. and rms-energy-deviation 0.12 a.u. In or-
der to check our conjecture we show the decay of the au-
toionizing state ~+a ) in Fig. 12(c). Indeed, the oscilla-
tions have basically disappeared. The smoothness of the
temporal decay curve of

~
+a ) suggests that the He+

basis set is superior to the Hartree-Fock basis set for this
case and that ~+a ) can be considered to be an alterna-
tive representation of the lowest-energy autoionizing
state.

In Fig. 13 we display the kinetic-energy distribution
P (E) of the electrons at time 150 a.u. after ~a ) begins its
decay. This distribution was obtained from the corre-
sponding two-electron wave function in momentum
space, an integration of one momentum and a rescaling to
energy. The main peak arises from the autoionized elec-
tron and occurs at energy 0.434 a.u. , which is consistent
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FIG. 11. Single-electron density p(x; t) for t =50 and 150 a.u.
on a larger spatial scale.
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FIG. 9. Single-electron densities p(x; t), as defined in the text

[Eq. (21)] for times t =0, 4, and 10 a.u.
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FIG. 10. Three-dimensional plots similar to Fig. 7, but for

times t =20 and 50 a.u. The vertical scales are consistent for
the two times, but both the vertical and spatial scales are
changed from Fig. 7.

FIG. 12. (a} The time dependence of the overlap
~(%'(0)~%(t))

~
for an initial state ~%(0))=a ). The dashed

line represents the fitted exponential decay with a decay con-
stant =0.050 a.u. (b) The time dependence of the probabilities

P; to find at least one electron in the ith bound state of the
(one-electron) core system He+. The core ground state [P,(t)]
gets populated as the autoionizing state decays. Note the oscil-

latory structure in the probability P3(t) corresponding to the
second excited state in He+ and the ~+3,n] manifold of He+

product states. (c) The time dependence of the overlap

~
(%'(0)~%(t) ) ~

for an initial state ~%(0) ) = ~+a ).
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FIG. 13. Kinetic-state distribution of the electrons.

with the energy difFerence 0.438 a.u. between the autoion-
izing state (at —1.045 a.u.} and the first ionization
threshold (at e= —1.483 a.u.). The full width at half
maximum y, as read ofF the graph is 0.05 a.u. The bound
electron contributes to the lower-energy portion of the
graph.

The decay of the autoionizing state ~a ) is caused by
the electron-electron interaction W of Eq. (18). In Fig. 14
we plot the square of this coupling between ~a ) and the
continuum I ~

e )i, I, multiplied by the appropriate density
of states factor pz(s), as a function of the total (two-
electron) energy. We also show the square of the projec-
tion of ~a ) onto the full continuum ~s), multiplied by the
density of states factor p(e). The Fermi golden rule de-
cay rate of the state is

I =2trp (e)(a~ W~e)~=0. 059 a.u. , (23)

which is consistent with the width of the projection
p(z)(a ~s) evaluated at a=E, . Thus the lifetime of this
autoionizing state is approximately 1/I =17 a.u. (The
decay rate of the alternative autoionizing state ~+ti ) can
be calculated by similar methods to be 0.053 a.u. , so that
its lifetime is 19 a.u. )

FIG. 14. The solid curve denotes the projection of the au-

toionizing state onto the fully diagonalized continuum,
(a e & p{e}. The dashed curve gives the coupling
&a W~e)~p~{e} between ~a & and the singly excited continuum

~e &~ vs e. The solid curve should represent the kinetic energy of
the autoionized electron, once the threshold energy is taken into
account.

IV. DIPOLE MATRIX ELEMENTS

The ground state ~a) and the autoionizing state ~a)
have the same spatial parity and are not dipole coupled.
Therefore we turn our attention to the dipole matrix ele-
ment between the first excited state ~P) and the full con-
tinuum I ~e) I. We will estimate the value of the Fano q
parameter for the state ~a ). The solid curve in Fig. 15
shows (p~(xi+xz)~e), times the appropriate density of
continuum states factor p(e). The graph is dominated by
a continuum resonance arising from the lowest-energy
autoionizing state. Figure 15 also presents the modulus
squared of the dipole coupling between the first excited
state ~p) and the p continuum (denoted by ~e) I, times
its density of states factor p~(s).

The subsystem consisting of the first excited state ~p),
the autoionizing state ~a ), and the "singly excited" con-
tinuum I~a)~I satisfy the criteria of the Fano model.
The q parameter for the autoionizing resonance is defined
as

„(pi(x,+x, )~e &„&e'(W~u&
p (xi+x2) a +p p (e')de'

q(e)=
tr& pl(x t+x~) le &ii & el ~lu &p, (e}

(24)

where P denotes the principal-value integral over a11

energies in the I ~
e)„I continuum. We calculated

(P~(xt+x2}~a ) = —1.17 a.u. The principal-value in-

tegral can be calculated using the data illustrated in Fig.
15. Because we have a discretized continuum, the in-
tegral becomes a sum over discrete energies. To maintain
symmetry about the singularity at c'=c, we evaluate the
sum for c. midway between our continuum energies. Over
much of the continuum, the principal-value integral is of
order 10 a.u. (—0.0045 a.u. at e=E, },so it is relatively
unimportant in evaluating q. For our system Eq. (24}
gives q = —24, which should be seen as an estimate and

(a —E, +qI /2}
f(a)=

{a E, ) +I 2—/4
(26)

not as a precise calculation, because of the truncation of
the set of basis states [14].

The standard Fano formalism predicts that matrix ele-
ments to the diagonalized and undiagonalized continua
are related by

&Pl(x, +x,}I.&'p«) =f«) &Pl(x, +x, ) I.&,'p, (.), (25)

where f(a }is the Fano profile factor,
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FIG. 15. The solid curve is (P1(x, +x2)1e)2p(e). The curve
with fine dashes denotes 100(P1(x, +x2)~e)~p~(e) and the
curve with larger dashes f(z)(P~(x, +x2)1e )happ(E), where f(z)
is defined in Eq. (24).

In f (s},E, denotes an efi'ective energy of the autoioniz-
ing state which is slightly shifted from E, through the
interaction with the continuum. The shift is given
by the principal-value integral P I," (a~ 8'1s') pp(s')l
(s—s')d E', which for our system evaluates to 0.0015 a.u.
in the vicinity of c=E,. The product
f(s}(P1(x,+x2)1e)ppp(s) is shown as the dashed line in
Fig. 15 for q = —24 and I =0.059 a.u. The width of the
curve matches well with the solid curve. The overall
similarity of the dashed and solid curves indicates the ap-
plicability of the Fano formalism to the present system
and the internal consistency of our results.

Equation (26) predicts a Fano minimum at s=E,
—ql /2. For our parameters, this minimum would lie
far outside the energy range in which 1a ) can be regard-
ed as an isolated autoionizing state, and thus no Fano
minimum is present in Fig. 15.

V. SUMMARY AND CONCLUSIONS

We have studied the bound and continuum structure of
one-dimensional helium using Hartree-Fock, basis-state
diagonalization and exact numerical techniques. We

have used symmetry considerations to discuss the
strengths and weaknesses of the Hartree-Fock approach,
and have noted how states of different symmetry must be
superposed to take electron-electron correlation effects
into account. We have found that the model has many of
the features of the true helium atom, including a Rydberg
series of singly excited states below the first threshold and
a structured continuum which can be described in terms
of autoionizing states. Both electrons are tightly bound
in the ground state of the model, in contrast to the
ground state of the Z = I model of H, which featured an
"inner" and "outer" electron [7].

We have examined different possible definitions of the
lowest-energy autoionizing resonance for our system,
which can lead to different temporal features in the decay
of the state. Specifically, quantum beats can occur in the
decay so that the state does not decay exponentially. We
have shown that the quantum beats can be reduced if the
autoionizing state is defined as an eigenstate in a subspace
of both singly and doubly excited states that is chosen so
as to be orthogonal to the final, asymptotic state of the
autoionizing decay process. We would anticipate that
this result is not unique to one-dimensional helium, but
will apply in other systems as well, including real three-
dimensional atomic systems. The decay rate of our
chosen autoionizing state is 0.05 a.u.

We have examined the dipole matrix elements coupling
the first excited bound state to the single-ionization con-
tinuum, and we have concluded that the lowest-energy
autoionizing resonance is well described by the Fano for-
malism [8]. Because of the magnitude of the q parameter,
no Pano minimum is apparent in the dipole matrix ele-
ment at energies near the lowest autoionizing resonance.
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