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Influence of a strong magnetic field on the chemical bond of the excited H2+ ion
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The excited electronic states with the magnetic quantum numbers 4 ~m ~
10 of the hydrogen molec-

ular ion are investigated. In the field-free case the lowest electronic states with ~m~ ~ S possess purely
repulsive potential-energy curves and are, therefore, unbound. In the presence of a strong magnetic field

the shape of these electronic states changes drastically. For parallel internuclear and magnetic-field axes
we observe we11-pronounced potential wells that contain many vibrational states; the corresponding elec-
tronic states are, therefore, strongly bound. The coupling of the electronic degrees of freedom to the
ionic center-of-mass motion is estimated.

PACS number(s): 32.60.+ i

I. INTRODUCTION

One of the initial motivations for studying atomic and
molecular systems in strong magnetic fields was the
discovery of the huge magnetic-field strengths in the vi-
cinity of degenerate astrophysical objects, e.g., field
strengths of the order of magnitude of 10 —10 T for
white dwarfs, and 10 —10 T for pulsars [1]. Most of the
investigations have been made on the behavior of the hy-
drogen atom in a strong homogeneous magnetic field. Its
spectrum and eigenfunctions have been calculated with
different methods over the whole range of magnetic-field
strengths. Nowadays the ground state as well as a large
number of excited states of the hydrogen atom in such
strong fields are known to a high accuracy (see Refs. [2]
and [3] and references therein).

In contrast to the numerous investigations on the hy-
drogen atom, there exists much less information on the
behavior and properties of many-electron atoms and mol-
ecules in strong magnetic fields. In particular, our
knowledge about molecules is, in general, restricted to
the simplest of all molecular systems, the Hz+ ion (see
Ref. [4] and references therein). The few works dealing
with many-electron molecules are of qualitative character
(see Refs. [5—10] for an almost complete list of refer-
ences). Nevertheless, the existing literature on molecules
in strong magnetic fields indicates a variety of phenome-
na. Examples are the contraction of the bond length and
the increase of the dissociation energy with increasing
magnetic-field strength as well as the new topology of the
electronic potential-energy surface and the rich complexi-
ty of the corresponding nuclear dynamics. With increas-
ing excitation of the molecular electronic states and/or
increasing field strength the effects of the influence of the
external field on the chemical bond, e.g., the bond length
and dissociation energy, could become very drastic. A.s
an example, let us compare the 3d5 state of the H2 ion
in the absence of a magnetic field with the corresponding
15g state of the H2+ ion for a field strength of 8 =1.0

a.u. ; (which corresponds to 2.35 X 10 T). For the 3&&s

state a bond length of 18 a.u. and a dissociation energy of
1.6X 10 a.u. was found [11]. In the presence of a field

with the above-mentioned strength, we obtain for the cor-
responding 15s state a bond length of 4.87 a.u. and a dis-

sociation energy of roughly 3.6X10 2 a.u. [4,13]. This
example and the existing results on the electronic
potential-energy surfaces for low-lying states of the H2+

ion in a strong magnetic field [4] indicate that there may
exist excited states which are unbound in the absence of a
magnetic field and which become strongly bound in the
presence of a magnetic field. To give an answer to this,

up to now, open question is exactly the subject of the
present paper.

Our investigation deals with the H2+ ion for parallel
orientation of the internuclear axis with respect to the
magnetic-field axis. We consider the lowest electronic
states of the H2+ ion with the magnetic quantum num-

bers —4& m ~ —10. As a main result of our investiga-
tion we have found strongly bound states of the H2+ ion
in the presence of a magnetic field whose corresponding
counterparts in the absence of a magnetic field show a
purely repulsive behavior of the potential-energy curves,
i.e., they are unbound.

The paper is organized as follows. In Sec. II we de-
scribe the method for the calculation of the molecular
wave functions and electronic potential-energy surfaces.
In particular, we give a brief introduction to our atomic
orbital basis set which has recently been introduced [12]
and optimized [13]. In Sec. III we present and discuss
the results of our investigation. The influence of the
strong external magnetic field on the properties of the
chemical bond is discussed in detail.

II. Ab Initio METHOD FOR THE CALCULATION
OF THE POTENTIAL-ENERGY SURFACES

The existing numerical investigations on molecules in
strong magnetic fields (see Refs. [4—10] and references
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therein) are based on special choices of variational elec-
tronic wave functions which take into account the strong
anisotropy due to the presence of an external magnetic
field. The underlying methods are, in particular„restrict-
ed to the one-electron problem, i.e., the H, + ion. In ad-
dition, they are valid only within a certain range of
magnetic-field strengths, i.e., they are restricted either to
the low, to the intermediate, or to the high-field region.
In view of the lack of a general method for calculation of
molecular properties in a magnetic field, a basis set of
atomic orbitals has been established in Ref. [12]. These
atomic orbitals are well suited to describe molecular elec-
tronic wave functions and spectra at arbitrary magnetic-
field strengths, and for an arbitrary orientation of the
molecule with respect to the magnetic field. In order to
use this basis set for ab initio calculations of molecular
electronic wave functions and potential energy surfaces
the nonlinear variational parameters of these atomic or-
bitals have to be optimized. This has been done recently
for the case of the hydrogen atom [13]. Since we take ad-
vantage of the optimized basis set for our investigation of
the binding properties of the Hz+ ion in a strong homo-
geneous magnetic field, we give in the first part of this
section a brief introduction to these atomic orbital basis
functions. Finally, in the remaining part we describe the
method used for calculating the molecular electronic en-

ergy curves of the Hz+ ion.
Our basis set of atomic orbitals [12] takes on the fol-

lowing appearance:

%„(r,a, R)=exp[ i A(R—) r](x —R, ) "(y—R, )
-'

X(z —R, ) 'exp[ —(r —R) a (r —R)(,

where R =(R„,R~, R, ) is the nuclear position vector
and the triad n=(n„n,n, ) characterizes the type of
atomic orbital. The basis set of atomic orbitals (1) con-
tains two exponentials: the first one represents a magnetic
field-dependent phase expI i A(R)—r] and the second
one represents a Gaussian-like function with a real sym-
metric matrix g of nonlinear variational parameters.

The phase expt i A(R)—r] ensures that the energy ei-

genvalues calculated with the basis functions (1) are ap-
proximately gauge invariant. It shifts the origin of the

gauge of the vector potential A, which we choose to be in

the symmetric gauge A(R) =
—,'[BXR], to the position of

the individual nucleus. We note that this is of particular
importance for the dissociation limit of the molecular
system into separated atoms (see Refs. [12] and [14] and
references therein).

In the present investigation, we consider the H2+ ion
for the special case of parallel internuclear and
magnetic-field axes 8

~~
R. In this case, the vector poten-

tial dependent phase becomes one, and our atomic orbital
basis set (1) differs from the spherical Gaussian one by
the general quadratic form in the exponent. For the
spherical Gaussian basis set we have cz=a1 and, there-
fore, only one variational parameter e corresponding to
the spherical symmetry. In the presence of a magnetic
field the exponent of the spherical Gaussian basis set pro-

vides an insufficient description of the electronic v av(

function. This fact can be easily illustrated for the exam-

ple of the hydrogen atom in a homogeneous magnetic
field. The magnetic-field axis is assumed to point along
the z axis. In the limit ~B~ —~ ~i we obtain in the plane
perpendicular to the field axis a pure two-dimensional
harmonic-oscillator wave function. The motion parallel
to the field axis is described by a one-dimensional
Coulomb wave function. These properties cannot ap-
proxirnately be reproduced by a basis function v ith only

one variational parameter in the exponent. In contrast to
the spherical Gaussian basis functions the exponent of
our basis set (1) contains a real symmetric matrix a of six

independent variational parameters, i.e., the exponent of
the atomic orbitals (1) is able to describe any anisotropy
and, in particular, the anisotropy due to the presence of a

magnetic field. However, if we want to obtain accurate
electronic wave functions for molecules in a strong mag-
netic field with a few of the above basis functions I, 1) ~v(

have to optimize the nonlinear variational parameters

t a;~ ] of the matrix a. This can be performed by minim-

izing the total calculated energy of the individual atomic
states with respect to these parameters. For the hydro-

gen atom the results of this optimization have been
presented in Ref. [13] for the ground state as well as for
many excited states, and for a range of magnetic fie1d

strengths from 10 3.u. up to 10 a.u.
Since we want to study the electronic structure of the

H2+ ion, we separate the electronic and nuclear motion by

an adiabatic approximation, i.e., we perform the Born-
Oppenheimer approximation in the presence of a magnet-
ic field. The performance of an adiabatic approximation
in the presence of a magnetic field has been investigated
in detail in Refs. [14] including all corrections due to the
finite nuclear mass. For the present investigation, we

choose as a zeroth-order approach for the electronic
Hamiltonian the fixed nuclei electronic Hamiltonian, i.e.,
we assume infinitely heavy nuclei. This choice will be

justified in Sec. III (see also Ref. [17]).
In order to specify the fixed-nuclei electronic Hamil-

tonian let us locate the two protons on the z axis and

choose the midpoint of the internuclear axis as the coor-
dinate origin. Since we consider the case of parallel mag-

netic field and internuclear axes the magnetic-field vector
also points along the z axis. The electronic Hamiltonian„
therefore, takes on the following appearance

H= —
—,'V + ,'BL + '8 (x—+y—) ——1

, r —Rf2~

Ir+ R/2 I

where r=(x,y, z)' and R is the internuclear vector.
The Hamiltonian (2) possesses the following sym-

metries due to the charge symmetry (both nuclei have the

same charge number Z, =Zz =1) the parity operator I'

commutes with the Hamiltonian (2). This symmetry is

conserved even for an arbitrary orientation of the inter-

nuclear axis with respect to the magnetic-field axis. Also,
the angular-momentum component I., provides a good

quantum number I in the case of parallel orientation.
Therefore both quantum numbers, P and I, wi11 be used
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to characterize the eigenfunctions and the corresponding
eigenvalues E(R) of the Hamiltonian (2). The eigenfunc-
tions will be labeled ly (y for m = —4), lg (g for
m = —5), lc (a for m = —6), etc. with an additional sub-
script g or u (corresponding to "gerade" and "ungerade")
to indicate the parity of the orbitals. In the absence of a
magnetic field we will use the usual united-atom notation
Sgy, 6h y„,6h g„,7h g, . . . , to label the field-free orbit-
als [11,15].

In order to solve the electronic Schrodinger equation
with the Hamiltonian (2), we expand the wave functions
in terms of nonorthogonal molecular orbitals. These
molecular orbitals are built up by the corresponding opti-
mized atomic orbitals (1). The resulting Hamiltonian and
overlap matrix elements have been evaluated in Ref. [12].
For the numerical solution of the resulting general eigen-
value, we used standard methods. The construction of
the molecular orbital basis set as well as the method for
building the Hamiltonian and overlap matrix will be de-
scribed in detail elsewhere [17].

III. RESULTS AND DISCUSSION

In order to investigate the influence of a strong mag-
netic field on the properties of the chemical bond of the
H2+ ion we compare the electronic potential-energy
curves of the magnetically dressed states with their corre-
sponding counterparts in the field-free case. We, thereby,
have to ensure that the magnetically dressed molecular
states can be related to the corresponding field-free
molecular states in a unique way. For the case of the
H2+ ion in a homogeneous magnetic field with parallel
internuclear and magnetic field axes, only the lowest state
of a given manifold m~ can be associated with the like-
wise lowest state with the same magnetic quantum
number m and parity P in the field-free case.
For example, the magnetically dressed states of
the H2+ ion 10.g, 1~„,15g, . . . , evolve from the
lsos, 2pn.„,3d5s, . . . , field-free states in a definite way
[13]. For excited states of a given subspace m~ such a
one to one correlation between the magnetically dressed
molecular states and the states in the field-free case does
not exist. The reason for this fact is the breakdown of the
noncrossing rule for the case of the Hz+ ion in the ab-
sence of a magnetic field (see Ref. [16) for a detailed dis-
cussion of this subject). If we switch on a magnetic field
the noncrossing rule is valid and we are, therefore, not
able to relate an excited magnetically dressed molecular
state of a given subspace m to only one molecular state
in the field-free case.

The magnetically dressed lowest states of the manifolds
m are also interesting from another point of view. With
increasing magnetic quantum number m, i.e., increasing
size of the "electronic cloud" perpendicular to the mag-
netic field, the influence of the diamagnetic energy term
becomes stronger and the diamagnetism is, therefore, ex-
pected to play an increasingly important role for the for-
mation of a chemical bond.

After having briefly discussed the relation between the
magnetically dressed states of the H2+ ion and their cor-
responding counterparts in the field-free case we begin

now our study of the lowest states of the manifolds m
both in the absence and presence of a magnetic field. Let
us first consider the properties of the lowest so-called
"bonding" states with the quantum numbers m =0 to—10 in the absence of a magnetic field, i e.,
1s 0'g 2p 7T Sfpg 5h g„,. . . , 1 1m p . All electronic
potential-energy curves of the above-mentioned states
with the magnetic quantum numbers

~
m

~
4 exhibit a po-

tential well. In addition, these states, with the exception
of the 1so state, possess also a hump, i.e., a local
potential-energy maximum, whose value lies above the
energy in the dissociation limit. The dissociation energy
cD, given by the difference between the local maximum
and the equilibrium energy, decreases rapidly with in-
creasing absolute value of the magnetic quantum number
whereas the equilibrium distance increases, e.g., for the
2pn„state ( ~m~ =1) a equilibrium distance of R,q

=8 a.u.
and a dissociation energy of cD =9X 10 a.u. was found,
whereas the equilibrium distance R, and the dissociation
energy e~ of the 5gys state ( ~m~ =4) are roughly 53 a.u.
and 2.28X10 a.u. , respectively. The lowest electronic
eigenstates and eigenenergies with the magnetic quantum
numbers 0& ~m

~

~4 have been calculated in Ref. [11].
Representatively for these states we have plotted the
potential-energy curve of the 5gvs state in Fig. 1(a)
(straight line). In contrast to the states with 0~ ~m~ ~4
which exhibit potential wells in their potential-energy
curves our calculation shows that the potential-energy
curves of the 6h g„,. . . , 11mp states with 5 ~

~
m

~

~ 10
exhibit a purely repulsive behavior. As a typical example
for these states we have plotted in Fig. 1(a) the potential-
energy curve of the 6h rl„state (dashed line). The absence
of an attractive part in the potential-energy curve of the
states with magnetic quantum numbers 5 ~m~ 10 sim-

ply means that they are unstable with respect to the dis-
sociation H2+ ~H+p.

Let us now consider how the shapes of the potential-
energy curves of the above-mentioned states change if we
switch on a strong homogeneous magnetic field. As a
typical value of the field strength we choose 8 =1.0 a.u.
which corresponds to the intermediate or high-Geld re-
gime, depending on the degree of excitation. Without
loss of generality we restrict our discussion in the case of
the presence of a magnetic field to the lyg state and 1g„
state which are the corresponding counterparts of the
above-discussed Sgy and 6h g„state in the absence of a
magnetic field. In Fig. 1(b) we have plotted the
potential-energy curves of the 1y state (straight line) and
of the lg„state (dashed line). First of all, we observe
that the energy curves of both states, the 1y state as well
as the 1g„state, exhibit an attractive behavior with a
well-pronounced potential well. Also the hump, which is
still present in the energy curve of the Sgy state in the
absence of a magnetic field, vanished in the potential-
energy curve of the corresponding 1y state in the pres-
ence of a magnetic field. The bond length of the 1y
state (R, =6.55) is in comparison with that of the Sg ys
state (R, =53) strongly contracted. We also obtain an
increase of the dissociation energy from ca =2.28 X 10
a.u. for the Sgy state in the field-free case to 2.38 X 10
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FIG. 1. (a} The total electronic energy curves of the lowest
states with the magnetic quantum numbers ~m~ =4 (5gyg) and

~m~ =5 (6hi)„)in the absence of a magnetic field. (b) The total
electronic energy curves of the corresponding magnetically
dressed states ( ly„and 1g„}for a magnetic-field strength of
B =1.0 a.u.

a.u. for the 1y state in the presence of the magnetic
field. It is a remarkable fact that the potential-energy
curve of the lq„-state exhibits a well-pronounced poten-
tial well. Remember, the corresponding counterpart of
the 1g„state in the field-free case, the 6h g„state, has a
purely repulsive potential-energy curve. In the presence
of a magnetic field (8 = 1.0 a.u. ) the potential well of the
1g„statehas a depth of 2.03 X 10 a.u. at the equilibri-
um distance R, =7.22 a.u. Hence, the binding energy
and the equilibrium distance of the 1g„state are of the
same order of magnitude as the corresponding quantities
of the 1y state.

In order to understand the drastic change of the shape
of the potential-energy curve for the q„state from the
field-free case to the case of the presence of a magnetic
field let us consider the electronic probability density of
this state in both cases. In Fig. 2(a) and 2(b) we have
plotted the probability density ~%(x,y =O, z)~ in the x-z
plane for the 6hg„state in the absence a magnetic field,
and for the lq„state in the presence of the magnetic

field, respectively. Due to the polynomial structure
(x —iy) of the orbitals (1) used to build up the molecular
electronic wave function of the lowest q„state, the prob-
ability density distributions in Figs. 2(a) and 2(b) possess
a node line along the z axis. For the considered states the
probability distribution ~%(x,y, z)

~

have a rotational
symmetry around the z axis.

Let us again first consider the situation in the field-free
case. In Fig. 2(a) the electronic probability density distri-
bution of the 6h g„state is presented for an internuclear
distance of R =80.0 a.u. This distance corresponds
roughly to the midpoint of the "shoulder" of the poten-
tial energy curve of the 6hq„state. The maxima values
of the electronic probability density occur roughly for the
z values +R /2, which correspond to the z components of
the positions of the nuclei. The absolute values of the
maxima are about 3 X 10 and are located at a distance
of roughly 30 a.u. from the z axis. The saddle point of
the density, which has a value of approximately 7 X 10
occurs at z =0 a.u. and has a distance of roughly 40 a.u.
from the molecular axis. In comparison with the proba-
bility density of, for example, the strongly bound 2pri„
state at its equilibrium distance, the obtained values of'

the probability density distribution of the 6h g„state are
very low: the values of the maxima of the probability
density of the 2pm„state are about 1.4X10 ' and their
distance to the molecular axis is roughly 2 a.u. The value
of the density distribution of the 2pm„state at the saddle
point, which is about 2.7 a.u. from the internuclear axis,
is of the order of magnitude of 10 '. The purely repul-
sive behavior of the electronic potential curves for the
lowest state with ~m~ =5 in the field-free case has its ori-
gin in the low and widely distributed electronic probabili-
ty density which is particularly sma11 close to the internu-
clear axis between the two nuclei and, therefore, does noi
enable the formation of a chemica1 bond.

In the presence of a. magnetic field the structure of the
probability distribution of the 1g„state, illustrated in

Fig. 2(b) for the equilibrium internuclear distance
R,„=7.22 a.u. , is completely di8'erent from that of the
6hg„state in the field-free case. The maximal values of
the electronic probability density distribution occur close
to the internuclear axis at approximately x =+3 a.u. and
within the accuracy of our numerical calculations for the
whole range —1.0 ~ 2 ~ 1.0 a.u. of the z coordinate which
lies in between the positions z =-+R,q/2 of the two nu-
clei. Apart from the decrease of the overall size of the
molecule and the increase of the absolute values of the
probability density we also observe that the density is in
the direction perpendicular to the magnetic field very
much peaked around its maxima values. The enhanced
probability of finding the electron in the region close to
the internuclear axis and for z values between both nuclei
leads to a more complete screening of the nuclear charges
and consequently to an overcompensation of the
nucleus-nucleus Coulomb repulsion by the electronic
cloud. As a consequence, the potential energy curve of
the lq„state exhibits a potential-energy well.

So far we have discussed the inhuence of a strong mag-
netic field on the ground states of (m ) manifolds only
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many vibrational states can exist in the wells of the
potential-energy curves for the 1y„,1p states, i.e. ,

these states are stable.
In the above investigation of the excited electronic

states of the H2 ion in a strong magnetic field we have
restricted ourselves to the configuration of parallel inter-
nuclear and magnetic field axis. The electronic potential
energy, however, is a two-dimensional surface which de-
pends on both the internuclear distance as well as the an-

gle 8 between the internuclear and magnetic field axis. It
has been shown in Ref. [18] that the potential-energy
curves exhibit extrema at the two positions which are dis-
tinct by their higher symmetry, i.e. , the parallel (6=0)
and orthogonal (e=ir/2) configuration. For the case
that vibronic interaction between different electronic en-

ergy levels is negligible it can be shown [18) by consider-
ing the second derivative of the diabatic/adiabatic energy
surfaces with respect to the angle 8 that for negative
magnetic quantum numbers and a "not too large" exten-
sion of the electronic probability density perpendicular to
the magnetic field, the parallel configuration (0=0)
represents a minimum of the electronic energy. By es-
timating the second derivative (8 E/BO ) we could show
that our considered lowest electronic states of the (m )

manifolds exhibit a minimum of the electronic energy at
0=0. Apart from effects due to the vibronic coupling of
adjacent energy levels, we, therefore, have investigated
the equilibrium configuration of the orientation of the ion
with respect to the field.

Let us now briefly consider the inhuence of the mag-
netic field on the so-called "antibonding" states, i.e.,
6h y„,7i g, . . . , 12n p„in the absence of a magnetic field

and their corresponding counterparts 1y„,1gg, . . . , 1p„
in the presence of a magnetic field. The potential-energy
curves of the antibonding 6h y„,7i g, . . . , 12n p„states
in the field-free case exhibit a purely repulsive behavior.
In a previous investigation (see in particular Ref. [13]
and for the ly„and lrIs state also Ref. [19])it was shown
that the potential-energy curves of the corresponding
magnetically dressed counterparts, the 1y„,1g, . . . , 1p„.
states„exhibit above some critical field strength shallow
minima. The depth of these shallow potential wells is, for
a field strength of 8 = 1.0 a.u. , of the order of magnitude
of 10 ' a.u. An exception is the 1y„state, which has a
dissociation energy of 1.1X10 a.u. All these energies
are sma11er than the cyclotron energy of the nuclear
motion and, consequently, these antibonding states are
supposed to be unbound.

The above discussed effects of the magnetic field on the
electronic structure of the H2" ion are based oo the as-
sumption of infinitely heavy nuclei, i.e., the validity of the
fixed nuclei electronic Hamiltonian (2). However, the
H, + ion is a charged three-body system for which, in par-
ticular, the center-of-mass motion couples to the elec-
tronic degrees of freedom if a magnetic field is present, A
more elaborate electronic Hamiltonian, therefore, con-
tains apart from additional mass correction terms which
are due to the finite nuclear mass also the coupling of the
zeroth-order Landau motion of the center of mass of the
ion to the electronic degrees of freedom [14,20]. In order

to ensure that our fixed-nuclei approach is valid for the
above-discussed magnetically dressed electronic states we

have to estimate the coupling of the center-of-mass
motion of the ion to the corresponding electronic states,
To this end we expand the total electronic wave function
in a series of products of the so-called Landau orbitals for
the center-of-mass motion and the electronic eigenfunc-
tions belonging to the Hamiltonian (2). Each off-diagonal
element of the resulting Hamiltonian matrix couples
different total electronic states consisting of certain Lan-
dau orbitals and electronic fixed-nuclei eigenstates.
These coupling elements contain a product of two dipole
matrix elements between different Landau orbitals and
electronic molecular eigenfunctions, respectively. With
the aid of the selection rules for both types of dipole ma-
trix elements (the selection rules for the matrix elements
between the Landau orbitals are given in Ref. [20]) we

could restrict our investigation to a coupled two state
problem. The relevant quantity ~, which tells us whether
the strength of the coupling is of relevance or not, is then
the square of the ratio of the absolute value of the cou-

pling matrix elements and the energy gap between the
considered electronic states. If ~ is much smaller than
one, the coupling between the collective and the electron-
ic motion can be neglected. %'e have calculated the
values of ~ for the 1y„,. . . , 1p states at the equilibrium
distances and for the lowest I andau states. In all con-
sidered cases ~ is of the order of magnitude of 10

—

. '4'e,

therefore, conclude that the inAuence of the coupling be-
tween the collective and electronic motion on the proper-
ties of the chemical bond of the 1y„,. . . , 1p states in a
magnetic field of 8 =-1.0 a.u. is negligible (for a detailed
discussion of this subject we refer the reader to Ref. [17]).

Finally, we remark that the mass correction terms can
to lowest order of the ratio of the electron and nuclear
mass be taken into account by simply replacing the mass
of the electron by its reduced mass. Apart from the con-
stant Zeeman shift the inclusion of the lowest-order mass
correction terms, therefore„corresponds to a rescaling uf
the encl gv.

IV. BRIEF SUMMARY

In the present paper, we have investigated the inhuence
of a strong homogeneous magnetic field on the chemical
bond of the excited H& ion for parallel internuclear and
magnetic-field axes. We used a recently optimized atomic
orbital basis set in order to calculate the molecular elec-
tronic potential-energy curves in the Axed-nuclei approxi-
mation. Since the most significant effects of the external

magnetic field on the chemical bond were expected for
those states with large quantum numbers m we restricted
our investigation to the lowest states of the H2 ion with

magnetic quantum numbers 4~ ~(mI
~ 10. First, we con-

sidered the so-called bonding states. In the absence of a
magnetic field the electronic potential-energy curves of
ihe lowest bonding states with the magnetic quantum
numbers 5 ~ ~ml ~ 10 exhibit purely repulsive behavior,
i.e., these states are unbound. The potential-energy curve
of the lowest electronic state with ~m~ =4 still exhibits a

small and shallow potential well. In the presence of a
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strong magnetic field with a typical field strength of
8 =1.0 a.u. all the potential-energy curves of the corre-
sponding magnetically dressed states exhibit well-
pronounced potential wells. By a harmonic approxima-
tion of the wells we have shown that in all considered
cases the vibrational ground-state energy is much smaller
than the depth of the potential well and, therefore, many
vibrational states do exist in the wells. That is, all con-
sidered magnetically dressed states, in particular, also
those whose corresponding counterparts show in the ab-
sence of a magnetic field purely repulsive potential-
energy curves, are stable.

In contrast to the potential energy curves of the bond-
ing states in the presence of a magnetic field the potential
energy curves of the lowest antibonding states with the
above-mentioned magnetic quantum numbers exhibit
only shallow minima. The depth of these potential wells
is in each of the considered cases smaller than the corre-
sponding zero-point cyclotron energy of the nuclear

motion. Hence, the considered magnetically dressed anti-
bonding states are physically unbound.

Since all of the above-discussed effects of the magnetic
field on the electronic structure of the Hz+ ion are based
on the fixed-nuclei approximation we had to estimate
whether the corrections beyond this approximation, i.e.,
the coupling between the collective and electronic motion
of the H2+ ion and the mass corrections, are small. We
showed that the relevant quantity which is a measure for
the strength of the coupling of the collective and elec-
tronic motion is much smaller than unity and thus the
coupling can be neglected for the considered states and
field strength.
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