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It is shown that a time-dependent external four-vector potential aj*(7t) and a conserved external
four-current j;*(7t), with a given fixed initial state of the combined condensed-matter—electromagnetic
system, lead, respectively, to a conserved self-consistent four-current density J,,(7¢) and a self-consistent

four-vector field A,(7t), such that a map (ag*, ;"

w2 Jp

)—(J,, 4,) is invertible under certain simple condi-

tions. With this as a basis, the stationary action principle is used to derive the self-consistent equations
for the electron and the electromagnetic fields appropriate for a description of the combined condensed-
matter and electrodynamic systems, where real or virtual pair creation is ignored.

PACS number(s): 31.10.+z, 03.65.—w

I. INTRODUCTION

Density-functional theory for stationary states or en-
sembles is a formulation of many-body theory. It is now
a mature subject with many successful applications. For a
review of this, one may consult the book by Dreizler and
Gross [1]. A general formulation covering essentially all
time-dependent potentials was given ten years ago by
Runge and Gross [2]. A review of this subject covering
subsequent work is found in an article by Gross and
Kohn [3]. This theory is not as fully implemented to the
same extent as the stationary state theory, but it is a
powerful method for attacking a much wider class of
many-body problems of interacting electrons of con-
densed matter. This is because the important many-body
effects of correlations and interactions are all incorporat-
ed into a functional, which in turn determines, in princi-
ple, the electronic properties of the system under con-
sideration. In almost all condensed-matter problems, ex-
cept those with high atomic number (Z > 50) elements, a
nonrelativistic description of the electrons suffices. How-
ever quantum electrodynamics (QED) furnishes a funda-
mental basis on which quantum theory of a system of in-
teracting electrons can be based. This is because the for-
malism of QED is particularly convenient since all the in-
teraction between a charged particle and an electromag-
netic field, which must be expressed in a relatively
cumbersome manner in ordinary nonrelativistic quantum
mechanics, is contained in a single simple term. A time-
independent functional theory based on this formalism is
given by Rajagopal and Callaway [4]. These authors
were not significantly concerned with relativistic effects
and proceeded to the nonrelativistic limit after the gen-
eral principles were described. Their aim was to incorpo-
rate electronic systems with magnetic order, such as fer-
romagnetic or spin-density-wave states. This theory has
also been employed to examine other problems where
magnetic interactions are of importance [5], such as mag-
netic anisotropy, nuclear magnetic shielding, etc. A
time-dependent functional formalism for many-electron
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systems subjected to external electromagnetic fields with
arbitrary time dependence but treated as classical fields, is
given by Ghosh and Dhara [6], thus extending the work
of Runge and Gross [2] to time-dependent vector poten-
tials.

In order to include a description of the physics and
chemistry of condensed-matter systems composed of
heavy elements (Z = 50), the relativistic effects need to be
incorporated and a functional theory was developed by
the author and his co-workers [7]. This work may be
considered as a functional formulation of the relativistic
many-body problem of quantum plasma and radiation
[8,9]. This theory encounters serious self-interaction
problems and the use of the renormalization program of
Feynman-Schwinger formulation of QED provides re-
sults in which all observable quantities are finite. In the
functional context, Engel [10] has described the changes
needed for the stationary, time-independent external
fields. The end result is that one works with renormal-
ized quantities. It should be remarked that the full nu-
merical implementation of the relativistic functional
theory is not at hand at present, but holds promise for the
future.

It may not be out of place here to remark that a fully
field-theoretical treatment of the time-dependent fields in-
volves further difficulties when the field strengths are
strong enough to produce electron-positron pairs [11]. A
phase-space approach has recently been investigated [12],
and a method of adiabatic regularization combined with
mean-field approximation for a homogeneous time-
dependent electric field has been examined [13]. As will
be described below, in the problems of condensed-matter
systems we are considering, we do not anticipate such
problems and thus the functional formulation we offer
here comes with this caveat.

The purpose of this paper is to set up a time-dependent
(td) functional theory of coupled condensed matter (M)
and electromagnetic (em) fields are not considered hither-
to, which will provide a formal framework to study both
the matter and electromagnetic equations on the same
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footing. Such a nonperturbative theory is required when
the interaction between the fields and the matter system
is strong. Several examples of this are the electrodynam-
ics of superconductors, laser interactions with matter,
charge-carrier behavior in very high frequency nanoelect-
ronic devices, etc. In these condensed-matter problems a
nonrelativistic description of the matter field suffices.
However, a relativistic description of the matter field is
often used as in our earlier work [4,7], because it lends an
elegant description of the system including a wide variety
of the magnetic properties of condensed matter [5]. As
we do not envisage electron-positron pair production in
our systems, we will not formulate the theory to include
this here. The fully self-consistent approach proposed
here is expected to bring out novel, highly nonlinear phe-
nomena in these systems, which are traditionally handled
non-self-consistently using phenomenological (e.g.,
mean-field) procedures. In the past only the equation for
the electron in the absence of the quantized electromag-
netic fields was formulated in the functional framework
in the presence of external classical (unquantized) scalar
and vector potentials so as to take into account the in-
teractions among the particles [6]. For a discussion of
such an approach one may refer to the book by Dreizler
and Gross [6]. Recently, Kohn, Gross, and Oliveira [14]
developed a functional theory of the electron system of a
superconductor in a magnetic field treating the elec-
tromagnetic fields classically, but they were put in an ad
hoc self-consistency loop for the vector potential. A more
complete theory would obtain the two equations within a
single framework, and it is this feature that is addressed
here. In order to keep our development pertinent to
condensed-matter systems, here we develop a theory that
yields the equations for matter and electromagnetic fields
applicable under a wide variety of situations of the types
mentioned above. By doing this it will also become clear
as to when these two equations can be discussed separate-
ly, as has often been done in the past [4,7].

The basic idea is to recognize that we have here an in-
teracting pair of quantum fields with the matter four-
current density coupled to the external electromagnetic
sources, while the internal electromagnetic fields are cou-
pled to the external four-current density. This was tradi-
tionally studied in the past by perturbative diagrammatic
techniques, without invoking full self-consistency. As
mentioned above, the functional theory exists only for the
matter field while either ignoring or treating the other
field classically. Here we fill this gap and develop the
time-dependent functional theory in the same spirit as
was done for the other important pair of interacting fields
of importance in condensed-matter physics, namely the
electron-ion system [15], based on the earlier work of
Runge and Gross [2] for td-pure states. For a review of
this pure-state td-functional theory, see Ref. [3].

In Sec. II, we give a brief description of the system un-
der consideration along with the various points men-
tioned above concerning renormalization, pair produc-
tion, etc. In Sec. III, the basic theorems of our functional
theory are stated and proved. In Sec. IV, some proposed
applications of the theory are given. In the final Sec. V,
future plans and concluding remarks are given.
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II. DESCRIPTION OF THE SYSTEM

The time evolution of the coupled matter-
electrodynamic system along with their interactions with
external sources is governed by the equation [11] for the
state vector of the system:

;’ifzga;—ﬁm |W(£))=0, given |W(ty)) , i1

where H in the Schrodinger representation is

A=A,+H.+HA,+HA, +E,, . (2)

int ext

E,,. is the vacuum expectation value of A is in Ref. [11],
which we ignore in the subsequent development without
loss of clarity. Here we use the Dirac field to represent
the matter Hamiltonian to keep the discussion in some
generality (but with a caveat mentioned above), so as to
include discussion of magnetic properties of the system as
well, in the same spirit as the work done by the author
and his co-workers [4,7] and others [5]. All the operators
are in Heisenberg representation.

Ay, 9)= [ dor @7~ ity -V +moc)P(F): (2a)

the electromagnetic part is

A . (2b)

the matter-electromagnetic interaction is
A, = [dr],(r0a"r): (2¢)

and the interaction of both of these with explicitly td
external sources is given by

A= [ dr:[j,(Foat (F)+ & () A4 (2d)

Here:: stands for normal ordering of operators. The
route to the Hamiltonian from the Lagrangian may be
found in Ref. [11]. The notations used here are different
from those in Ref. [4], since we employ the normal order-
ing of operators and separate out the E,. term in Eq. (2),
and the relationship of the two may be found in Ref. [11].
We have chosen Eq. (2d) in a somewhat unconventional
symbolic form for specifying the external sources a **' and
jff“, for two reasons: (1) we have in mind different classes
of physical problems requiring specification of one or the
other; and (2) j;"‘ is traditionally used in the formal
theoretical framework of field theory to generate the vari-
ous interaction contributions. In particular, a;" is
specified in some external magnetic-field problems which
couples to the M current, and j;’“ is specified in radiation
source problems which couple to the em field. Conven-
tionally we would attack these two problems separately,
and the development of the functional formalism present-
ed would proceed as given here in these two cases. From
a field-theoretical point of view, j;*' is traditionally useful
as a source term to generate the necessary quantum elec-
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trodynamic contributions in dealing with coupled M and
em fields. As we shall see toward the end of this paper
(Theorem 3) this choice leads to an elegant, symmetric
form for the ensuing self-consistent equations of motion
for the M and em fields in our functional formalism. We
specify the external four-potential in the Lorentz gauge

d,ab (F1)=0, (3)
and the Fermion four-current operator in the
Schrodinger representation is

T =Py HF): )

which obeys the continuity equation in the Heisenberg
picture [denoted by subscript H; all the operators in Eq.
(2) and in later discussions are in the Heisenberg repre-
sentation where we do not indicate by subscript H]

3,75=0, (5)
as does the external source current
a;Jf;xm):o . (6)

These conditions assure us of the gauge covariance of the

theory. The Fermion field operator for matter ¢ and ¢
and the electromagnetic field operators A and their
canonical conjugates obey standard commutation rela-
tions at equal times among themselves [4] in a chosen
gauge. We also choose the Lorentz gauge for the em field
for the present in order to keep the discussion relativisti-
cally covariant. The choice of the Lorentz gauge main-
tains the formal framework explicitly relativistically co-
variant, even though it poses some technical problems re-
quiring certain procedures which do not invalidate our
development here. In actual computations in
condensed-matter problems, the standard choice of gauge
is the Coulomb gauge, which has certain advantages at
the expense of a loss of covariance, but one maintains
gauge covariance by appropriate standard manipulations
[11]. For more details of these aspects of the em-field
theory, one may refer to recent textbooks
[11,16,17(a),17(b)]. The gauge covariance and representa-
tions of the fields are discussed in detail by Engel [10].
The expressions given above are gauge covariant in the
usual sense. However, there is another place where the
question of the gauge comes up again when we consider
the mapping theorem, Theorem 1, to be discussed
presently. Following Engel [10] we may state here that a
class of four potentials differing by a gauge transforma-
tion lead to the same four currents so that no contradic-
tions occur. This was pointed out by the present author
in developing the relativistic functional theory [4]. We
will address questions of renormalizations in some detail;
those for the time-independent case are discussed by
Engel [10]. The divergent vacuum energies are eliminat-
ed by normal ordering of operators. The ultraviolet
divergences of the quantized em field are eliminated by
the standard method of absorbing them in a redefinition
of coupling constants. In the work of Engel, it is shown
that the result of renormalization in the functional theory
leads to counter terms which are universal functionals of

external potential and renormalized current. Following
Ref. [11], we recall that there is no analog for the vacuum
state in the presence of time-dependent fields. But if

u(rt) is constant for both remote past and future times,
then these two vacuum states in these two regions can be
defined separately, so that the overlap of these two states
describes the probability amplitude of the persistence of
the vacuum state. Also the vacuum state is defined by
specifying which of the single-particle states are empty
and which are filled, with the filled states being interpret-
ed as antiparticles and the unfilled states as particles. We
start by defining a Fermi energy and the set of “occu-
pied” states as those whose energies are below the Fermi
energy. This vacuum becomes charged, and reduces its
energy by emitting electron-positron pairs for energies of
the order of 2mc?, which is of order 1 Mev. As estimated
in Ref. [11], superstrong fields are needed to produce
such effects, and we certainly do not encounter such large
energies with the types of fields employed in condensed-
matter laser experiments. Thus we are outside the realm
of pair production possibilities in our framework. With
this caveat, the standard renormalization techniques
leave these features intact in the time-dependent theory
proposed here.

The time-dependent equation for the state vector for
the coupled system in the Schrodinger representation Eq.
(1) can be deduced from the stationary property of the ac-

tion functional:
W(t > (7

t
Alto,t)= [ ldt<\l/(t
0

The four-potential and four-current operators possess the
expectation values

h——ﬁ

TP = (W07, @), ®
A,F)= V()| 4,F)|¥(1D) . )

The expectation value defined in Eq. (9) may be thought
of as arising from the use of a “coherent state” represen-
tation [18], or as some other suitable superposition of
number states for the vector |W¥(¢)). We now state and
prove the mapping theorem in Sec. III.

III. BASIC THEOREMS OF THE FUNCTIONAL THEORY

Theorem 1. If processes involving real or virtual pair
creation are neglected, then for every (af,’“, ]ff“) which
can be expanded into respective Taylor series in the time
coordinate around the initial time f¢;,, a map which

preserves the continuity Egs. (5) and (6),
(ag,ji)—,, 4,) (10)

is defined by solving the td equation (1) for the state vec-
tor of the combined system in the Schrodinger represen-
tation, with a fixed initial state |W(t =1¢,))=|¥,), and
calculating the corresponding quantities J x(71) and
A, (Ft) given by using Eqgs. (8) and (9). This map is inver-
tible under certain simple conditions.

Proof. We consider those states which evolve from a
fixed given initial state |¥,). The time evolution of an ar-
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bitrary operator O(t), which may in general be explicitly
time dependent, is given by

5L (w0 w(n)
dt

A

B +10(n, AD]_ W) . A1)

at

We need to show that (J,,, 4,,) and (J,, 4,,) correspond-
ing to (aix‘,jzx‘) and (a;f"‘,j;f"‘) are different under cer-
tain conditions. Remembering that we consider only
those states that evolve from a fixed initial state l‘l’o), we

have

={(W(¢t)|i#

iﬁ%[Ju(?t ) =T, (7)),

to
= (Wl (], (Fto), Hl19)—H'(2)] | ¥,)
= [ d*r (Wl (Ftg), T, (Fi10)1- 1 Wo)

'y (7_‘

X @b (Fitg) —a g (Fito)] (122)
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5

‘m% | -,

=ifi [ dr (Wl [],(Ftg), ], (F0)] W)

. ‘
[ d
X —
ldt
and, similarly, higher-order time derivatives are obtained.
The commutator appearing in Eqgs. (12a) and (12b) is

evaluated by using the equal time commutation rule for
Dirac fields:

(@ (Fit)—agl(Fi),—, ,  (12b)

~

[ (Ft0). Gy, (Frto) - =8(F —FJb(Ftg) ¥ 7 1 0Pt ):
(12¢)

and its expectation value appearing there is, in general,
nonzero. And

iﬁg?[Au(Ft)—A;L('r*t)],=,0=(‘llol[ﬁ#(i’to),ﬁ(to)—f\]’(to)],I\I/O)
= [ &S Frtg) = 1 (i) M Wl [ A, (19, A7 10)] - [%0) =0, (13a)
d 2
liﬁE [A, ()= 4, (F)],~, =0, (13b)
3
"”?14{ [A,(Fo)— A, (F)], =, =(i#) {% gt =i (P, =, & - (13¢)

In Eq. (13a) we obtain zero because of the Lorentz gauge
commutation rules for the vector field operators [17a] as
well as due to the initial condition on the currents. In
Eq. (13b), we obtain two terms, each of which is zero, one
due to the initial conditions and the other due to the
commutation rules for the vector fields. Equation (13c)
shows that the first nonzero derivative is of third order,
and subsequent higher-order time derivatives involve cor-
responding higher-order time derivatives on the right-
hand side. Here gﬁ' is the standard metric tensor [10].
Thus, knowing the commutation rules, it is clear that
(Jﬂ, A#) and (J,’l, A;t) will become different at
infinitesimally later times than ;. The simple conditions
mentioned above are thus the nonzero values for the time
derivatives of a};*, j;* as required in Ref. [2]. The nonre-
lativistic counterpart for the M field in the presence of
aft’“(?t) with em field treated as a classical c-number field
is given in a paper by Ghosh and Dhara [6]. It should be
pointed out that the M field in the Dirac formulation
given here is simpler in its formal structure than its non-
relativistic counterpart, because the four-current opera-
tor in this framework does not depend explicitly on the
em fields. Of course, a Gordon decomposition exposes
the physical content of the current operators (see Ref. [4]
for the Gordon decomposition of the four-current opera-

r
1

tor), Eq. (4), but is not essential for the present argument.
We will now go on to develop further the functional
theory in much the same way as in Refs. [2] and [15].

We have thus proved the central result of the theory
that

(W(1)=|W[J,(F1), A,(F)])

and the expectation value of any arbitrary operator is
also a functional of J,, 4 ,:
(W(D[O|W(1))=01[J,(Ft), A, (r1)] .

Theorem 2. The stationary property of the action, Eq.
(7), leads to the td equation (1) for the state vector for the
combined system in the Schrodinger representation. This
functional may now be written as a functional of J,,, 4,
in view of Theorem 1:

Al A, 1=B,, 4]
~ [t [ d*r(d,Foat ()

i EN AR, (14)

where B[J,,4,] is a universal functional of the td-
current densities and the td fields for a given fixed initial
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state. A[J,, 4,] is stationary at exact J,, 4, of the
given system, and can be computed from the Euler equa-

tions
SA[J,, A SA[,, 4
_[_i__#_].zo and __M=o . (15)

8J, 84,

As in Theorem I, processes involving real or virtual pair
creation are neglected here.

Proof. Equation (14) follows directly from the
definitions, Eq. (2), and the constructions, Egs. (8,9). In
fact we have

t
ﬂ[Jﬂ,A”]=froldt(\ll[J#(?t),A#(?t)]|
X (i~ By == A

X|W[J,(70), 4,(FN]) . (16)

Since the action Eq. (7) is stationary for the exact solution
of the td equation, the corresponding functional must
also be stationary for the exact td currents and fields.

In order to derive practical systems of equations,
we need to employ a suitable state vector
|W[J,(7t), 4,(F)]). For example, one way to obtain the
familiar equations is to employ a product of state vectors
pertaining to the M and em systems, with the em system
being either a coherent state as mentioned earlier or a su-
perposition of number states, each separately normalized
to unity as a possible approximation, which is valid for
noninteracting systems. This then allows us to examine
the coupling of em and M systems within a self-consistent
functional scheme. Then the functional B in Eq. (16)
takes the form

BlJ,, A, 1=By I, 1+ Bel A, 1+ Bl 4,] (17)

Here

t
z;M[Ju]:fto‘dth[Jﬂ(?t)]l

X m%—ﬁM Wy [J,01),  (18a)
4
iiE[A#]=fto dt{Wg[ 4,7
L9 ~
X m-a—t—ﬁE We[4,70]), (18b)

and
n
Bl > A 1= [t (Wl (|
X [dPr 3, F)AHFRIVE) W), .
(18¢)

From this we derive the familiar equations for the elec-
trons and electrodynamic fields. Further research into
the use of possible state vectors is called for to go beyond
this familiar scheme. Here we state another theorem
whose proof follows in a straightforward way, which is a

set of coupled matter and electromagnetic field equations
in the functional formalism.

Theorem 3. The effective Dirac and Maxwell equations
of the functional theory are

0, . o€ 7
zﬁaqS,-(rt): [a- -—tﬁV—;Aeﬁ(rt)

+my(1—PB)+ A q(7t) ]d),-(?t) , (19

where
Ju(F)= S te[¢} (Fa,$,(F1)] (19a)
o - . 8B[I*, AH]
Aeﬁﬂ(rt)—aextp(rt)+Aﬂ(rt)+w (19b)
BlJ,, A, 1=B3y[J,1+B5[4,]
t
+ftoldtfd3rJ“(?t)A#(?t)
—BlJ,,A4,], (19¢)
with
h
SIM[J“]=ft0 dt (@3 [J, (7]
X m%—ﬁM B3, [7,70]) ,  (19d)
t
ﬁsE[A#]zftoldz( w[4,F0)]|
X m%—ﬁE |®L[4,7)]),  (19%)

and
8,,,F‘”=8#[8“A"(?t)—a"A“(?t)]=J§ﬁ(7t) , (20)
where

8B[JH, A*]
54" '

In Eq. (21), J,(7?) is the same as in Eq. (19a). As in the
previous theorems, processes involving real or virtual
pair creation are neglected here. As before, the functional
B[J#, A*] depends on the given initial state, and
represents important contributions due to all the interac-
tions and correlations.in the system.

The usual Hartree-like term [3] is not explicitly shown
here in part because it arises naturally when a Coulomb
gauge is used for the em field. The separations shown in
Eqgs. (19c)-(19¢) are not unique but are made so as to re-
tain the appearance of the usual field equations [16]. We
may also point out that the “noninteracting” actions B,
and B% are chosen so as to give, respectively, the same
J,(7t) and A,(7t) as for the interacting problem, as is
usually done in the functional formalism [3].

Equations (19) and (20) are now coupled matter and
electromagnetic field equations. These could be recast in
different forms by rewriting B in such a way as to

ve(Fr)=jY (FO)+J V(7 )+ 1)
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separate the familiar structures (e.g., Hartree term) from
them, and writing the remainder as the correlated part
contributions. As a way of handling renormalization
effects, we may rewrite the above equations in terms of
the traditional Green functions for the electron and the
electromagnetic fields.

IV. PROPOSED APPLICATIONS

The above development was designed to address the
evolution of a pure state, given the specification of the
given initial conditions as above in the Schrodinger repre-
sentation. A much larger class of problems need a more
general setting involving nonequilibrium statistical
mechanics involving the matrix Green-function approach
using the system density matrix when one considers a sys-
tem which is initially given to be in thermal equilibrium
and is subjected to external td forces of the types con-
sidered above. In the context of nonrelativistic quantum
plasmas and quantized radiation, such a field-theoretical
approach was given some time ago by DuBois [8]. Bez-
zerides and DuBois [9] generalize the theory given in Ref.
[8] to Dirac electrons so as to treat the quantum electro-
dynamics of ultrarelativistic quantum plasmas. As stated
in Sec. I, there are many other contexts in which such a
formulation is required even if we are not in the ultrarela-
tivistic limit, and the motivation of the present work is to
develop a self-consistent method which goes beyond per-
turbation procedures. Thus to place this theory in terms
of a functional approach of the type developed here so as
to give a self-consistent formalism, we need to develop a
stationary action principle to enunciate the appropriate
version of Theorem 2 given above. This has been
achieved recently [19] using the Liouvillean quantum dy-
namics approach. In this theory, there is a natural dou-
bling of the operators defined in Hilbert space, and corre-
spondingly it leads to results in conformity with the
nonequilibrium matrix Green-function theory of DuBois.
Besides the advantage of the existence of the stationary
action principle in this theory, the given initial condition
that the system is in thermodynamic equilibrium, leading
to the specification of the four-current and four-vector
field averages at the initial time, are themselves derived in
this theory from the equilibrium functional theory based
on the free-energy minimum principle as in the earlier
work of the author [4]. In this more general framework,
the coupled matrix Green functions for both fields are ob-
tained in terms of a modified functional B which is now
constructed in terms of the density matrix in place of the
state-vector average given above.

Kluger et al. [13] consider the problem of fermion pair
production in a strong electric field. Here the quantum
back action in spinor QED is set up and solved in semi-
classical mean-field approximation for a homogeneous
and time-dependent electric field. They apply the method
of adiabatic regularization to the Dirac equation in order
to renormalize the expectation value of the current
operator and derive a finite coupled set of ordinary
differential equations for the time evolution of the system.
We could employ this technique to examine the solutions
of Egs. (19) and (20) with the appropriate redefinition of
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the current in Eq. (19a) to include the states both above
and below the Fermi energy, so as to incorporate pair
production processes. We would employ leading-order
terms to evaluate the functional, Eq. (19¢), so that the
system of equations thus obtained is on par with those set
up by Kluger et al. It seems to us that such a procedure
may be a useful way to include aspects of self-consistency
inherent in the functional scheme.

Another possible application of our theory is to devel-
op the time-dependent optimized potential in a manner
similar to that proposed by Ullrich and Gross [20]. This
is for the purpose of analyzing the effects of ultrashort
laser pulses of very high intensity on atoms placed in the
focus of such a laser pulse. The new phenomena ob-
served cannot be explained by means of perturbation
theory and, in principle, a scheme such as ours should be
of use. The work of Ulrich and Gross is designed to ex-
amine the nonrelativistic regime of the potential generat-
ed in this system, and does not examine the back action
on the radiation field. Our formulation enables such an
examination because the functional given by Eq. (19c¢)
serves to generate the needed input for both the electron
and electrodynamic equations.

V. FUTURE PLANS AND CONCLUDING REMARKS

In order to give a flavor of the Green-function formula-
tion in the functional theory, which is useful in generat-
ing diagrammatic approximation schemes, it suffices to
state here the relevant equations and relate them to those
considered in Ref. [9]. The electron Green function asso-
ciated with Eq. (19) is

G rF ) =Gy (Pt )+ Vg GD]
22)

8B[J, A]

Veal G, D)=y, | A*(rt)+ =
8J,(r1)

S(F—r)d(t —t'),

and the dyadic Green function for the components of the
em fields is

D '=Dy '+,
L 5 23)
8B u
= 92 = .
A VT VI '

In Eq. (22), the first term corresponds to the usual nonin-
teracting Green function, and the second term is the
effective electron self-energy which is here local in space
and time but in general a nonlinear functional of the
currents and fields, containing contributions due to both
the electron interactions and the electrodynamic coupling
contributions, in contrast to the nonlocal self-energy in
Ref. [9]. In Eq. (23), the first term is the noninteracting
em Green function; the second term is the effective self-
energy of the em fields consisting of two parts; II,
representing the polarization contributions, and a second
piece containing further interaction-correlation contribu-
tions. As usual we have the definition D,
=cdA,/4md i<, It is clear that the central functional of
importance is B, which contains salient information con-



50 TIME-DEPENDENT FUNCTIONAL THEORY OF COUPLED . .. 3765

cerning the mutual correlations and interactions among
the fields. From Eq. (19c), this functional needs further
investigation in the future; it is sufficient here to note that
by picking leading-order diagrams, one may set up some
starting functionals, yielding a self-consistent scheme. It
also should be remarked that in constructing this func-
tional, all the field theory formalism has to be incorporat-
ed, so that the contributions of renormalizations, etc. are
contained therein. (Recall that in the earlier Dirac elec-
tron theory of Refs. [4], [7], and [10], such constructions
were given.)

In summary, here we have presented a time-depen-
dent functional scheme for the coupled matter-
electromagnetic field systems, where the two fields are
treated on equal footing in a self-consistent manner. This
theory is designed to deal with condensed-matter sys-

tems, but require modifications for applications in other
situations as was outlined in Sec. IV. To our knowledge,
such a theory has not been considered before in the litera-
ture and may be considered as the functional formulation
of the usual interacting fields, such as those given in Refs.
[8] and [9]. We have also indicated the generalization of
our formalism to nonequilibrium situations.
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