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Density matrix for a triatomic linear molecule model
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We find the unitary operator for diagonalizing the Hamiltonian of a triatomic linear molecule. The
unitary operator is expressed in a coordinate representation that brings convenience for deriving the
density matrix p(x„x„x,;x'„x,',x,',P). The unitary transformation approach is simple because the
derivation can be reduced to the calculation of two independent harmonic-oscillator density matrices
and one free-particle density matrix. The average of the potential energy and the kinetic of the molecule
is calculated by using the density matrix.

PACS number(s): 31.10.+z, 34.10.+x, 03.65.Bz, 05.30.—d

I. INTRODUCTION

As Feynman pointed out, the concept of the density
matrix plays a role in reformulate quantum mechanics
because pure states are not general enough to describe a
quantum-mechanical system [1]. The density matrix for
a definite Hamiltonian H is defined as exp( pH)=p;—
here p=(ks T) ' and ks is the Boltzmann constant. The
equation of motion of p in coordinate representation is
given by

[x, ,P, ]=i fi5.. . (2)

where d is the distance between two adjacent atoms. Us-

ing the displacement operator exp (iP d ), we have

exp( —iP d}x.exp(iP d)=x —d. Therefore in the fol-

lowing we focus on dealing with the displaced Hamiltoni-

an H=Ho+H', where H'= —k(x, xz+xzx3) and

'Mailing address.

a( (x,x';P)/—aP =H„(x,x,P)

with the initial condition p(x, x', 0)=5(x —x'). An ex-
ample showing how to use Eq. (1) to derive the density
matrix for a harmonic oscillator is presented by Feyn-
man. Although Eq. (1} ofFers a general approach for
treating density matrices, only several problems can be
solved exactly [2].

In this work we consider the density matrix for a more
complicated system —the triatomic linear molecule
whose Hamiltonian is given by [3]

p2
+ —[(x,—x, —d )'+ (x, —x, —d )'],

12m; 2

p2
Ho= g +—(x, +x3)+kxz

'=1 2'; 2

=A[+ k/m, ( ata, + —,')++2k/rn2(aza2+ —,')

+Qk/tn3(a3a3+ —,
' }],

and we derive its density matrix. Instead of using Eq. (1),
we adopt a unitary transformation approach. This is en-
lightened by our previous works [4], which solve the dy-
namics of N identically coupled oscillators by virtue of a
unitary transformation. The present work is arranged as
follows: In Sec. II we 6nd the unitary operator U that
can diagonalize the Hamiltonian H. It is worth pointing
out that, although the eigenvalues of H have already been
derived in [3] by performing some definite rotational
transformations of the variables (the momentum P; and

position coordinate x;), to the best of our knowledge, the

unitary operator that can directly diagonalize H has not
been studied in the literature. As one will see in our later
discussion (Sec. II), the unitary operator is quite compli-
cated because it engenders not only rotation but also
squeezing transformations; the latter originates from
changes in masses and frequencies and must be involved
in searching for the unitary transformation. In Sec. III,
by virtue of the unitary operator in coordinate represen-
tation we can very easily work out the density matrix
p(x, x';P), x=(x, ,x2, x3). Then in Sec. IV we use

p(x, x,p} to calculate the average of potential energy and
kinetic energy of the triatomic linear molecule. Our con-
clusion is that although the Hamiltonian H involves three
coupling coordinates, it actually is equivalent to the
motions of two independent harmonic oscillators and one
free particle, and we obtain ( (potential
energy) ) = ( (kinetic energy) ) —1/2P.
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II. UNITARY OPERATOR U IN COORDINATE REPRESENTATION

2m2m3

AB
Jd. u x, )(.,

Although the Hamiltonian H has no coupling term x,x3, fortunately we still find a unitary operator U that can diag-
onalize H. In coordinate respresentation U is expressed as

' 1/8 X1 X1

X3 X3

X1

X2 = Xls X2~ X3

X3

where

2m2

M A

' 1/4
m3

[(m 3+m 3 )cosa+ m 3sina]
u

' 1/4

[(m 2+ m 3 }sina —m 3 cosa]
' 1/4' 1/4

2m 2

M A
' 1/4

2m 2

M A

m3

M B
' 1/4

(m, sina+ m 3cosa)(m, cosa —mlsina)

[(m
&
+m 2 )cosa —m & sina]

m3
[(m, +m 3 )sina+ m, cosa]

detu =(2m2m3/AB)'~ (6)

M=m, +m2+m3 is the total mass of the molecule, a
satisfies the equation

( m 3
—m, ' )sin2a =2m 2

' cos2a

and

A '=@1 'cos a+@2 'sin a —m 2 'sin2a,

B '=p, 'sin a+@2 'cos a+m 2 'sin2a,

p, =m, ml/(m, +mz), pl=mlm3/(ml+m3)

~x, ) is the three-mode coordinate eigenstate. In the Fock
space spanned by ~n, n2n3 ) (the eigenstate of Ho), ~x, ) is
expressed as

1/4
2m 2m 3UU— Jd'x u x, )(u xz

X3 X3

thus Ut= U '. Using (x, ~p; ) =(2mB) ' exp(ip, x, /ill),
where ~p; ) is the momentum eigenstate, we may set U in
momentum representation,

I

The factor [2m2m3/(AB)]'~ in Eq. (4) anticipates the
unitarity of U. To see this, we use Eq. (6) to calculate

m) COI.

' 1/4
m;co; 2m;m;

exp — x; +
2R

1/2

~
yX;a;

' 1/8
2m2m3

AB
P3

(co, =Qk/m„col=+2k/ml, co3=+k/m3) . (10)
I

In order to know how x; and p,. change under the U
transformation we first calculate

cosa

m3
sino.

m1

M
' 1/4

A

2m 2

1/4

m2

M
' 1/4

(cosa —sina }

' 1/4

{sina+ cosa )
m3

m3

M
1/4

2m2
sina

' 1/4

COSA
m3

(12)
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Using the orthonormal relation (x; Ix ) =6(x, —x,.') we can deduce

X1

Ux, U '=detu fd'x u xt )( x, xf'd'x

r

X1

x2 u x2

X3 x3
j (xg

X1 X1

=detu fd'x u x, )
u x,

3

x,-= g(u ');Jx, .
j=l

X3 X3

In a similar manner, in terms of the momentum representation of U we obtain

UPU '=detu J d p p2

P3

I

P1

P; dp'u pz

5'3

P1
3

pl =&up, .
j=1

P3

(14)

Comparing Eqs. (12) and (13) with (14), we see that the U operator causes not only rotation transformation but also
squeezing transformation. For example, as the factor (Blm3)'~ appears in Ux3U ', its inverse (m3rr'B)' appears in
UP3 U, which means the squeezing [4] for the coordinate and its canonical conjugate momentum are mutual inverse.
This squeezing originates from the change of masses and frequencies [see also Eq. (16)]. Combining the results (13) and
(14), we can prove that H is diagonalized as

ddeu. 2 A. 2 ~2
H=U ~ +kX2 + B P3 +kX2 + P1

2 2m2 3 2m 3 2 2M
X2 X3

w2
= U co„(a2a2+ —)+cps(a3a3+ ) 6+ U1

I 1

2 2M
(15)

where

co„=VklA, a)q =Vk/B, co2=+2klm2, co3="trr klm3,

in fact, using (14), (16), and (5), as well as the relations

1 2 1. 2 1 1 . 2 1 2 1 . 1 1—cos a+ —sin a=, —sin a+ —cos a=, sin ———sin2a=—8 P1' A 8 P2' A 8

(16)

(17)

which are deduced from Eqs. (7)—(9), and doing some lengthy but straightforward calculations, we obtain

w2 w2 w2 3 w2
p2 ~a p3 p&, + pt

co2 2m2 co3 2m3 2M, 2m,

On the other hand, using (13) and (16) we have

(18)

C02 C03

thus Eq. (15) is proved.

III. DENSITY MATRIX IN COORDINATE REPRESENTATION

The coordinate representation of U provides us with a convenient way to derive p(x, x,P). Since by use of Eq. (4) we
have

(xt U=

X3

1/8
2m2m3

A8

I
X1 X1

fd'xn x, —u x,'
I

X3

I
X1

(*
I

X3

A8
(P ) x3'2e3'3 I

2m2m3
(2O)

where y; are defined by

3

y, = g(u ');;x
j=1

(21)
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Therefore as a result of (15) and (20) we get

p(x, x',p)=&x„x„x,le lx„x'„x', &

' 1/4

2m 2m 3

A2

&y~,y~,y3lexp ' P—~~(a~a~+-, )+~s(a 3a3+ )+ P1
IK,yp, y3 &

=a(—x,x',P),

m

icosi

exp — . [(x &
+x

&
)cosh(2f

&
)—2x ~x ~ ]21 slnh 2

m 1co1

2M sinai(2 f &
)

&x, Iexp[ —PS'), (a,a, + —,')]Ix', &
=

which shows that the calculation for the three coupled oscillators' density matrix now reduces to the simple calculation
of two independent harmonic oscillators' density matrices and one free particle's density matrix. Because Feynman al-
ready gave the density matrices both for a harmonic oscillator with frequency co1 and mass m1,

' 1/2

and for a free particle with mass M,

fi—= P2
(23)

pf
&x, Iexp —P Ix', &

= M
2m% P

' 1/2

exp
M

2A' P
(x) x)) (24)

we can immediately write down

p(x v'»)=su e3 (25)

P1
p =&y I p P2M— M

2m% P

' 1/2

exp — (y, —y', )
2A~P

(26)

1/4

pg= &yplexp[ —P&~~(a~a~+-,')]ly~ &

2m 2

A
& yg I exp[ P2~~2( a Ja p + -,

'
) ] ly 2 &

2m 2

' 1/4

' 1/2
m 2co2 A

2mB sinh(2f z ) 2m&

m22 g ggexp — . „[(y&+y & )cosh(2f & )—2y~& ]2fistnh 2 z

' 1/2

ACORN

2nk sinh(2 fz )

ACORN

exp — . „[(y~+y~')cosh(2f~) —2yg ~]2g stnh 2
(27)

where

and

R6)2 CO g

2 '
CO,

2m 2

A

1/4

(28)

1/4

p3 & y 3 I exp [ ptas (a 3a 3 + —,
'

) ]—ly 3 &

m3

where

1/2BCOB

2+6 sinh(2f 3 )
exp

BCOB

[(y 3+y 3 )cosh(2f 3 ) —2y,y', ]2' sinh 2
(29)

AQP3 COBf3= P3, P3=P
2 CO3

m3

B

' 1/4

(30)
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IV. AVERAGE OF POTENTIAL ENERGY
AND KINETIC ENERGY

Now we can analyze the average of potential energy
and kinetic energy of the molecule. Using Eqs. (21)—(30)
we first evaluate the average of (x; ),

d XXI P X, X,
(x,') =

f d xp(x, x,P)

Next we calculate the average of the coupling operators.
Using (21) we have

3

(X;XJ ) = g uJQJkgk
k=]

Thus the average of potential energy is

3
'2

fd'y gu;JV, p(y, y, P)
j=l

fd'y p(y, y, P)

Because of

f d y3,3Jp(y, y, P)=0 (i' ),1

(31)

( U ) —= —,'k ((x, —x2) +(x2 —x3 ) )

—2" [(u12 22) +(u22 u32)']g2

+[(u,3 u23) +(u23 u33) ]g3

Eq. (31) thus becomes
3

(x,') = g u,2Jg, ,
j=l

(33) Substituting (5) and (34) into Eq. (36) we have

where

fO'JPJU' JtJ P)v

dY, p, (J „y,,P)

g2= g3=
2m 2ro2tanh f2

'
2m 3to3tanhf 3

(34)

( v ) = (co„cothf2+cot]cothf 3 )])1/4 . (37)

In order to derive the average of kinetic energy we trans-
form the density matrix into a momentum representation.
With the aid of (15) and (11) we have

p(p p' P)=

where
3

l g ljpJ
j=&

2Pl 2@i3

AB

' 1/4 A. 2

(~] I2 P3lexP 0&to~(a—2a2+ —,')+&to]](a3a3+ 2)+ (38)

p(p, p', P) can also be decomposed as p(p, p', P) =p']pzp3,

p', = (P]~exp —P
'

~P'] ) =expp pp2
5(P]—P'] ) (40)

p2= [2MA r„oishn( f22)] ' exp — . [(Pq+P2 )cosh(2f2 —2P2P2]
2m2to2ksinh 2 2

p3= [2MBrot]sinh(2f 3 )] ' exp — . [(P3 P'3 cosh(2f, )
—2P3P3]

2ttl 3ro3fi stnh 2 3

Comparing (37) and (43) we have the relation
1

((potential energy)) = ((kinetic energy) )—
2

(44)

Similar in spirit as deriving Eq. (37), we can obtain the
average of kinetic energy

(
l +—[ro„coth(f2)+F2]coth(f3)] . (43)

, 2m; 2 4

I

This is in accord with Eq. (15), which states that the
Hamiltonian is unitary equivalent to that of two indepen-
dent harmonic oscillators and a free particle.

In summary, we have found the unitary operator for
diagonalizing the Hamiltonian of a triatomic linear mole-
cule and we have derived the corresponding density ma-
trix with which the average of distribution of energy of
the molecule is calculated.
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