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Transfer of electron correlation from an electron gas to inhomogeneous systems via Jastrow factors
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In analogy to the local-density approximation of the density functional, a transfer of electron correla-
tion from the homogeneous electron gas to inhomogeneous systems is realized through a density-
dependent Jastrow factor. This approach enables a strictly variational treatment with respect to the in-

homogeneous systems. We have adjusted the density-dependent Jastrow factor on the basis of electron-
gas Jastrow factors, determined within a Fermi hypernetted-chain approximation. We applied it to the
isoelectronic series He to Ne'+ where 83—90% of the correlation energy was recovered, taking into ac-
count a supplementary density-dependent one-particle Jastrow factor, which allowed an approximate
conservation of the Hartree-Fock density. W'ithin our simple application we are able to describe the
electron correlation of different systems by means of a single Jastrow factor, which depends on the in-

terelectronic distance and the electron densities at the positions of the electrons.

PACS number(s): 31.20.Di, 31.20.Tz

I. INTRODUCTION

Density functionals represent one of the most popular
approaches for the treatment of electron correlation in
quantum chemistry [I]. In its simplest form, the so-
called local-density approximation (LDA) for closed-shell
systems,

&, = Jd&p(r)E(p(r)),

to each volume element 5V with given electron density
p(r), the corresponding correlation energy E of the homo-
geneous electron gas, is adjoined. Although the
deficiencies of this approach are well known (see, e.g. , [I])
it provides a useful tool in molecular-structure calcula-
tions incorporating electron correlation. The LDA
method raises the interesting question concerning the
transferability of electron correlation from homogeneous
to inhomogeneous systems. With the intention to investi-
gate this problem, we pass over from the LDA approach
because of its manifestly nonvariational nature.

The correlations within the homogeneous electron gas
can be described with very high accuracy by Jastrow fac-
tors, as can be seen by a comparison of the Green-
function Monte Carlo [2] and variational Monte Carlo
(VMC) [3] correlation energies obtained with appropriate
Jastrow factors. Our interest lies in the study of the pos-
sibility of transferring these Jastrow factors to inhomo-
geneous systems„an extreme case is that of the series He
to Ne +, due to the fact that there are only two electrons
present, to the small spatial extensions, and to the strong
inhomogeneity of the densities. By using Jastrow factors
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we have strictly variational results and can expect that
the errors in our ansatz will be reAected by an increase in
energy. The Jastrow factors of the homogeneous electron
gas,

I' =exp g u2(r...p)

depend explicitly on the electron-electron distances and
implicit via adjusted parameters on the electron density.
Obviously they cannot be transferred in a unique way be-
cause of the arbitrariness in assigning a density to an elec-
tron pair correlated in an inhomogeneous system. We
treat this problem by choosing an averaged density.

In the solid-state case, electron-gas Jastrow factors
were successfully applied [4,5]. Fahy, Wang, and Louie
[4] could show for diamond and graphite that the optimal
Jastrow factors are very close to electron-gas Jastrow fac-
tors corresponding to densities that are equal to the mean
valence densities of the solids. Explicitly density-
dependent Jastrow factors for inhomogeneous systems
were introduced by Colle and Salvetti [6] within their
nonvariational treatment of the energy expectation value,
which shows some similarities with density-functional
methods but without taking reference to the homogene-
ous electron gas. Their Jastrow factors were applied in a
variational manner in VMC calculations [7]. Within the
context of Monte Carlo calculations, density-dependent
Jastrow factors were also discussed by Sun et al. [8].

II. TRANSFER FROM THE ELECTRON GAS

In order to transfer Jastrow factors from the homo-
geneous electron gas to inhomogeneous systems, it was at
first necessary to determine optimal Jastrow factors for
the homogeneous case which covered a wide range of
densities. On the basis of these Jastrow factors we tried
to determine a single density-dependent Jastrow factor,
which describes for a fixed density the electron correla-
tion in the homogeneous electron gas belonging to it.
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The optimization procedure had to be carried out in a
consistent manner because of the intended adjustment of
density-dependent parameters. We have chosen the Fer-
mi hypernetted-chain (FHNC) method within
Krotscheck's FHNC//0 approximation (see, e.g., [9]),
which was successfully applied to the homogeneous elec-
tron gas [10]. It was of special interest for us that it al-
lowed for a fully numerical solution of the variational
problem, because the parametrizations of the commonly
employed electron-gas Jastrow factors [3] were designed
for an optimal description of long-range correlations. On
the contrary, we were interested in the short-range
behavior. Therefore, we preferred the numerical solu-
tions, which were not constricted by a parameter-
dependent ansatz. Covering the whole range of densities
from the vicinity of the nucleus up to the van der Waals
radius, we determined Jastrow factors between r, =0.1

and r, =5.0,

r —
( 4&p)

1/31
s 3

p
(3)

uo(p) =u2(0, p), (4)

which depends only on the value of p. Figure 1 shows up

for r, values between 0.1 and 5.0 at which we observed a

(ao is the Bohr radius).
In the He series, the two electrons are confined to a

small region of space. We thus put more emphasis in

generating an accurate fit for the short and intermediate
interelectronic distances than for the large ones. The
value of u2 for r;J =0 was thus of particular importance
to us. It turns out that it has a marked dependence on
the density. This value is unique for a given density of
the homogeneous electron gas, as Jastrow factors are
chosen to give the value 1 for large interelectronic dis-
tances. Therefore, it is useful to define a new function,

TABLE I. Parameters of the density-dependent functions

uo(p) and ug(p, r;, ).

bl
b2

b3

b~

Cl

C3

—0.82403
—0.459 96

1.04695
0.036 26

—0.040
0.277

nearly linear dependence with respect to r, . As can be

seen from Fig. 1, up could be perfectly approximated
within the considered range of densities by the polynomi-
al rational function

b1r, +b2r,
uo(p)=

1+b3r, +b4rs

QP +C1r]~.

;&I 1+c2r; +(c3lr, ~
)r;;

(6)

for the function u 2. Furthermore, our Jastrow factor was

forced to satisfy the electron-electron cusp condition for
electrons with antiparallel spin [12]. It is therefore neces-

sary that u 2 satisfies the boundary condition

Bu2

Br . p. . =p 2IJ ij

The attached parameters b; (Table I) were determined by

a simple least-squares fit. For the homogeneous electron

gas, the behavior of u2 for large electron-electron dis-

tances is well known [11]. We incorporated the asymp-

totic behavior as far as our ansatz was fiexible enough to
adopt it for appropriate chosen parameters. Based on

these considerations, we have chosen the simple density-

dependent ansatz

0. 00

-0 ~ 25

-0.50

-0. 75

-1 ~ 00

Cr
o —1 ~ 25

which if applied to ansatz (6) results in the relation

1
c2 = (c, ——,

'
)

Qp

between the coeScients c
&

and c2. Together with the
function up it guarantees a correct behavior of u2 up to
linear terms in r,j. Incorporating relation (8) in ansatz (6)

yields the final form for uz..

—1 ~ 50

—1 ~ 75

p+ c 1 r&j

;&,. 1+[(c,——,')/uo]r, +(c3lr, ~ )r/~
(9)

—2. 00

-2. 25
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0.00 1 ~ 00 2. 00 3.00 4. 00 5. 00

FIG. 1. Function uo(p), which characterizes the behavior of
the FHNC//0 Jastrow factor at the electron-electron cusp. The
plot shows the original function uo ( ———), together with its
polynomial rational approximation ( )

At the very least, the parameters c, and c3 were fixed in

order to minimize the deviation between the FHNC Jas-
trow factors and our ansatz for short and medium
electron-electron distances at various densities. It should
be noticed that the ratio between c& and c3 is not equal to
that predicted by a direct application of the exact asymp-
totic behavior. This is due to the restricted flexibility of
our ansatz for medium distances and our preference
given to the short-range behavior. In view of the applica-
tions described in the next section, it will be without
consequences because we have a correct fit for all occur-
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ring distances, cf. the final result depicted in Fig. 2,
which shows good agreement between the FHNC Jas-
trow factors and our ansatz up to values of r, =5r, ao.

In order to transfer the density-dependent Jastrow fac-
tor (9) to inhomogeneous systems, we defined a mean den-
sity

p ~
= —[p(r; )+p(r~ ) ]+(1—a)Qp(r; )p(r~ ) (10)

].00

n. so

with respect to the electron pairs. p,. is composed of the
arithmetic and geometric mean values from the densities
at the positions of the two electrons. The parameter a
can be treated variationally, as will be discussed in the
next section. There are a lot of possible definitions for a
mean density, but with regard to an intended subsequent
application in quantum Monte Carlo calculations, we re-
stricted ourselves to a definition that relied only on the
densities at the positions of the electrons, because in this
case the computational cost did not significantly increase
[7].

Before one can apply the Jastrow factor (9) with the
mean density (10) to inhomogeneous systems, it is impor-
tant to notice that there arises an additional ambiguity
besides the definition of the mean density. This is be-
cause of the trivial fact that in the case of the homogene-
ous electron gas the addition of a Jastrow factor to the
Hartree-Fock (HF) wave function will not alter the given
density. In contrast to this, we observed drastic density
shifts in the case of a direct application of the Jastrow
factor (9), in combination with a HF wave function, to in-

homogeneous systems, as will be described in Sec. IV (see
also [4]). Within density-functional theory, it was proved
that it is wise to apply the correlation functional on the
HF density [13]. Therefore, we based our method on the
HF density„and in the following discussion all densities

p(r, ) in definition (10) will refer to HF. As a conse-

quence, the Jastrow factor (9) was supplemented by a
one-particle density-dependent Jastrow factor, which is

characterized by the function u, (p). Obviously, this

would be insignificant with respect to the homogeneous
case, but it is suitable to restore the HF density for inho-

mogeneous systems [4]. In the spirit of density-functional

theory, we looked for a system independent function
u i (p), as will be described in Sec. IV. Our final ansatz for

the correlated wave functions of inhomogeneous systems,

could be viewed as a Jastrow factor analog to the density
functional (1).

III. APPLICATION
TO THE ISOELECTRONIC SERIES

He TONe +

In the following, we will discuss the application of our
approach to a simple model that consists of the isoelect-
ronic rom of two electron systems He to Ne +. Before
tackling the determination of the function u &, we had to

specify the parameter a in definition (10). Since a is

directly related to the electron correlation, we have opti-
mized it together with the orbitals in the wave functions,

"2("12'P12) (12)

in order to minimize the variance of the local energy.
This was done for each system separately. The optimiza-
tion was realized by making use of quantum Monte Carlo
techniques where this criterion is commonly employed

[14]. HF orbitals for the two electron systems were taken
from Clementi and Roetti [15]. These orbital coefficients

and a=0. 5 provided the starting point for the variance
optimization. We added to each basis set an additional
diffuse basis function that was determined in an even tem-

pered manner from the ratio of the two smallest ex-

ponents in order to oppose the function u 2, which accu-
mulates the density in the region near the nucleus, as can
be seen in Fig. 3. As a result, for o; we obtained 0.29,
0.23, 0.23 in the case of He, Li+, Be + and 0.0 for the
ions B.+ to Ne +. Therefore, we decided to use cx=-0.0
in all cases because it is essential to choose a common
value for n if the idea of system independent functions

u, , u, should be maintained.

G. 10

2. 00 3. 00 4. 00 5. DO

FIG. 2. Comparison of the FHNC//0 Jastrow factors
( ) and our ansatz for a density-dependent Jastrow factor
( ———) for fixed electron densities. The corresponding densi-

ties are given by r, =0.1,0.5, 1.0,1.5,2.0,2.5,3.5,5.0 (r in atomic
units).

IV. DETERMINATION OF u )

Within this model, we have determined the function u,
by the following course of arguments. At first, we

demanded for u, to be independent of the atomic number

Z. Secondly, u& should be chosen in such a way as to
preserve the HF density, which is for these systems very

close to the exact density. These are necessary conditions
with respect to the intended analogy to the LDA (1) of
density-functional theory.

The last condition could be applied in an easy way to
each system separately by optimizing the orbitals y of the
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TABLE II. Variational energies and standard deviations of the local energy (in atomic units) for the

wave functions +, and 43 calculated by VMC. The statistical errors with respect to the total energy are

given in parentheses.

Z'

2
3
4
5

6
7
8
9

10

—2.9016(5 )—7.2772(6)
—13.6528( 3 )
—22.0280(6)
—32.4019(10)
—44.7765(10)
—59.1516(13)
—75.5260(11)
—93.9003( 11)

E b

95
94
94
93
90
89
89
88
86

0.15
0.24
0.33
0.46
0.62
0.71
0.88
0.97
1.17

—2.8992(4)
—7.2757(6)

—13.6508( 11)
—22.0263(9)
—32.4007(11)
—44.7755( 11)
—59.1498( 11)
—75.5251( 11)
—93.8991(11)

E b

89
90
89
90
88
87
85
86
83

0.29
0.43
0.63
0.78
0.95
1 ~ 11
1.31
1.52
1.70

'Atomic number.
Correlation energy (%).

'Standard deviation of the local energy.

wave functions 41 in order to obtain the HF density from
it. As we have nodeless orbitals, we can equate the wave
functions 4& and

where the latter is equivalent to wave function (11), in or-
der to obtain the functions u

„

from the equation

ul, (p) =»[q.„(r(p))&q HF(r(p) )] (14)

This could be done because for the systems under con-
sideration there is a unique relation between the radial
distance r and the density p. The orbital coefficients in
Eq. (12) were optimized by a simplex algorithm [16],
whereby the required densities with respect to the wave
function (12) were calculated by numerical integrations.
We used the formula of Coulson and Neilson [17],where
the volume element of an integrand with spherical sym-
metry was given with respect to the variables r„r2,r,2.
The integration could be carried out by successive nu-
merical integrations in one dimension. After we had
finished the optimization with respect to the density, we
determined the energies belonging to the wave functions
(12) by VMC calculations, which yielded between 86 and
95%%uo of the correlation energy (Table II). For our VMC
calculations, we have used a generalized Metropolis algo-
rithm, which is equivalent to a difFusion Monte Carlo al-
gorithm without branching [18].

At this point, we have to ask for our first demand,
which referred to the conformity of the functions u 1,.
Figure 3 shows the functions u „calculated from Eq. (14)
for the various systems. The curves in Fig. 3 are almost
parallel, which means that we got at least a first qualita-
tive confirmation of our approach, because it is, of
course, possible to shift the functions u „along the ordi-
nate without altering the results. We carried out these
parallel shifts for the functions u „ofthe systems He to
F + in order to obtain a minimal deviation to the func-
tion u1, of Ne +. An excellent agreement could be ob-
served for B + to Ne + but also slight deviations for Li+
and Be + as well as a larger deviation in the high-density

region for He. This behavior was not unexpected if one
takes into account the special position of He, Li+, Be +

on optimizing the a parameters in definition (10). There-
fore, we choose points only from the curves of B + to
Ne + and adjusted a polynomial rational function

ao+a&r, +a2r,2
u&(p)=

1+a3r, +a4r,
(15)

as can be seen in Fig. 4. The parameters a; are listed in

Table III. We were now able to define wave functions for
these systems,

u&(p&) u&(p2) u2(r&2, p&2)3=e e e qHF(r, )qHF(rz), (16)

0. 30

0. 25

0. 20

0. 15

0 ~ 10

0. 05

0 ~ 00

-0 ~ 05

—0 ~ 10

-0 ~ 15

—0.20
0 ~ 00 1.00 2. 00 3.00 4. 00 5. 00

FIG. 3. Functions u &,(p) for He to Ne +, resulting from op-
timizations with respect to their densities.

where the electron correlation depends only on the elec-
tron density and the electron-electron distance. All pa-
rameters in the functions u1 and u2 are independent from
the atomic number of the system under consideration. It
becomes apparent from Table II that the wave functions
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TABLE III. Parameters of the density-dependent function
u l(p), adjusted with respect to the functions u &,(p) for 8 + to
Nes+

o. 20

o. 15

a,

—0.061 04
0.209 93
0.092 00
1.604 88
0.065 39

o. 10

Q. Go

of the points occurred in the high-density region below
r, =0.5.

U. CONCLUSIONS AND OUTLOOK

-o. ]. o
n. oo

I

1.oo 2. 00 3. 00 4. Oo 5. Ocl

FIG. 4. Function u &(p) together with the points 5, obtained
from the functions u&, of Fig. 3 after shifts along the ordinate,
which were used for the adjustment of the parameters.

3 recover nearly the whole correlation energy that was
obtained with '0&. To be more precise, we lost between
4% and 6% of the correlation energy for He, Li+, Be +,
and 2% to 3% for the other systems. Another very sensi-
tive criterion is the standard deviation of the local energy
[14], which is also listed in Table II. In going from 4& to
%'3, we observed a considerable worsening of this quanti-
ty. This is due to the behavior of the wave function in
the vicinity of the nucleus. In the case of 0'„the wave
functions could satisfy the electron-nucleus cusp condi-
tions through an appropriate optimization of their orbit-
als. Instead of this, the behavior of %'3 near the nucleus
of a given system is impaired, through the function u &, by
the other systems with diferent electron densities at their
nuclei. As can be seen in Fig. 4, the largest fiuctuations

We described a procedure for the transfer of electron
correlation from the homogeneous electron gas to inho-
mogeneous systems in the case of the simple two-electron
systems He to Ne +. In view of its variationa1 character,
this is an appealing alternative in comparison to similar
approaches in density-functional theory. It would now
be tempting to app1y the whole machinery to more com-
plicated systems. Unfortunately, it is not possible to use
the wave function (11) with the above determined func-
tions u, and u2 directly. This is due to the fact that the
described mean density (10) becomes meaningless for
large electron-electron distances. Already in the case of
the Li atom, we got an inadequate description of core-
valence correlation. In order to extend the above method
to larger systems, one has to restrict the sphere of action
with respect to the Jastrow factor. This possibility is
currently under investigation.
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