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Quantum superintegrable systems in two dimensions are obtained from their classical counterparts,
the quantum integrals of motion being obtained from the corresponding classical integrals by a
symmetrization procedure. For each quantum superintegrable system a deformed oscillator algebra,
characterized by a structure function specific for each system, is constructed, the generators of the
algebra being functions of the quantum integrals of motion. The energy eigenvalues corresponding to
a state with finite-dimensional degeneracy can then be obtained in an economical way from solving
a system of two equations satisfied by the structure function, the results being in agreement to the
ones obtained from the solution of the relevant Schrodinger equation. Applications to the harmonic
oscillator in a Bat space and in a curved space with constant curvature, the Kepler problem in a
Bat or curved space, the Fokas-Lagerstrom potential, the Smorodinsky-Winternitz potential, and
the Holt potential are given. The method shows how quantum-algebraic techniques can simplify the
study of quantum superintegrable systems, especially in higher dimensions.

PACS number(s): 03.65.Fd, 02.20.—a, 11.30.Na

I. INTRODUCTION

The idea of studying the properties of physical systems
exhibiting degenerate energy levels through use of their
symmetries has been exploited since the early days of
quantum mechanics. In these cases the symmetry al-

gebra [1] of the system has to be determined; it is a
Gnite-dimensional Lie algebra containing ladder opera-
tors which connect all the eigenstates with a given en-

ergy, while the Hamiltonian of the system is related to the
Casimir operators of the algebra. The set of eigenstates
with given energy provides a basis for an irreducible rep-
resentation (irrep) of the algebra. The energy eigenvalues
are then determined by the eigenvalues of the Casimir op-
erators of the algebra in the corresponding irreps. The
determination of the symmetry algebra of a given Hamil-
tonian is a quite difEcult task, which is not always dic-
tated by an a priori obvious procedure of searching for
it. Examples of physical systems having known symme-
try algebras are the N-dimensional isotropic harmonic
oscillator and the Kepler (Coulomb) system, bearing the
symmetries su(N) and so(N+1), respectively.

The classical counterparts of the quantum isotropic
harmonic oscillator and the quantum Kepler problem
have another interesting property. They are maximally
superintegrable systems in N dimensions. Superinte-
grable systems in N dimensions have more than N in-
dependent classical constants (also called integrals or in-

variants) of motion, while maximally superintegrable sys-
tems in N dimensions have 2N —1 independent clas-
sical constants of motion, N of which are integrals in
involution (the Poisson bracket of each pair of them is
zero). This property of the maximally superintegrable
systems implies, in classical mechanics, that every closed
and bounded trajectory is a periodic trajectory. A de-
tailed review of superintegrable systems in two dimen-

sions is given in [2], while examples of superintegrable
systems in three dimensions can be found in [3, 4].

Higgs [5] and Leemon [6] have shown that in the case
of an N-dimensional system moving in a space with con-
stant curvature the isotropic harmonic oscillator and the
Kepler problem are still maximally superintegrable sys-
tems, both in classical and quantum mechanics. Fur-
thermore, they have shown that the quantum counter-
parts of these systems can be described by symmetry
algebras isomorphic to su(N) and so(N+1), respectively.
Additional examples of superintegrable classical systems
are the Fokas-Lagerstrom potential [7], the Smorodinsky-
Winternitz potential [8—11], the Holt potential [12], and
the Hartmann potentials [13—16). The problem of quan-
tum integrability and its connection to classical integra-
bility is currently under active investigation [17—20].

In several of the above mentioned cases (see [5, 6], for
example) the property of the classical and quantum su-
perintegrability of a physical system coincides with the
existence of a symmetry algebra of the system. The
energy levels of the system can then be determined by
purely algebraic means. However, the identification of
a symmetry algebra is not always easy. Furthermore,
in some cases (see [16], for example) it seems that the
usual Lie algebras do not su%ce for this purpose. The
recent introduction of quantum algebras [21—24] (also
called quantum groups) opens new possibilities in this
direction. Quantum algebras are nonlinear deformations
of the usual Lie algebras, to which they reduce when
the deformation parameter q goes to 1. They were initi-
ated as a mathematical tool issued from the study of
the quantum inverse problem, the Yang Baxter equa-
tion, and conformal field theories (see [25] for a collec-
tion of original papers). There are already some indi-
cations that quantum algebras might be useful as sym-
metry algebras of certain superintegrable systems. The
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Higgs algebra (i.e., the syxnmetry algebra of the Kepler
problem in a two-dimensional space with constant cur-
vature studied in [5]) can be approximated to second or-
der by the quantum algebra suv(2) [26]. The symmetry
algebra of the Hartmann potential, for which usual Lie
algebras seemed insufficient [16], has been identified as
the quadratic Hahn algebra qh(3) [27]. The quadratic
Hahn algebra qh(3) has also been found to describe the
symxnetry of the anisotropic singular oscillator [a three-
dimensional harmonic oscillator with an additional term

1/(r2 sin 8) [28]). The quadratic Hahn algebra qh(3)
is a special case of the general quadratic Askey-Wilson
algebra qaw(3), which is the dynamical symxnetry of the
potentials having eigenfunctions described by classical
polynomials [29]. Letourneau and Vinet [30] have con-
structed the quadratic algebra describing the case of a
harmonic oscillator potential with a two to one frequency
ratio. Another example of a system described by a non-
linear algebra is the generalized Kepler (Coulomb) sys-
tem [31]. From these exaxnples it becomes clear that
nonlinear algebras can be useful in the description of in-
tegrable and superintegrable systems.

In this paper we focus attention on the simplest su-
perintegrable systems, the two-dimensional ones, and we
propose a method of determining their dynamical sym-
metries and calculating their spectra by purely algebraic
means. It turns out that several quantum superintegrable
systems in two dimensions can be described in terms of
appropriate generalized deformed oscillators, which allow
for the direct determination of the energy levels and their
degeneracies without any need of solving the Schrodinger
equation. A preliminary study of the proposed method
can be found in Ref. [32], where the method has been
used in two cases of potentials, the syxxnnetric harmonic
oscillator in a curved space and the asyxxxxnetric oscilla-
tor with a two to one frequency ratio. In this paper we
study most of the known two dimensional superintegrable
cases.

It is known that the classical (nondeformed) algebras
can be constructed using the harmonic oscillator alge-
bra (a, a+, N) as the basic underlying structure. For
quantum algebras, and nonlinear algebras in general, de-
formed oscillators have to be used. Biedenharn [33],
Macfarlane [34], and Sun and Fu [35] constructed the
q-deformed oscillator appropriate for the Schwinger re-
alization of the quantum algebra suv(2). Many other
deformed oscillators can be found in the literature. We
mention the Q oscillator introduced by Arik and Coon
[36] and Kuryshkin [37], the two-parameter deformed os-
cillator [38,39], the parafermionic oscillator [40] and its q
deformation [41, 42], the parabosonic oscillator [40] and
its q deformation [41,42], and the generalized q-deformed
fermionic algebra [43]. (The q-deformed fermionic alge-
bra [44] has been proved to be equivalent to the usual
fermionic algebra [45].) The coxnxnon feature of all these
deformations is their structural similarity. In all cases an
appropriate Fock basis can be constructed, leading to a
matrix representation of the algebra.

The structural similarity of the various deformed os-
cillators implies that all of them can be described in a
imified framework. Among the various alternatives we

mention here the generalized deformed oscillator [46],
the Odaka-Kishi-Kamefuchi unification scheme [42], the
pioneering work of Jannussis et aL on the bosoniza-
tion method [47] and the generalized Q-deforxned oscil-
lator [48], the Beckers-Debergh unification scheme [49],
and the Fibonacci oscillator scheme [50], while a general
treatment of qualgebras is given recently by Fairlie and
Nuyts [51].

Among the various equivalent descriptions of the de-
formed oscillators, in this paper we use the deformed os-
cillator algebra [46], already used for the study of the
energy spectra of one-dimensional systems [52—54].

In Sec. II of the present paper we consider the classical
superintegrable systems in two dimensions, for which we
show that the relevant Poisson bracket induced algebra
has a structure similar to the deformed oscillator alge-
bra. In Sec. III a working hypothesis for the quantum
superintegrable systems in two dimensions is proposed,
which leads to the calculation of the energy eigenvalues
and their degeneracies by purely algebraic means. This
hypothesis is applied to several quantum superintegrable
examples in Sec. IV, while Sec. V contains discussion of
the present results and plans for further work.

II. CLASSICAL SUPERINTEGRABLE SYSTEMS
IN TWO DIMENSIONS

Consider a classical system with two degrees of free-
dom, described by the Hamiltonian

H = H(x, y, p„pv).

L = L(H, I, C) and A = A(H, I, C)

such that

(L, A)pn ——B, (L, B)pB ———A.

After a calculation we can prove that

(3)

If the system is superintegrable there are two indepen-
dent additional integrals of motion I and C, such that

(H, I)pxx ——(H, C)pn ——0 and (I, C)pxx
——F(H, I, C),

(2)

where (, )PB denotes the Poisson bracket and F
F(H, I, C) is a constant of motion which depends on the
three independent constants of motion H, I, C. A su-
perintegrable system in two dimensions is necessarily a
maximally superintegrable system, which means that all
finite and closed classical trajectories are periodic. In-
tegrable and superintegrable systems in two dimensions
have been reviewed in [2], while in [3] a systematic study
is given of superintegrable systems in three dimensions
which possess invariants that are quadratic polynomials
of the canonical momenta.

Maximally superintegrable systems possess, by de6ni-
tion, the maximum number of independent classical in-
variants. Therefore any other integral can be expressed
as a function of the basic integrals 0, I, C. As a result
we can in general choose two new integrals of motion:



3702 DENNIS BONATSOS, C. DASKALOYANNIS, AND K. KOKKOTAS

B +A =G(H, L),

where G(H, L) is some function depending only on the
integrals of motion H, L, and

(A, B)pB ——4(H, L) = —— (4)

The structure of the algebra defined by Eqs. (3) and
(4) has many similarities to the algebraic structure of the
deformed oscillator given in Refs. [46, 52, 53], where L is
some kind of number operator, while A, B are like the
creation and annihilation operators. The deformed os-
cillator algebra is a non-Abelian algebra. Therefore it is
quite natural to attempt studying the quantum superin-
tegrable systems by applying some similar procedure in
order to calculate their quantum properties (eigenvalues
and eigenvectors), since the corresponding properties of
the deformed oscillators have already been studied.

III. QUANTUM SUPERINTEGRABLE SYSTEMS
IN TWO DIMENSIONS

If the system is integrable, then there is a second au-
toadjoint operator I conirnuting with the Hamiltonian
and having a range dense in 'R,

[H, I] = 0, (5)

the operators H and I being linearly independent. The
cornmutativity of these operators implies that there is a
family of common eigenvectors for both operators. Let us
label the conunon eigenvectors of these operators using
their corresponding eigenvalues, thus obtaining a family
of vectors in the Hilbert space 'R. Let us further sup-
pose that this family spans the whole Hilbert space and
that there is no simultaneous degeneracy for both labels
of the common eigenfunctions (i.e., there could be de-
generacy in each label separately, but not in both labels
simultaneously). This assumption defines some kind of
compLeteness of the system of the two quantum integrals
H, I in involution. The present assumption is also con-
sistent with the fact that the ranges of the operators H
and I are supposed to be dense in the ambient Hilbert
space 'H.

The question of integrability in quantum mechanics is
under investigation. Many authors [1?—20] have inves-
tigated several aspects of the extension of integrability
&om classical to quantum mechanics. We should recall
at this point that each quantum system with discrete en-

ergy spectrum can be considered as a quantum integrable
system [17].

In this paper we consider a two-dimensional quantum
system described by a Hamiltonian H acting on a Hilbert
space 'R. The Hamiltonian is an autoadjoint operator
with range dense in the space 'R. All the operators de-
6ned in this section are supposed to be generated by
nonlinear combinations of the basic algebra of generators
z, p, y, p„satisfying the usual commutation relations:

[z,p ] = [y, p„] = i, (other commutators) = 0.

Weigert [17] has proved that there is another quantum
integral I' possessing the same properties as I. This is
permissible in quantum mechanics but not in classical
mechanics. In this sense the choice of complete operators
H, I' instead of H, I means a difFerent way of labeling of
the base spanning the Hilbert space. Here we shall treat
the part of the Hilbert space corresponding to a discrete
spectrum. In some cases the whole of the Hilbert space
can be described by a discrete basis (as in the case of the
harmonic oscillator), while in other cases [as in the case
of the Coulomb (Kepler) potential] a part of the Hilbert
space is described by a discrete basis (the space of energy
eigenvectors with negative energy eigenvalues).

The system is called superintegrabLe, by analogy to the
classical definitions, if there is a third operator C, lin-
early independent from H and I, with range dense in the
Hilbert space and commuting with H but not commuting
with I

[H, CJ = 0, [I, C] P 0.

In this paper we propose the following working hypoth-
esis.

Hypothesis: Let us consider the superintegrable systems
for uthich we can construct an associative algebra:

N =X(H, I, C),
Iif'+ =-X,

A = A(H, I, C),
[A', A] = —A,
A+A=I (H, A),

[A+ A, AA+] = 0,

where 4(E, z) is a real positive function definite for z & 0
and

C(E, O) = 0.

Prom the above equations we can prove that

[JV, A+] = A+.
AA+ =4(H, A'+1).

If this construction is possible we can then de6ne the
Fock space for each energy eigenvalue:

H~E, n) = E~!E,n),
NiE, n) = niE, n), n = 0, 1.. . ,

A)E, O) =0,

!„!,[(A+)" IE 0)

where

[0]!=1, [n]! = e(E, n)[n —1]!.

In the case of the discrete energy eigenvalues, for every
energy eigenvalue E there is some degeneracy of dimen-
sion Ng + 1. Therefore the dimensionality of the Fock
space corresponding to that energy eigenfunction should
be equal to %& + 1. This is equivalent to the condition

4(E, Its+ 1) = 0.

As we shall see in the examples given in the following sec-
tion, the two conditions (7) and (8), and the positiveness
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of the structure function 4(E, z) suffice in order to de-
termine the energy spectrum of the quantum maximally
superintegrable systems.

There are only a few quantum two-dimensional super-
integrable systems known. All the examples studied in
this paper have a classical counterpart.

where the function C (E,z) is given by

4(E, z) = E —u) (2z+ 2u —1)

and we can see that

AA+ = O(H, JV+ 1).

(16)

IV. EXAMPLES
OF QUANTUM SUPERINTEGRABLE

TWO-DIMENSIONAL SYSTEMS

In this section we shall apply the hypothesis of the
preceding section in order to determine the energy spec-
trum of some quantum superintegrable two-dimensional
systems using purely algebraic methods.

A. Harmonic oscillator in a flat space

The two-dimensional symmetric harmonic oscillator in
Euclidean coordinates is described by the Hamiltonian

2 2 ~ 2 2
(p2 + p2) + ~2 (x2 + y2) (9)

The following Fradkin operators [55] can be defined:

B = S, —S„„=(p'+ p~'z') —(y„'+(u'y'),
(10)

2
S~y = p~Iixi+ Ld zy.

The operator B in (10) is the quantum mechanical
analogue of a third constant of motion in the sense of
classical Hamiltonian mechanics [2], the second one being
the angular-momentum operator:

The existence of a 6nite-dimensional representation of
the oscillator algebra is equivalent to the existence of a
maximum number N + 1 which is a root of the structure
function, with N being the dimensionality of the algebra
representation, coinciding with the dimensionality of the
appropriate Fock space. This restriction, combined with
the annihilation of the structure function for x = 0, is
written as

C'(E, O) = 0,
4(E, N+ 1) = 0,

O(E, x) ) 0 for z = 1, 2, . . . , N.
(17)

L = —N, —N+2, . . . , N —2, N. (19)

Solving this system of two equations with two unknowns,
E and u, one obtains the eigenvalues of the harmonic
oscillator in a fiat space:

N
u = ——, E = Exv = pi(N + 1).2'

The angular-momentum values allowed for each energy
level can then be determined by inserting the value of
the constant u just obtained into the first of Eq. (14),
the result being

L = +sy —uS*

since
The structure function of the deformed oscillator is cal-
culated to be

[H, L] = [H, B] = 0,

while the operators B,L do not cornrnute, but they form
a closed algebra with the operator S „:

[L, B] = 4iS „, [L,S y] = iB. —

The above relations suggest the possibility of express-
ing the two-dimensional harmonic oscillator algebra by
using the deformed oscillator formulation:

A = ——ul,
L
2

4(EN, z) = 4pi x(N+ 1 —z).

Clearly the above energy (18) and angular-momentum
spectra (19) are the same as the ones obtained by clas-
sical means, i.e., by solving the appropriate Schrodinger
equation, or by using the su(2) symmetry. The existence
of a finite-dimensional algebra representation should be
attributed to the existence of stable periodical trajecto-
ries in the corresponding classical case.

The connection to the usual su(2) syxxxxnetry becomes
clear by observing that the operators

A+ = —+iS.„,2

A= ——iS „,
B
2

where u is a constant to be determined and

[JV, A+] =A+,
[N, A] =-A,
A+A = H' —~'(L —1)'

= H' —~' (2JV + 2u —1)'
= 4'(H, N),

(14)
A+

1+ ——

24)
J

24&i

L
Jp ——lV+ ul =—

2

satisfy the usual su(2) coxxxxnutation relations

[Jp, J~] = 6J~, [J~,J ] = 2Jp,

the Casimir operator being

A+A L (LJ = J+J + Jp(Jp —1) = + —
i

——1 i.
4ld 2 g2
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B. Harmonic oscillator in a space
with constant curvature

Higgs [5] has studied the symmetries of a harmonic
oscillator in a non8at space, a space with constant cur-
vature in particular. A typical example of such a space
is the surface of the sphere in a three-dimensional space.

The curved space is geometrically described by the
metric:

H = —(7r2+ z2+ AL'j + —(z'+ y'), (20)

where the angular-momentum operator L is given by Eq.
(11) and

~. = p. + -", [z (xp. + yp„) + (zp. + yp„) z],

, =J, +-', [y( p*+yp, )+(*p*+yp )y]
(21)

By analogy to the harmonic oscillator in a flat space,
Higgs [5] has defined the Fradkin-like operators:

B = $' —Syy ——(n + (u z') —(7r„'+ ~'y'), (22)

S „=—(ir, vr„) + u zy, (23)

which are symmetrized versions of Eq. (10).
The coniinutators of H with L and B are given in

Eq. (12), while the operators B,L do not cominute and
their commutator is the same as in Eq. (13), where the
coordinates of the momentum p should be replaced by
the coordinates of the extended momentum n, defined by
Eq. (21) and already used in the symmetrized Fradkin
operators given above.

The operators H, L, B,S „define again a closed non-
linear algebra as in the flat harmonic oscillator case.
Therefore we have another example of a superintegrable
system in a nonflat space.

In the present case we can also define the corresponding
deformed oscillator as in Eq. (14). The deformed algebra
is then completely defined by the structure function:

A2

+(E,z) = &' —
~

~'+ + &E
~

(»+ 2u —1)'
4 )

ds
dz' + dy' + A(zdy —ydz)'

[1+A (z'+ y2)]'

the flat space corresponding to A = 0. The harmonic os-
cillator in this space is defined in Ref. [5] by the Hamil-
tonian

Following the same methodology as in the case of the
harmonic oscillator in a Rat space, we can generate the
corresponding Fock space for the curved harmonic os-
cillator. By assuming then the existence of a finitc-
dimensional deformed algebra representation the restric-
tions corresponding to Eq. (17) are valid. These equa-
tions determine the energy eigenvalues:

A2~'+ —(X+ 1) + —(X+ 1)',
2

while the constant u turns out to have the same values
as in Eq. (18). The angular-momentum eigenvalues are
again given by Eq. (19).

Another interesting point arises from the comparison
between the structure function (16) in a flat space and
Eq. (24) in a curved space: The geometry of the space
afFects the algebra characterizing the harmonic oscillator.
For A = 0 Eq. (24) reduces to Eq. (16), as it should.

Finally, the structure function can be written as

C (E/v, x) = 4z(1V + 1 —z) A(X + 1 —x)

+/~'+ A'/4 (AT + /~'+ A'/4) .

The symmetries of the harmonic oscillator in a curved
space have been studied in Ref. [56] using the notion of
the quadratic Racah algebras qr(3).

C. The Kepler problem in a curved space

The case of the Kepler problem in a space with con-
stant curvature has been studied by Higgs [5]. The
Hamiltonian is given by

H = —(ir'+ vr„'+ AL') ——, r = Qz'+ y', (26)

where the angular-momentum operator L is given by Eq.
(11) and the ir, ir„are defined in Eq. (21).

The Runge-Lenz vectors in the curved space can be
defined by

R = ——(L, ir„)+y,—, Ry ———(L, ~ j+ p —. (27)

This system is a quantum superintegrable system in a
curved space because

[H, L] =O, [H, R.] =O,

and the operators I., 8, R„ form a closed algebra:

[L R ] iRy IIL Ry]: iR

+—(2x + 2u —1)
A~ 4

(24) Using the same hypothesis as previously we can define
the deformed oscillator algebra:

A'= L —u,
A+ =R +iRy,

A= R —iRy,

A+A = p + 2H (L —1/2) —A (L —1/2) [(L —1/2) —1/4]

= p,
' + 2H (JV+ u —1/2)

' —A (A'+ u —1/2)
' [(JV+ u —1/2)' —1/4]

= e(H, W).



50 DEFORMED OSCILLATOR ALGEBRAS FOR TWO-DIMENSIONAL. . . 3705

Zhedanov [26] has proven that the nonlinear algebra of
Eq. (28) can be approximated to second order by the
su~(2) algebra [33, 34).

The synnnetries of the Kepler potential in a curved
space have been studied in Ref. [57] using the notion of
the quadratic Racah algebras qr(3).

D. Fokas-Lagerstrom potential

In classical mechanics the superintegrable system de-
scribed by the Hamiltonian

H=-(p. +p )+ —+—1 2 2 x y
2 * " 2 18

has been studied by Fokas and Lagerstrom [7]. This sys-
tem has two additional classical invariants of motion,

J=p +2: and C = (zp„—yp )p„'+

(31)

the second of which (C) is a cubic function of the coor-
dinates. The quantum version of the Hamiltonian (30)
corresponds to a quantum superintegrable system with
two additional integrals:

J=p +x,

The structure function in this case is defined by

4(E, x) = p' + 2E (x + u —1/2)'
—A (x+ u —1/2)' [(z+ u —1/2)' —1/4].

The solution of Eqs. (17) is given by

N E 2P ~N(N + 2)
(29)

2
' (N+1)' 8

The permitted eigenvalues of the angular-momentum op-
erator L are given by

N N N NL= ————+1 . . . ——1 —.2' 2
'' '2 '2'

This means that the symmetries of the Kepler problem
are compatible with the existence of angular momenta
equal to 0, 1/2, 1, 3/2, . . . . In physical situations, how-
ever, only integer angular momenta appear, which means
that N = 2n In t.his case the spectrum given by Eq. (29)
is the same as that obtained by Higgs [5]. In the case of
zero curvature, i.e., A = 0, we obtain the usual Coulomb
energy spectrum.

The structure function corresponding to the Kepler
problem is given by

4p2
4(E~, z) = z(N+ 1 —z)

( +

+A
(N + 1 —2z)')

the quantum integral B is the syrrUnetrized version of the
classical integral C. From the above definitions we can
verify that

[H, J] = 0, [H, B] = 0,

[J,B] = R, [J,R] = 4B,

and

[R, B] = 8J —36J H + 48JH —16H + —J — H—,

B —4B =4J —24J H+48J H —32JH
200 2 616 ~ 20

From the above closed algebra we can define

A/'= J/2 —u, A+ = B+R/2, A= B —R/2,

where u is a constant to be determined. These operators
correspond to a deformed oscillator algebra:

A', A+ =A+, [X,A] =-A,
A+A=-(J-1)(2H- J+1)+ 1

9
x(6H —3J+1)(6H —3J+ 5)
1= —(2A —1+ 2u) (2H —2u+ 1 —2JV) (32)9
x (6H —6u+ 1 —6JV)(6H —6u+ 5 —6JV)

= e(H, N'),
AA+ =4(H, JV+1).

The corresponding structure function is defined by

1
C(E, z) = —(2z —1+2u)(2E —2u+ 1 —2z)

9

x (6E —6u + 1 —6z) (6E —6u + 5 —6z) .

The existence of a finite representation of the alge-
bra for each energy eigenvalue implies that the structure
function satisfies Eq. (17) and it is a positive function.
Therefore we can find the possible energy eigenvalues
having degeneracy equal to N + 1.

Case (i):

u = 1/2 and E~ = N+1,

corresponding to the structure function

C(Eiv, z) = 16z(N+1 —x)
i

N+ ——z
i i

N+ ——z i.
2 l ( 4

) E )
Case (ii):

where (, }is the usual anticommutator. It is clear that

u = 1/2 and E~ = N+2/3,

corresponding to the structure function
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@'(E~ *) =16z(N+1 —z)
~

N+ ——z
~

N+ ——* ~-
( 2 't(

Case (iii):

u = lj2 and E~ = N+4j3,

corresponding to the structure function

4(E~, z) = 16z(N+1 —z)
l

N+ ——z
i

x]N+- —z/( 4

)
In all cases the degeneracy is determined by J = 2(A +

u). Since A( obtains the N + 1 values 0, 1, . . . , N, as a
result J also obtains N + 1 values.

The Hamiltonian (30) corresponds to the linear combi-
nation of two harmonic oscillators which have the above
described energy spectrum. This case has a special sig-
nificance, since it is an example of a superintegrable po-
tential which is not a separable one in two different coor-
dinate systems. The proposed method does not depend
on the separability of the variables in two systems.

2

~ = x' py + g p —2xgp~py + 2c-x''
the second of which (C) is a quartic function of the co-
ordinates. Evans [11] has proved that the Winternitz-
Smorodinsky potential in N dimensions is an example of
a superintegrable system. The quantum version of the
Hamiltonian (33) corresponds to a quantum superinte-
grable system with two additional integrals:

T =p„+2ky,

B=z p„+y p —(zy, p p„)+2c—.g

It is clear that the quantum integral B is the syinmetrized
version of the classical integral C. From the above defi-
nitions we can verify that

[H, T] =0, [H, B] =0,
and

[T, B] = R, [T, R] = 32kB+ 8T —16HT —16k,

[R, B] = 16BT —16BH + 32(c —1)T + 8R + 32H,

E. Smorodinsky-Winternitr, potential

The classical superintegrable Smorodinsky-Winternitz
system [8—11] corresponds to the Hamiltonian

R = 32kB + 224kB + 32(c —1)T + 64HT + 16RT
16RH ——48H + 16BT —32BTH + 192k(c —1).

From the above closed nonlinear algebra we can de6ne

H = —(p'. + p„') + k (z' + y') + —,. A+ = 4kB+ -", R+ T' —2HT —2k,

A = 4kB — "R+T2 —2-HT —2k,

This system has two additional classical invariants of mo-
tion,

where u is a constant to be determined. These operators
correspond to a deformed oscillator algebra:

A' =A', [A', A] =-A,

A+A= 24H2 k+ 3 x 2~ Hk~ +36kz —96ck2 —2~ H2 +kT —88H kT —3 x 2~ k ~ T+ 2 ~ ck~ T+4H2T2
+3 x 2 H +k T2 + 44 k T2 —16c k T2 —4 H Ts —2 jk Ts + T4

= C(H, N),

AA+ = C (H, A'+ 1).
The corresponding structure function can be factorized

tion satisfies Eq. (17). The positiveness of the structure
function for every 0 ( x & N implies

~(E, z)=1o24k' *—
~

u+-
~

*—
~

u+-( 31 (

1 E gl+ Sc)
x z —iu+ —+ +

8k 4 )
( 1 E pl+ Sc)

x z —~u+ —+
Sk

The existence of a finite representation of the algebra for
each energy eigenvalue implies that the structure func-

while the energy eigenvalues are given by

E~ = ~S~
I

N+ -+5 gl+ Sc)

with —
8 & c. The structure function is given by
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4(E~,x) = 1024k z
!

z + — (N + 1 —z)
)

1+8cx! N+1+
If the following restriction is valid:

1 3——&c& —
)8 8'

the following energy eigenvalues are also permitted:

E =~8k N+ ——~ ~ N=12, . . .

corresponding to the structure function

4'(E~, z) = 1024k z
!

z + — (N + 1 —z)
)

[T, B] = R, [T, R] = 32B,

[R,B] = —96 + 256b —64H + 128HT —48T,

R —32B = 1024H —704T + 512bT —128TH
+128T20 —32T3.

(36) From the above closed nonlinear algebra we can define

JV= —u A+ = 8B+ y2R, A= 8B —+2R,
T

~32

where u is a constant to be determined. These operators
correspond to a deformed oscillator algebra:

N, &+ =a+, pv, x]=-x,

r gl+ 8c

It is worth noticing that in the case of solving the prob-
lem using the Schrodinger equation, the restriction (36)
is introduced by the assumption that the eigenfunctions
should be square integrable functions on the plane (z, y).
In the Schrodinger equation solution the additional re-
striction of finiteness of the potential energy restricts the
choice of c to positive values only.

F. The Holt potential

2+4=2 (T —2v2 H ——+@2+

r T
x H ——++2—

= e(H, A'),

1+8b)

~+ = C(H, X+ 1).
The corresponding structure function is defined by

(39)

The classical superintegrable Holt [12] system corre-
sponds to the Hamiltonian

1
H = —(p.'+ p„'j + (z'+ 4y') + —,. (37)

This potential is a generalization of the harmonic oscilla-
tor potential with a ratio of &equencies 2:1. This system
has two additional classical invariants of motion,

T =Py+8y
B = p'.p +4(*y p*) —2*'p + —."p,.

It is clear that the quantum integral B is the symmetrized
version of the classical integral C. From the above de6-
nitions we can verify that

[H, T] = 0, [H, B] = 0,

T = p„+8y and C = p p„+8zyp, —2z p„+ —p»

(38)

the second of them (C) being a cubic function of the
momenta. The quantum version of the Hamiltonian (37)
corresponds to a quantum superintegrable system with
two additional integrals:

2S 1
C (E, z) = 2 ~ (z+ u) ——

x! —(z+ u) + —+r E 1 Il+8bl
2 4 )

x! —(z+ u) + ——r E 1 gl+ 8bq

8

The existence of a finite representation of the algebra for
each energy eigenvalue implies that the structure func-
tion satisfies Eq. (17). Therefore we can find the possible
energy eigenvalues having degeneracy equal to N + 1:

u = — and Erv = Q8! N+1+=1 gl+ 8by
!2 4 )

'

where (1+8b) ) 0. The corresponding structure function
ls

4'(E~, z) = 2 & z(N + 1 —z)
!

N + 1 —z +
2S rQl + 8b)

!

l 2 )
(40)

In the special case where —
s ( b ( s there are energy

eigenvalues given by:

u = — and E~ ——+8!N+1—1 r Ql+ 8b)
!2 4 )

'

and the structure function is

4(Eiv, z) = 2 & z(N + 1 —z) N + 1 —z—QS rgl+ 8by

(41)
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which is positive for 0 & x & N if —
8 & b & 8.

In the case of b = 0 the Hamiltonian of Eq. (37) corre-
sponds to the Hamiltonian of an anisotropic harmonic
oscillator with ratio of frequencies 1/2. This system,
studied in Ref. [58], is separable in parabolic coordi-
nates. The system is described by two deformed oscilla-
tors, with structure functions obtained by setting b = 0
in Eqs. (40) and (41). The corresponding energy eigen-
values with degeneracy %+ 1 are given by

@iv=+~++
(

@iv=&l~+
4)

'

( 4)
This case should be compared with the case 1/3 (Fokas-
Lagerstrom potential), where three energy eigenvalues
correspond to degeneracy equal to N + 1. The general
problem of finding the symmetry algebra of the harmonic
oscillator with rational ratio of &equencies equal to m/n
is a difficult problem, implicitly posed by 3auch and Hill

[59] already in 1940, in a paper where the general form of
the integrals in both the classical and quantum mechan-
ical cases has been given.

The quantum Holt potential has also been studied re-
cently by using quadratic algebras by I etourneau and
Vinet [30].

V. DISCUSSION

In this paper, starting &om classical superintegrable
systems, we have shown that the corresponding quan-
tum systems are superintegrable ones, the quantum in-
tegrals (quantum constants of motion) being obtained
6.om the classical ones using a symmetrization proce-
dure. Furthermore, the quantum superintegrable sys-
tems can be described in terms of a deformed oscillator
algebra. The operators of the deformed oscillator alge-
bra are constructed &om the quantum integrals. The de-
formed oscillator algebra is characterized by a structure
function C (E, N), which takes a specific form for each su-
perintegrable system. The eigenvalues of the energy and
their degeneracies are determined in an economical way
directly &om equations satisfied by the structure func-
tion, the results being in agreement with these coming
&om the independent solution of the relevant Schrodinger
equation.

A few comments and some open problems are now in
place.

(i) In all of the examples considered in this paper,
quantum superintegrability is induced. by classical super-
integrability, the quantum integrals of motion being sym-
metrized versions of the corresponding classical integrals.
The extent to which classical superintegrability implies
in general quantum superintegrability as well has to be
tested.

(ii) In all of the examples considered in this paper,
quantum superintegrability manifests itself in the degen-
eracy of the energy levels, a fact already noticed [4, 59].

(iii) The hypothesis that to each superintegrable sys-
tem corresponds a deformed oscillator algebra, i.e.,

(superintegrability) ~ (deformed oscillator algebra)

is an exact proposition in the classical case, as shown in
Sec. II. In the quantum case, however, a general formal
proof is still lacking. In Sec. III a working hypothesis
was made, which was proved successful in. the examples
considered in Sec. IV.

(iv) The list of two-dimensional quantum superinte-
grable systems given in this paper is not exhaustive.
There are classical superintegrable systems for which the
quantum superintegrability has to be proven, such as, for
example, the Calogero system [[2], Eq. (3.5.9)], which
possesses a sixth order invariant. Furthermore, there are
two-dimensional systems for which the quantum super-
integrability has been shown, but the determination of
the corresponding deformed oscillator algebra requires
heavy computation, such as, for example, the Winternitz-
Smorodinsky potential of Ref. [9], given also in [2], Eq.
(3.2.36).

(v) The extension of the present method to three-
dimensional quantum superintegrable systems is under
investigation. It should be mentioned that classical su-
perintegrable systems in three dimensions having invari-
ants which are quadratic polynomials in the canonical
momenta have been recently studied in [11].

(vi) Another interesting point is the semiclassi-
cal study of two-dimensional superintegrable systems.
The algebra characterizing the two-dimensional classi-
cal superintegrable systems, studied in Sec. II, ran
be quantized by using the correspondence (Poisson
bracket)-+(commutator). Through this procedure, &om
the classical algebra a quantum deformed algebra is ob-
tained, which is the semiclassical counterpart of the ex-
act quantum oscillator algebra considered in this paper,
t, hese two algebras being slightly different.

(vii) The example of the Fokas-Lagerstrom potential,
which is the oscillator with ratio of &equencies 1:3,
shows that quantum superintegrability implies a dynam-
ical symmetry. This example was examined using alge-
braic methods for the first time. All the other examples
have already been studied by other authors, as it has
been indicated in the text. The difFerence of the proposed
treatment is that we do not use the separability in two
coordinate systems in order to calculate the dynamical
symmetries. The set of two-dimensional systems separa-
ble in two difFerent coordinate systems is a subset of the
class of the superintegrable systems iri two dimensions.
The study of other superintegrable systems nonsepara-
ble in more than one coordinate system seems to be very
interesting. A class of such systems already known con-
sists of the oscillators with rational ratio of &equencies.
The general problem of finding the symmetry algebra
descibing the anisotropic oscillator wit, h rational ratio of
&equencies is an important problem implicitly posed by
Jauch and Hill [59] already in 1940, in a paper where
the integrals in both the classical and quantum cases are
given. The method of the present paper is based on the
assumption that the symmetry algebra is constructed by
applying a symmetrization procedure to the classical in-
tegrals. In the general case described by Jauch and Hill

[59], both the classical and quantum integrals are known,
but they lead to complicated algebraic structures. The
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construction of the symmetry algebra in the general case
is an open problem already receiving attention.

(viii) Many of these examples [30, 56, 57] have been
studied by using cases of quadratic Askey-Wilson alge-
bras qaw(3) [29]. An open problem is if the general
quadratic Askey-Wilson algebra can be expressed by a
deformed oscillator. One can also notice that the alge-
bra of the Fokas-Lagerstrom problem is a cubic algebra,

while all the other examples in this paper correspond to
quadratic algebras.
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