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We show that various experimental configurations using correlated photon-number states are
predicted to violate many forms of Bell's inequality. This test is potentially one of macroscopic
quantum mechanics in that violations are predicted for situations where large numbers of photons
are detected at a single detector at a time. The configurations also allow higher-spin tests of
quantum mechanics. We indicate how the violations of Bell inequalities might be achieved with
both parametric amplification and parametric oscillation. The effect of photodetection inefficiencies
is analyzed. In order to investigate the potential for Bell-inequality tests in the high-intensity regime
of recent experiments where detection eKciencies may be very high, we introduce a simple model
for the effect of electronic noise that introduces a poor resolution of the photon number detected.

PACS number(s): 03.65.Bz

I. INTRODUCTION

Bell's theorem [1,2] provides a way of testing the pre-
dictions of quantum mechanics against those of classi-
cal (local realistic) theories [3]. For certain experiments
quantum mechanics allows a violation of Bell inequali-
ties predicted from the assumptions of local realism. To
date experiments have shown a violation of the classical
Bell inequalities in support of quantum mechanics [4]. A
number of the recent experiments use parametric down-
conversion to generate a correlated photon pair [5] which
exhibits this extreme quantum behavior [6—9]. In these
experiments, the photons of each pair are individually
incident on one of two spatially separated "analyzers"
(polarizers or beam splitters or an alternative measur-
ing apparatus). There are thus (assuming each particle
is detected) two possible outcomes at each analyzer, in
analogy with the original spin-2 formulation of the Bell
inequality tests.

In this paper we focus attention on the use of corre-
lated photon-number states produced through paramet-
ric down-conversion to test quantum mechanics in sit-
uations where more than one photon is simultaneously
incident on each analyzer [10—12]. There is thus an equiv-
alence to a higher-spin test of quantum mechanics. Our
calculations are models for extensions of the experiments
of Shih and Alley [6], Ou and Mandel [7], and Rarity
and Tapster [8). Various Bell inequality tests of quantum
theory for higher-spin states have been formulated previ-
ously [13—15], but have not been realized experimentally
to date. In this paper we consider previous and alterna-
tive formulations as applied to correlated number states,
comparing the quantum prediction for the degree of de-
parture &om classical predictions in each case. In the 6rst
instance we use a simple model interaction Hamiltonian
to describe the basic quantum nature of the correlated
photon states generated by down-conversion. The effect

of detection inefBciencies is included. We then present a
more complete calculation of the field generated using an
optical parametric oscillator, where the down-conversion
takes place inside an optical cavity. We consider this situ-
ation in some detail since the use of a cavity configuration
may enable enhancement of the conversion efficiency for
signal and idler photons of a particular mode. Finally we
consider the situation where we can have high photode-
tection efficiencies, but a poorer resolution of the photon
number due to electronic noise. This result is part of
a preliminary investigation applicable to the recent ex-
periment of Smithey et al. [16], where quantum photon-
number correlations are measured between two macro-
scopic pulses produced by parametric down-conversion.
Here the use of photodiodes implies a high detection efB-
ciency. This regime is of particular interest since a strong
test of Bell's inequality not limited by auxiliary assump-
tions [17] might be possible. However, the new limitation
provided by electronic noise which will limit the resolu-
tion of photon number detected must be considered.

We point out that the multiparticle tests described
here are different from those proposed recently by Green-
berger et al. [18,19]. In their case the particles are spa-
tially separated so that there is still only one particle inci-
dent on each analyzer. An extension of the Greenberger-
Horne-Zeilinger result as applied to situations of more
than one photon per analyzer has been considered by us
[20].

II. CLASSICAL BELL INEQUALITIES
APPLYING TO THE EXPERIMENTAL

CONFIGURATIONS

Figures 1 and 2 depict schematically experimental con-
6gurations which might be used to test for violations of
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Detector

FIG. 1. Schematic diagram of the transformations involved
in the experimental arrangement to test Bell's inequalities
using polarizers —beam splitters.

c+ ——a+ cos8+ a sin8,
c = —a+ sin8+ a cos0,
d+ ——b+ cosP+ b sin(b,

d = b+ sing—+ b cosP.
(2.1)

We also consider the alternative configuration (Fig. 2)
where phase shifts and beam splitters generate the mix-
ing of the input beams:

a++ i exp [i8] a

ia+ + exp [i8] a

6++i exp [iP] b

v2
ib+ + exp [iP] b

(2.2)

The experiments of Rarity and Tapster [8] obtained viola-
tions of Bell s inequalities using such phase shifts. Trans-
formations of this type were suggested by Horne et al. [22]
and also considered by Reid and Walls [21]. The transfor-
mation brought about by the analyzer apparatus at each
of the spatially separated locations C and D is followed

Bell inequalities. In each case there are four input 6elds,
which we will denote simply by a+, a and b+, b, as in-
dicated in Figs. 1 and 2. Figure 1 is the arrangement
which most closely resembles that considered by Clauser
and Shimony [2] and Aspect et al. [4]. The inputs un-
dergo the following transformations, which are realized
by polarizers, although they could also be obtained by
beam splitters if a+, a are spatially separated inputs.
This second interferometric arrangement was considered
by Reid and Walls [21]:

by detection. One thus performs a measurement at each
of the spatially separated locations, 8 and P indicating
the choices made by the experimenter.

It is necessary to summarize the classical prediction for
the results of the possible experiments depicted in Figs. 1
and 2. This is done by presenting various forms of Bell' s
inequalities adapted for the configurations. Of interest
to us is the situation where X quanta are incident on the
analyzers at both C and D. We denote the number of
quanta detected at C+ by nq and the number of quanta
detected at D+ by n2. In fact the result is dependent on
the angle choices 8 and (b and we will sometimes write
ni(8) and n2((b) to indicate this. The possible values of
nq and nq range in integer steps &om 0 to X. In the
absence of loss, one has X —ni and N —n2 photons at
C and D, respectively. The measured quantities are
the photon numbers c+c+ and d~d+. Introducing the
notation

ct c —ct cJ(1)(8) + +
2

J(i) (8) — + — +
x 2

ct c —ct cJ(1)(8)
+ — +

2i

a+a+ —a a

2

(~) a+a + a a+t t

2
ta+a —a a+

2i

(2.3)

one establishes the well-known Schwinger relation be-
tween the boson description and angular momentum op-
erators J,J„,J, . The transformation of the a+, a into
the c+, c given by (2.1) is equivalent to a rotation of
the angular momentum operators (J,J„,J,). The bo-
son system with N quanta incident at C and D is equiv-

alent to the z -spin system. We define J, (P), J ((()),
J( )(P), J( ), J( ), and J( ) to be the spin operators de-
Gned similarly in terms of the operators d+ and d and

b+ and b, so that, for example, J( )((b) = + +
2

The result of a measurement of J( )(8) and J, (P) at ("+
and D+ is given respectively by mi ——(2nr —K) /2 and
m2 ——(2n2 —N) /2. Again, we will sometimes write mi
as mi(8) and m2 as m2(P) to indicate the dependence of
the measurement on the analyzer angles.

One can determine experimentally the joint probability
P(mt, m2) for the results mi and mz. Mermin [13] has
predicted the following Bell inequality for experiments
where the set of possible outcomes for mq and m2 are
integers between —N/2 and K/2. The inequality he de-
rived from the classical premises of locality and realism
1S

FIG. 2. Schematic diagram of the transformations involved
in the experimental arrangement to test Bell's inequalities
using phase shifters and beam splitters.

Aiv ——(mi(8)m2((b')) + (mt((b)m2(4'))
X,

(8) ™,(y)l) & O. (2 4)
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More recently Braunstein and Caves [14] have de-
veloped a classical information-theoretic Bell inequality.
Following Braunstein and Caves, one defines the informa-

tion content of the measurements of J~ 1(8) and J~ 1(&P)

as I(mi, m2) = —lnP(mi, m2). The information ob-

tained upon measurement of J~ l(P) at D is

I(m2) = —ln P(m2),

Eiv (8)Eiv (i/)), (2.S)

where E~~(8) = P,. i E; and Eiv(i/)) = g i E . We
now define Eiv (8, P) to be the expected value of this prod-
uct. Thus

If N quanta are incident at each location C and D, one
defines the product

P(m;) being the probability of obtaining the result m;.
The information obtained when one measures the value

mi, given that one has already measured m2, is defined
as

N

EN (8$ y) = ) Pi, N i,j,N—j(8)—4') ( 1) (1)
i)j=O

(2.9)

I(mi/m2) = —ln P(mi/m2).

The average value for this conditional information is

H J, (8)/J, (P) = ) P(mi, m2)I(mi/mq). (2.5)
7A] )mQ

One abbreviates the notation as follows:
H J, (8)/ J, (P) = H(8, P). The Bell inequality de-

rived by Braunstein and Caves [14] is

H(8/&) & H(8/4') + H(4'/8') + H(8'/&) (2 6)

The approach taken by Drummond [10] is to consider
the joint probability P(mi ——N/2, m2 ——N/2) This ap.-

proach is particularly useful for optical experiments of
the type considered by Clauser et al. [2,17], where the
polarizers are single channeled and it is thus not possi-
ble to detect photons at the locations C and D . The
Bell inequality considered by Drummond is a modifica-
tion of that derived by Clauser and Horne and Clauser,
Horne, Shimony, and Holt (CHSH) [2,17]. Let us denote
P(N/2, N/2) as PN(8, P) to indicate specifically the an-
gular dependence of the measurements. We define more
generally P„(8,$) as the joint probability of detecting
n photons at C+ and n photons at D+ to allow for
situations where not all of the N photons incident on
each analyzer are detected. The generalization of the
Bell—Clauser-Horne-Shimony-Holt inequality is (we out-
line the derivation of this in Sec. VI of the paper)

P„(8,P) —P„(8, t)') + P„(8', t)) + P„(8',P')
P (8 —) + P (—~)

(2.7)

Here P„(8', —) and P„( , P) are the marg—inal probabili-
ties for detecting n photons at C+ and n photons at D+,
respectively. A violation of this inequality corresponds
to B„&1.

One may also consider "product" inequalities. In many
situations P~(8, P) is small and hence an experimenter
must perform many r»ns before obtaining sufhcient data.
It may be advantageous to hence examine the product
inequalities de6ned below where all the data contribute.
We assign a value to the variable E~ of +1 or —1 if the
ith quantum incident at C is at C+ or C, respectively.
The variable E~ is de6ned similarly at the location D.

where P; iv; ~ ~ z(8, $) is the probability of detecting
i, N —i, j, and N —j photons at C+, C, D+, and D
respectively. For situations where the ith quantum is not
detected (due to poor efficiency of detectors for example),
one may assign E, = 0 and generalize the expression
(2.9) accordingly. One may consider more general situ-
ations where we select to measure an E„(8,P), selecting
a total of n photons at both C and D, where n is not
necessarily equal to N, the number of photons incident
on the analyzers. The result for E~ is always bounded
by 1, and a direct application of Bell's 1971 proof leads
[1] to the following inequality (the derivation is outlined
in Sec. VI of this paper):

~- = IE- (8, 4) E- (8, 4')-+ E- (8', 0) + E- (8', 4')
I

(2.10)

In order to account for real experiments performed
where photon detection efficiencies are very poor and
not all of N quanta incident on each analyzer will be
detected, Clauser and Horne and CHSH derived modi-
fied inequalities for the N = 1 case, based on additional
auxiliary assumptions [1,2,17]. The inequalities derived
in our case are identical in form to the inequalities (2.7)
and (2.10) presented above, except that the probabilities
and expectation values are calculated over the subensem-
ble where n quanta are detected at both C and D. The
implication of the Clauser-Horne analysis for the inequal-
ity (2.7) is that the marginal probabilities are replaced by
joint probabilities. The P„(8,—) now becomes the joint
probability for detecting n quanta at C~ and n quanta
at D, with the analyzer at D removed. We will thus also
refer to Eq. (2.7) as the Clauser-Horne inequality. The
implication for the product inequality (2.10) is the re-
placement of E„(8,P) with the normalized E„(8,P) (see
Sec. VI) defined as

) . P',--', .-- (8 &) (—) ( )

E„(8,$) =

) in ij,n j( y0)— —
i,j=O

(2.11)
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These modified inequalities are weaker since one requires,
for their derivation, the additional auxiliary or supple-
mentary assumptions. These are discussed in Sec. VI.

III. QUANTUM PREDICTIONS FOR
CORRELATED

PHOTON-NUMBER STATES

We first present calculations based on the input state
[1o]

- N
atb' ia'b' lo)

N!gN+ 1
N

, ):I )r-. I )r, IN }r- I-N r} -(31)
+ ~=o

1 . N X
r=o 0

where J, (8) J, (8) lmz, m2} = mxm2lml m2} ~

expansion holds regardless of the choice of 0. This state
is identical in form to the zero total-spin state consid-
ered by Mermin [13] and Caves and Braunstein [14], ex-
cept that m2 has changed sign. One can calculate the
joint probabilities P(mq(8), m2(P)) and expectation val-
ues (mq(8)m2(P)) and establish a violation of the classi-
cal inequalities (2.4), (2.6), (2.7), and (2.10), based on the
apparatus of Fig. 1. Since rotation of both sets (a+, a )
and (b+, b ) by an angle 8 in accordance with the trans-
formation (2.1) leaves the state (3.1) invariant, we can
select our axes to coincide with the first angle 0 associ-
ated with the measurement at C. The transformation we
consider is then

where, for example lr}b, is the r-photon number state
for b~ Here .we have a total of N quanta at C and N
quanta at D. For N = 1, this correlated superposition
state (or "entangled state") is analogous to that gener-
ated in the experiments of Aspect et al. [4]. In these
experiments a+ and a represent orthogonal polariza-
tions.

The input state (3.1) can be expanded in terms of the

eigenstates lmq, m2) of J, (8) and J (8),

C = Q

d+ ——b+ cos y + b sin y,
d = —b~ sing+ b cosy, (3.3)

where y = P —8. Calculation of P(mq(8), m2(P)) thus
proceeds by evaluating P(mz(0), m2(p)) upon us noting
that [y} can be expressed in terms of the measured modes
as

- N
ct+dt+ cosy —ct+dt sin&p+ c d+ sing+ c d cosy lo)

N

) C„,„,ln]), lN —n]}, ln2)g lN —n2)g
nI, ng ——0

(3.4)

Now P(mz, m2) is the probability of detecting nq and n2 photons at C~ and D~, respectively, where n; = m, + N/2
Thus evaluating the relevant coefBcients C„,„, we obtain

ng!n2~ (N —n )!(N —n2)!
"

(—1)"' 'cos "' "'+ "csin"'+"' "
pP(mg(8) m2(P)) = ' ' ' ' )%+1 r! (ng —r)! (n2 —r)! (N —ng —n2 —r)!7=0

(3.5)

where nq ——mq(8) + N/2 and n2 ——m2(g) + N/2. It is noted that since the joint probabilities are

P(m„mg) = (3.6)

nI )n2 ——0

we can write P(mz, m2) in terms of correlation functions (as also follows from the standard photon-count formula)

(: (J,c,)
'

(c'c )
"'

(a', a,)"' (a'g )
"'

)
: (c~e~ + c' c

) (d~d, + 4 a )
(3.7)



MULTIPARTICLE AND HIGHER-SPIN TESTS OF QUANTUM. . . 3665

Thus

P~(8 &) =
. ct

~comdt

~du .
~ + ++" +

( c+c+ + c c d+d+ + d
)

(3.S)

1.2 &I.

~ ~ (I)
~ ~ ~ ~ t ~ II

~ ~

er(8, 4) =

(: ic+c++c c
i

id+d++d d i:))

(3.10)

Figures 3—5 depict the violation of the classical inequal-
ities for varying values of N. The violations predicted in
Figs. 3 and 4 have been calculated previously by Mer-
min [13] and Drummond [10] and are presented here for
the sake of comparison. We have also calculated the vi-
olations possible using the phase-shift —beam-splitter ap-
partus of Fig. 2. Because the violation is present for N
particles incident on each analyzer even for N large, the
proposed experiment is potentially one of quantum me-
chanics at a macroscopic level [10]. We note that the
Clauser-Horne experiment where P~(8, $) is measured
has a potential disadvantage for larger N, since with
N photons incident the actual probability Prv(8, P) can
be small, making the experiment difEcult. The product
inequalities have the advantage that all outcomes con-
tribute to the data collected for the experiment.

It is important to discuss precisely in what sense our

20
I ' ' ' 1 ' ' ' I

15
'

5
'

0 I( I, c ~ I ~ ~ I ~ ~ I

2 4 6 8

N

10

Plot of the maximum violation (&~) of Mermin's
hT

higher-spin inequality for the state +,
&~ ~0). A vio-l|(Ã+1

lation of the inequality occurs for A~ ) 0. The same results
occur in both the polarizer and phase-shifter —beam-splitter
arrangement (the angles are chosen for each N to maximize
the violation).

: c',"c", (d~a, y d Z '~ )&sr(8, )=—
( c+c+ + c c Q+(f+ + Q

) )

(3.9)

The product E~(8, P) is written

2 4 6 8
N

FIG. 4. Plot of the maximum value of B„(defined for
the Clauser-Horne Bell inequality) versus N, the number of

e~ b~ +at bt
photon pairs in the correlated state +, ,&~ ~0) for (i)N!(a+i)~~~

n = N and (ii) n = N —1, so that no information is obtained
about one of the photons. A violation of the inequality oc-
curs for B„)1. The same results occur in the polarizer
and phase-shifter —beam-splitter arrangements (the angles are
chosen for each N to maximize the violation).

10

test of quantum mechanics discussed here is macroscopic.
We point out that, since at each detector one might de-
tect the whole range of N, N —1, . . . , 0 photons, the final
state produced at the detectors is not a simple superpo-
sition of macroscopically distinct states (a "Schrodinger-
cat" state [23]). Rather we have a macroscopic (with N
large) number of states which are microscopically distinct
superposed, so that only some pairs are macroscopically
separated. In the tests proposed here the distinction is
being made between states which are microscopically dis-
tinct in order to gain violations of Bell inequalities, in
that we gain the contradiction with classical theories by
detecting all N photons. For example, in the Clauser-
Horne measurement needed for inequality (2.7), infor-
mation is gained about all of the N photons in that they
are all detected in the + position. The eHect of detecting
only N —1 photons, so that the location of one photon is
not specified, is to decrease or lose the contradiction with
classical theories. This eH'ect was pointed out by Drum-
mond [10] with respect to the case shown in Fig. 4. We
illustrate this eKect in Figs. 4 and 5 by calculating BN
and EN with n = N —1 so that a total of N —1 photons
are detected, the Nth photon being lost. Quantum me-
chanics predicts the joint probability functions P„(8,P)
and P„(8,—) (where n is less than N and no information
is obtained about the remaining N —n photons) to be
given in this case by the moments (: c+"c+d+ d+ .)j(n!)
and (: c+"c+(d+d++d d ):)/(n!), respectively, so that
B and E (8, $) are readily calculated. This result fol-
lows directly &om the standard photon-count formula.
It is noted by comparing Figs. 4 and 5 that the sen-
sitivity of the violation of the Bell inequalities to this
loss of information about one photon is greater in the
case of the product test. In the Clauser-Horne inequal-
ity considered by Drummond [10], a violation may be
obtained for n ( N photons detected, provided a large
number N of photons is incident on the detectors. To
conclude, the tests proposed here cannot be thought of
as a test of macroscopic realism in the precise sense dis-
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a+, a and b+, b using phase shifts as described by the
transformation (2.2). This arrangement is depicted in
Fig. 8.

We now present calculations with the correlated pho-
ton number state ]N)]N) at the inputs Ai and Bi of
Figs. 6—8. The inputs at Az and Bz are vacuum states.
It is possible to express [using the transformation (3.11)]
the state generated in terms of the o+,a, b+, 6 fields.
One obtains [11]

N R

(
)&+&™ N t N rbt—r t r'gt N r'~Q)—

v, v' =0

(3.12)

B„

1.5

14

1.3

1.0

0.9

0.8 a I s ~ I a ~

N

~ ~

10

Here ~0) represents the vacuum state for all modes. We
see that one does not necessarily have N quanta incident
at both C and D. Use is thus made of the weaker in-
equalities discussed, where the averages are defined only
over the reduced subensemble where the selected number
of quanta are actually detected at each of the outputs C
and D. The terms in the expansion (3.12) which are rel-
evant for experiments where we select N quanta detected
at both C and D are

1.2 Il.

1.1
B„

1.0

0.9

~ ~

6 8

N

b)

~ II

10

We see that for N = 1, this reduced state is identical in
form to the four-mode state (3.1).

For N ) 1, relating to the states of higher spin, dif-
ferences exist. The results predicted for (3.13) will not
be identical to those predicted by Mermin for the higher-
spin state (3.2). The state (3.13) expressed in terms of
the eigenstates ~mi, m2) of J, and J, becomes

FIG. 10. Plot of the maximum violation of the
Clauser-Horne Bell inequality. B„versus X, the number of
photons in the correlated two-inode state ~N)i]N)z, for (a)
the polarizer arrangement with (i) n = N and (ii) n = N —1

and (b) the phase-shifter —beam-splitter arrangement with (i)
n = N and (ii) n = N —1. A violation of the inequality occurs
for B„)1 (the angles are chosen for each N to maximize the
violation) .

1 . „N N N) (—1)" ——r, ——+r
2N - r 2

' 2
r=O

(3.14)

In this case the invariance under rotation to J( ) (8) and
J( )

(P) is not retained for all N
Figures 9—11 present the quantum predictions of the

10 I I ~

8

h, N/N

6

6 8 10

FIG. 9. Plot of the maximum violation (b,~) of Mermin's
higher-spin inequality for the two mode state ~N) i ~N)z. A vi-
olation of the inequality occurs for E~ ) 0. The same results
occur in both the polarizer and phase-shifter —beam-splitter
arrangements (the angles are chosen for each N to maximize
the violation).

state (3.12) for the weaker versions of the various clas-
sical expressions (2.4), (2.7), and (2.1Q). Here we again
observe a clear violation of all the diferent types of Bell
inequalities discussed for N = n. However, in both the
Clauser-Horne inequality (2.7) and the product inequal-
ity (2.10) no violation is seen for n ( N (that is, when
fewer than N photons are detected at | and D, where X
is the number of photons incident at both Ai and Bi).
We have previously [11]presented and discussed the pre-
dictions for the Clauser-Horne inequality using polarizers
[Fig. 10(a)].

The calculations presented model two sets of N quanta
simultaneously incident on the beam splitters of the ap-
paratus depicted. The need for simultaneity in order to
obtain the violation is apparent when we examine the
N = 1 case. Let us consider the arrangements of the type
shown in Figs. 6—8. We consider the ensemble where a
single photon is detected at both sets of detectors C and
D The state (3.13.) is a superposition of two states, the
first where the photon detected at C comes from Ai (the
signal field) and the second where the photon at C comes
from Bi (the idler field). With the introduction of a suf-
ficient time delay between the incident signal and idler
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~n 2D—

~ 8 0 ~

~ y ~

~ ~ Wl

tibility of the medium. This Hamiltonian incorporates
only single modes and hence it will usually apply where
the interaction takes place inside a cavity. The Inodel has
also been used by Smithey et aL [16] to explain exper-
imentally observed photon-number correlations in usual
nondegenerate parametric down-conversion with no cav-
ity. The orthogonal fields may be spatially separated.
The state generated after an interaction time t is

8 10
c~ i%) iK), (4.2)

3.0
b)

[ i tanh r—]
cosh 7'

(4.3)

S„2.O

1.5

~ 5 a g ~

0 ~ ~

with r = yd;. Here we observe that because the signal
and idler are generated in pairs, there is a correlation
between the signal and idler photon number. Thus we
have a method for generating correlated number states
with N ) 1.

We consider also the twin parametric down-conversion
process

I.D 0 = K (o,~ b~ + u b ) + v.
'

(a ~~ b~~ + a b ), (4 4)

FIG. 11. Plot of the maximum violation of the product
Bell inequality. S„versus N, the number of photons in the
correlated two-mode state ~N)q ~N)2, for (a) the polarizer ar-
rangement with (i) n = N and (ii) n = N —1 and (b) the
phase-shifter —beam-splitter arrangement with (i) n = N and
(li) n = N —l. A violation of the inequality occurs for S„)2
(the angles are chosen for each N to maximize the violation).

photons the origin of a particular photon may be inferred.
Hence the superposition nature of the state is lost and
no violations of the classical predictions will be possible.
The parametric down-conversion process generates fields
with the required correlated photon arrival times [5].

where the entangled states are produced more directly.
Here the pairs c+, b+ and a, b may represent down-
converted photon pairs of difFering Ic vectors or different
frequencies. The u~, b~ here are the inputs to the exper-
imental arrangements considered in Figs. 1 and 2. The
advantage of using the four-mode interaction is that it
potentially allows a strong test of the Bell inequalities,
as compared to the arrangements depicted in Figs. 6—11,
where, as discussed above, auxiliary assumptions are nec-
essary in deriving the Bell inequalities. The experiment
of Rarity and Tapster [8] uses parametric amplification in
this manner to produce the N = 1 entangled state of IEI
and uses the beam-splitter phase-shifter arrangement of
Fig. 2 to show a violation of Bell s inequality. Violation
of Bell's inequality usiDg such a twin beam was predicted
by Reid and Walls [21,24]. The state generated after an
interaction time t is

IV. GENERATION OF THE HIGHER-SPIN
CORRELATED QUANTUM STATES USING

PARAMETRIC DOWN-CONVERSION where

H = —hyt' agbg + a~6» (4 1)

Here the aq, bq are the boson operators for orthogonal sig-
nal and idler modes of &equency uz, cu2, respectively, such
that w3 ——u~ + ~2. The y is proportional to the suscep-

Correlated photon-number states of the type we have
been considering can be generated using down-conversion
[11,12]. We model the process in simple terms by the
following Hamiltonian representing pair generation &om
a nondepleting classical pump field of amplitude ~ and
&equency ~3.

[ i tanh r]—
C~ =

cosh r
(4.6)

Assuming initially that the signal and idler may be ex-
tracted &om the cavity to maintain the correlation given
in (4.2) for the two-mode system [or (4.5) for the four-
mode system], we observe that we require near perfect
photodetection e%ciency in order to obtain precisely the
violations plotted in Figs. 4 and 5 for the four-mode ar-
rangement and Figs. 10 and 11 for the two-mode sys-
tem, for all r values. The perfect detection allows one to
determine precisely the value of N, the number of pho-
tons incident on each apparatus provided one has beam
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FIG. 12. Plot of the maximum violation of the
Clauser-Horne Bell inequality using four-mode parametric
down-conversion in the low efFiciency limit. B„versus r (yet)
for (i) n = 1, (ii) n = 2, and (iii) n = 3. Curve (iv) is the mean
photon number (a+ta+). The same results occur for both the
polarizer and phase-shifter arrangements. A violation of the
inequality occurs for B„)1 (the angles are chosen for each
n to maximize the violation).
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FIG. 13. Plot of the maximum violation of the
Clauser-Horne Bell inequality using two-mode parametric
down-conversion in the low efFiciency limit. B„versus r (yet)
for (i) n = 1, (ii) n = 2, and (iii) n = 3. Curve (iv) is the
mean photon number (a+a+). These results are for the po-
larizer arrangements. A violation of the inequality occurs for
B„)1 (the angles are chosen for each n to maximize the
violation).

splitters or double-sided polarizers so that one can de-
tect photons at all of the locations C+, C, D+, and
D . One can then in principle restrict measurements to
the subensemble where a total of N photons are incident
at each analyzer. In the Clauser-Horne-type experiment,
one would need to add detectors at C and D . The pre-
dictions for this experiment in the limit of low detection
efficiency without detectors at the C and D positions
have been presented by us previously [ll] and are shown
in Fig. 12 for the four-mode arrangement and in Fig. 13
for the two-mode arrangement. Derivation of the Bell-
type inequalities in this low-efficiency case requires an
extension of the usual auxiliary assumption and is dis-
cussed in Sec. VI. Detection of a total of n quanta at
both locations C and D by inefficient detectors leaves
open the possibility that the input state may have been
n+1 photons or higher and the state ~n+k) ~n+k) (k ) 0)
contributes to the probability P„(8,P), giving results dif-
ferent from those predicted in Figs. 4, 5, 10, and 11. Fig-
ures 4, 5, 10, and 11 show, for both the Clauser-Horne
and product cases, a loss of the violation of the various
Bell s inequalities, where n = N —1, indicating detection
loss to be an important effect and particularly relevant
where one has poor detector efficiencies.

To calculate this effect, we need to evaluate the appro-
priate joint probabilities for detection of photons at the
four locations. The photon counting probabilities may be
expressed in terms of the moments of c+, c, d+, and d

N
Py0 N [ ape) = rP (: ((c c~d+~d+)

x exp —g c+c++ c c + d+d+

(4.7)

while the probability PN p ~(8, —) of detecting N pho-
tons at C+, 0 photons at C, and N photons at D with
the polarizer removed is

PivON(e, —
) =z' (,: ,((c+c+) (d+d++d d )

xexp —g c+c++c ct t

d+td++ dt d (4.8)

Here g is the quantum efBciency of the detector. For the
product system we can write the appropriate correlation
function E~ (8, P) (where we detect a total of N photons
at | and a total of N photons at D) as

by applying the usual photon counting formula derived
by Keller and Kleiner [26]. The probability of detecting
N photons at C+, 0 photons at C, N photons at D+,
and 0 photons at D is

c+c+ —c c d+d+ —d d exp —g c+c+ + c c + d+d+ + d d
E~ (8, $) =

c+c++c c d+d++d d exp —g c+c++c c +d+d++d d
(4.9)

It is readily shown (see Sec. VI) that the P~ p ~ p (8 p),
Px,p, zv (8, —), and E~ (8, P) obey the inequalities (2.7)
and (2.10), substituting for P (8, P), P„(8,—)
E„(8,P), respectively. This is provided the auxiliary as-

I

sumption discussed in Sec. VI is made.
The results obtained upon evaluating BN for various

efficiencies are plotted in Fig. 14 for the Clauser-Horne in-

equality with the four-mode parametric interaction (here
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FIG. 14. Plot of the maximum violation of the
Clauser-Horne Bell inequality using four-mode parametric
down-conversion. Bz versus r (yet), with varying photodetec-
tion efficiency il for (a) the polarizer arrangement (angles cho-

sen such that p = 8 —P = O' —P = O' —P' = (8 —P')/3=0. 277)
and (b) the phase-shifter —beam-splitter arrangement (angles
chosen such that p=2.586). A violation of the inequality oc-
curs for B2 ) 1. The same results occur in the polarizer and
phase-shifter —beam-split ter arrangements.

one has additional detectors at C and D ), in Fig. 15
for the product inequality with the four-mode paramet-
ric interaction, in Fig. 16 for the Clauser-Horne inequal-
ity with the two-mode interaction, and in Fig. 17 for
the product inequality. Where the loss is significant a
violation of Bell's inequality is obtained only for fields
where the probability of higher photon-number states
being generated is negligible. For the parametric solu-
tion (4.2) and (4.5) this requires us to operate at low
intensities. Unfortunately this reduces the probability
of actually detecting N photons at each set of detection
apparatus (whether it be N photons at C+, D+ for the

Clauser-Horne inequality or % photons at C, D for the
product inequality), making the experiment difficult for
large N. In this limit of small g we are required in the
two-mode parametric case, in order to obtain a violation
of the X = 2 inequality, to operate in a regime where
the probability of the two-photon state is

2O
that of the

one-photon state. This result has been discussed by us
previously [11,12] for the two-mode interaction. . The re-
sults in this low detection eKciency limit are not so much
improved by the additional detectors suggested in the|lauser-Horne case. This is because in the low inten-
sity regime, the probability of states with higher photon
numbers is very small. We note, however, that the weaker
Clauser-Horne inequality [where the marginal probabil-
ity in (2.7) is replaced by a joint probability] will not be
applicable in the higher r regime without the use of the
additional detectors at C and D, since the auxiliary
assumption will break down in this case (this is discussed
in Sec. VI).

Higher detection eKciencies allow violation of Bell' s

inequality for greater values of r, proportional to t;hc

pump intensity and the parametric interaction time. I'or
higher r values, the mean intensities of the signal and
idler fields becomes greater. Violation of the ¹h-order
inequalities is predicted in this regime. However, while
the average photon number may be high, the parametric
down-conversion with a classical nondepleting pump as
modeled here by (4.1) and (4.4) has a super-Poissonian
photon-number distribution for the signal and idler fields.
This means that the probability of actually detecting pre-

l.p
1,1
l.)
&.a

4

FIG. 15. Plot of the maximum violation of the product
Bell inequality using four-mode parametric down-conversion.
S2 versus r (yet), with varying photodetection efFiciency q
for (a) the polarizer arrangement [angles chosen such that
rp = 8 —P = 8' —4'i = O' —P' = (8 —P')/3=0. 3925] and
(b) the phase-shifter —beam-splitter arrangement (angles cho-
sen such that rp=2. 749). A violation of the inequality occurs
for S2 ) 2. The same results occur in the polarizer and
phase-shifter —beam-splitter arrangements.

o,($
p.5

FIG. 16. Plot of the maximum violation of the Clauser-
Horne Bell inequality using two-mode parametric down-

conversion. B2 versus r (yet), with varying photodetection ef-

ficiency il for (a) the polarizer arrangement (angles chosen are
8 = 0.365, 8 = 3.050, P = —1.662, and P' = 1.955) and (b)
the phase-shifter —beam-splitter arrangement [angles are cho-

sen such that &p = 8 —Q= O' —P = 8' —P' = (8—P')/3 = 0.627].
A violation of the inequality occurs for B2 & 1.
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FIG. 17. Plot of the maximum violation of the product
Bell inequality using parametric down-conversion. S~ ver-
sus r (yet), with varying photodetection efficiency g for (a)
the polarizer arrangement (angles chosen are 8 = 1.290,
8' = 0.666, P = 0.522, and P' = 1.443) and (b) the
phase-shifter beam—-splitter arrangement [angles are chosen
such that rp = 8 —P = O' —P= 8' —4' = (8 —Q')/3 = 0.393]
A violation of the inequality occurs for S2 ) 2.

H = ibad (ct —c)

+ihg c a+bt

+) a, rR;,

+) a;, rtR,.

+at b
~

—ct(a+&++a b )

+a, r~;

+ a, I'R,- (5.2)

A. The four-mode system

as a means of generating the four-mode state originally
considered by Drummond [10]. Here e is proportional to
the classical pump amplitude. The modes c, a, and b

are the pump, signal, and idler modes at the &equencies
~z + ~2, ~z, and ~~, respectively. We also use the nota-
tion a = aq, b = a2, and c = a3 for convenience. The loss
of the Geld a; through the cavity mirrors is modeled by
the coupling to an external reservoir I R;. It is the Geld

external to the cavity that is measurable and of interest
to us here. We consider the situation where losses occur
through just one of the cavity mirrors and denote the
signal and idler Gelds transmitted through it by a,„t and
b,„t, respectively. The cavity photon loss rate is assumed
to be equal for signal and idler and is denoted by 2e. The
external operators are related to the internal a and b op-
erators by the boundary condition at the cavity mirror.
The model describing the interaction involving four cav-
ity modes has been studied previously by Graham [27]
and Reid and Walls [21].

cisely N photons at C and D will be small. Also, because
we consider here the reduced ensemble, auxiliary assump-
tions are used, making a strong test of Bell inequalities
not possible, even in the high detection efficiency limit.

V. GENERATION OF THE HIGHER-SPIN
CORRELATED QUANTUM STATES USING

PARAMETRIC OSCILLATION

II = i W (ct —c) + i' (cat bt —ctab)

+) (~trR;+~r«). (5.1)

Alternatively, we could consider four resonant signal and
idler modes

The correlated photon-number states of the type (3.1)
and ]N) [N) have been generated for N = 1 using para-
metric down-conversion [6—9,16]. Generation of the N
quanta wave packet using parametric down-conversion is
made difficult because of the poor conversion efficiency
of pump to signal photons. One possibility might be
to improve the efficiency by employing nondegenerate
parametric oscillation where the parametric process takes
place insid'e a cavity. One can resonate the cavity to two
orthogonal signal and idler modes so that the parametric
oscillation is modeled by the Hamiltonian

P(mq(8), m2(P)) - (:c+"' c+' d+"' d+' ..), (5.3)

where

&z = my(&) + N/2,
n, = m, (P) + N/2.

(5.4)

(5.5)

The constant of proportionality is (gT) '+ ', the effec-

We present calculations for this case because the use
of the four-mode as compared to the two-mode system
may allow one to test at least in principle the stronger
original form of Bell s inequalities. In order to evalu-
ate the quantum predictions for the classical inequalities
(2.4)—(2.10) we consider the configurations discussed in
II and require the calculation of joint probabilities such
as that for detecting nq photons at C+ and n2 photons
at D+, in a particular detection time. The input fields
denoted by a+, b+ in Figs. 1 and 2 are now replaced by
the external fields a+,„t,b+,„t. We will consider here
only the situation where the photon detection time is
much shorter than the field coherence time. Our initial
objective is to demonstrate the possibility of obtaining vi-
olations of Bell's inequalities using correlated states gen-
erated via cavity configurations [24]. For detection times
much shorter than the Geld coherence time the proba-
bilities are directly proportional to the normally ordered
correlation functions of the Geld. Thus, for example, the
probability of detecting nq photons at C+ and n2 photons
at D+ is given by



3672 W. J. MUNRO AND M. D. REID

tive detection eKciency factor, taken here to be small.
Here the c~,„q, d~, „& are defined in terms of the exter-
nal signal and idler 6elds ag, „q and b~,„q in accordance
with the transformations (2.1) or (2.2). The detection
time T is assumed here to be short so that the nq and
n2 quanta are detected simultaneously on the time scale
of the passage time for the photons through the beam-
splitter —polarizer or interferometric apparatus.

In order to test the classical inequalities for a Axed
value of spin N/2, we focus attention on situations where

a total of X quanta are incident and detected at both
locations C and D. Because we consider here a low efFi-

ciency limit, it becomes necessary in practice to consider
the weaker versions of the classical inequalities, where we

only record events for the subensemble where N photons
are detected at both C and D. Thus we require the cal-
culation of the probability of detecting ni photons at e+.
X —ni photons at e, n2 photons at D+, and X —n.~

photons at D . The probability P~(0, P) defined for the
Clauser-Horne-type inequality (2.7) becomes

P~(8, $) = +ext +ext +ext +ext

(: [ct+ c+.„, + c c „,]~[dt+ d+, + dt d ...]iv:)
(5.6)

The "marginal" probability de6ned in the inequality becomes

P~(8, —) =
N [dt d +dt d ]N .

)

(: [c~+ c+ „, + ct c .„,]N[d~+ d+... + dt d „,]~:) (5 7)

The spin-product expectation value defined for inequality (2.10) becomes

~ ~ct c —c c ~ ~d d

(: [ct+ c+.„, + ct c .„,]N[dt+ d+ „,

]N .
)

]N .
)

(5.8)

The moments required are directly related through the
transformations (2.1) and (2.2) to moments involving the
external flux operators a~,„q and by, „q. The correlation
functions for the external operators are related to those of
the cavity modes a~ and by as determined by the cavity
boundary condition. This has been considered previously
[28] and one obtains relations such as

cx+ = —Kcl~ + [e —gA+P+ —go! P ] + Ftx (t),
gp+

K3

(5.11)
t

P+ —— KP++ — [e —g~+P+ —gn P ]+Fp, (t).
gO.'+

K3

(5.12)

(: at„'~a,„&b,„&b,„&
'. ) = (2tc) ' (: at'a~bt "b':). (5.9)

The normally ordered moments are directly related
through the constant of proportionality which is the ap-
propriate power of ~2@. The cavity moments have been
derived previously [21] for the case where rs )) K, where
K3 is the cavity loss rate for the pump mode c. The
approach used was to derive a Fokker-Planck equation
for the generalized P representation [29] of the density
operator

(F,(t)F&, (t')) = grab(t —t'),
(F & (t)F„& (t')) = ge*h(t —t').

(5.13)

(5.14)

The equations for n+~ and P+~ are obtained by exchanging

ay and o,+, and Py and P+t, and taking the complex
conjugate of the other terms. Similarly the equations
for n, P, nt, and Pt are obtained by exchanging n+
and a, P+ and P, nt+ and o, , and P+t and Pt . The
nonzero noise correlations are

(5.10)

Here
~ (a;)) = [n+)~o. )[P+)~P ) and dp is an integration

measure. Here ny, a+, P~, P+ are c numbers correspond-t t

ing to operators a~, a+, b~, b+, respectively. The a; and

a,- are independent complex variables. The equation for

P o, , a; is derived using standard methods from the

master equation for the density operator. The Fokker-
Planck equation is equivalent to the following c-number
equations in the stochastic amplitudes, where the pump
has been eliminated adiabatically

Reid and Walls [21] derived a potential solution for P in
the steady state. An appropriate contour of integration
was defined. Normally ordered moments are calculated
directly by integrating over the P solution. For example,

(: a+ a+ b+ b+:) = P a,-, o.; n+ o.+ P+ P+ dp, .tw

The stochastic equations reduce to the classical equations
if one ignores the quantum noise terms and uses o,,-

The classical threshold condition is readily derived
by examining the steady-state solutions for the classical
amplitudes. Here ge/Ksr = 1 corresponds to threshold.
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Here we are concerned only with the system operating
below threshold where the classical steady-state solution
isn+ =n =P+ ——P =0.

In all current experiments the threshold photon num-
ber is very large and. the effect of the quantum noise is to
perturb about the classical solutions. In this limit, pre-
dictions may be obtained from a linearization of the Buc-
tuations. One may choose to linearize operator equations
derived directly f'rom (5.2) or to linearize the stochastic
equations (5.11) and (5.12). It is particularly convenient
to note that [as is the case with the state (3.2)] the equa-
tions are invariant under rotations of the stochastic vari-
ables ny and Py to the new variables c~ and d~

3.0

2.8

2.6

2.4

2.2

2.0
0.0 0.1 0.2 0.3

g 8/ K3K

0.4 0.5

c+ ——o.+ cos8+ a sin&,

c = —o.+ sin0+ n cos8,

d+ ——P+ cos 8 + P sin 8,
d = —P+ sin8+ P cos8.

(5.16)

FIG. 19. Plot of the violation of the four-mode product
Bell inequality. S~ versus ge/lese for parametric oscillation.
Here es/e = 10. (i) N = 1 and (ii) N = 2. The same results
occur for both the polarizer and phase-shifter arrangements.
A violation of the inequality occurs for S~ ) 2 (the angles
are chosen for each N to maximize the violation).

The stochastic variables c~, d~ determine directly the
moments of the measured cy „, and d~.„, 6elds in ac-
cordance with the relation of the type (5.3). Thus it
is convenient to rotate the ny and Py by 8, the angle
determined by the measurement made at t . One then
evaluates the prediction of P~(8, P) by considering cor-

relations of the type (: ct+ c+dt+ d+ .), where

c+ —ck+ )

C = A

(5.1S)

(5.19)

procedure similar to that used before, we can write down
the following c number equations:

n = —Kn + [e —gnp] + E~(t),
K3

~ gat
p = ~p+ —[e —gnp] + Ep(t).

K3

d+ ——P+cosy+P sing,
d = —P+ sing+ P cosy,

(5.17)
1.3 a)

and here rp = P —8. Figure 18 depicts the violation of the
classical inequality (2.7), for N = 1 and 2, while Fig. 19
depicts the results for the product inequality (2.10). Here
we have used linearized solutions.

1.2

B. The two-mode results

So far we have investigated the four-mode results. It
is also possible to do the two-mode calculation. Using a
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FIG. 18. Plot of the violation of the four-mode

Clauser-Horne Bell inequality. B~ versus ge/~ze for para-
metric oscillation. Here ~3/~ = 10. (i) N = 1 and (ii) N = 2.
Curve (lii) is the mean photon number (a+ta~). The same
results occur for both the polarizer and phase-shifter arrange-
ments. A violation of the inequality occurs for B~ ) 1 (the
angles are chosen for each N to maximize the violation).

1.0
0.0 0.2 0.4

gE/K3K
0.6

FIG. 20. Plot of the violation of the twomode
Clauser-Horne Bell inequality. B~ versus ge/aspic for para-
metric oscillation. Here ~s/~ = 10. (a) The polarizer
arrangement with (i) N = 1 and (ii) N = 2. (b) the
phase-shifter —beam-splitter arrangement with (i) N = 1 and
(ii) N = 2. A violation of the inequality occurs for B& ) 1

(the angles are chosen for each N to maximize the violation).
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3.0

2.8—
model Hamiltonian for the four- or two-mode parametric
down-conversion below threshold, where the pump mode
is essentially undepleted and may be modeled as a clas-
sical pump:

2.2

2.0
0.0

3.0

2.8

0. 1 0,2

g E/K~K

0.3 0.4

b)-

SN
2.4

2.2

2.0
0.0 0.2

gC/K, K

0.4 0.6

FIG. 21. Plot of the violation of the two-mode product Bell
inequality. SN versus ge/use for parametric oscillation. Here
e3/e = 10. (a) The polarizer arrangement with (i) N = 1 and
(ii) N = 2. (b) The phase-shifter —beam-splitter arrangement
with (i) N = 1 and (ii) N = 2. A violation of the inequal-
ity occurs for S~ ) 2 (the angles are chosen for each N to
maxiinize the violation).

H = —hge t2, +6+ + a b + a~~b~~ + 0,~ bt, 5.22

H = —bye (ah+ atbt) . (5.23)

VI. DERIVATION OF THE N-PARTICLE BELL
INEQUALITY

This model has been discussed above in Sec. IV. For fi-

nite c, one generates a superposition of the N quanta
states of the type given by (3.1). At low pump powers
only the N = 1 state contributes significantly and the
violation of the inequalities is obtained. As e increases
the higher-N states are more important. I et us suppose
we are interested in the 2 -spin experiment. At higher
pump values, the states with N & No give a finite contri-
bution to moments such as (: c+ 'c+'d+ 'd+' .). Thus
in the situation we examine here of low photon-detection
efficiency, these higher-N states contribute to the joint
photodetection probabilities. Their effect is to decrease
or destroy the violation of the 2 -spin classical inequal-
ity. It is seen from the results for No ——2 that the No
state can be made to dominate and thus to give the viola-
tion similar to that predicted by the higher-spin quantum
states (3.1) provided the pump amplitude is sufficiently
low. In situations where the detection time T is greater
and the detection efBciency increased, one would expect
to recover results similar to that described in Secs. III
and IV.

The equations for o.t and Pt are obtained by exchanging
o. and o.t, and P and Pt, and taking the complex conju-
gate of the other terms. The nonzero noise correlations
are

(F (t)E&(t')) = geb(t —t'),

(F g(t)Fpt (t')) = ge*b(t —t')
(5.20)

(5.21)

C. Discussion

It is then possible to linearize these equations and hence
calculate the expectation values and correlation functions
needed for the Clauser-Horne and spin product Bell in-
equality. It is also possible to solve the nonlinear equa-
tions in the regime where es )& K [30]. In Figs. 20 and
21 we present results for the two-mode case, using a
linearized analysis. Here (ge/vs+) = 1 corresponds to
threshold.

%e summarize the derivation of the Clauser-Horne
and Clauser-Horne-Shimony-Holt —Bell inequalities used
in this paper. The derivations are straightforward exten-
sions of the original derivations [1,2] as pointed out by
Drummond [10].

A. The N-particle Clauser-Horne inequality
derivation

The set of "hidden" variables, which we will denote
collectively by the symbol A, is introduced. For given A,

the values of all observables are specified as the values
of appropriate real-valued functions defined over the do-
main A of all possible values for the hidden variable. Now

denoting the probability density function for the hidden
variables in the state ~g) by p we have that p(A)dA mea-
sures the probability that the collective hidden variable
lies in the range A to A + dA. The probability density
function is normalized such that

Results for N = 1 have been derived previously by
Reid and Walls [21] for the four-mode case. It is seen
that violation of Bell inequalities is possible only if one
operates sufEciently far below threshold. The reason for
the loss of violation when at higher pump powers be-
comes apparent when one considers the following simple

p(A)dA = l.

Also it is required that

p(A) & 0. (6.2)
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We now examine the situations described by Figs. 1
and 2. Applying this hidden variable description to the

marginal probability P~l(8) for detecting a total of N
photons at C+, we may write

and therefore Eq. (6.5) reduces to

'(8, d) = f Pl (lA, 8)P~* l( Ad)p( A) dA . (6.7)

Pl l(8) = f Pl l(A, 8)p(A)dA, (6.3)
Next we have the following lemma.

Lemma. If x,x',y,y' and X,Y are real numbers such
that

where PN (A, 8) is the probability given the state de-
scribed by A. Similarly we have

0&+, x'&X, 0&y, y'& Y, (6.S)

Pp (8) = f Pp (A, d)p(A)dA, (6.4)
then the inequality given by

0 & zy —zy'+ z'y+ z'y' —z'Y —yX & —XY (6.9)

Pp (8, 8) = f Pp (A, 8, 8)p(A)dA

where P&~ l(A, 8, $) is the probability for detecting N
photons at both locations, given A, 8 and P. Mathemat-
ically the locality assumption is written

(6 5)

P~~ l(A, 8, $) = P~~ (A, 8)P~l(A, Q) (6.6)

where P~~ l (P) is the marginal probability for detecting a
total of N photons at D+, and P~ (A, P) is the proba-
bility of detecting N photons D+, given A and ()t). The
joint probability for simultaneously detecting N photons
at both C+ and D+ is

holds.
Thus choosing z = PN l

(A, 8), y = P~~ l
(A, P), and X =

Y=1, we have

—1 & P (A, 8, $) —P (A, 8, $') +P (A, 8', (t))

+P (A, 8', y') —P (A, 8') —P (A, y) & 0. (6.10)

Integrating inequality (6.10) over A with distribution
p(A)dA, the right-hand side of the inequality can be writ-
ten as

P'"'(8, 4) —P'"'(8, 4') + P'"'(8' 4) + P' '(8' &')

P( )(8 ) + P( )(y) (6.ii)

To date no situation that violates the Clauser-Horne in-
equality has been experimentally realized because of poor
photodetection efficiencies. With an auxiliary assump-
tion [2,17], realizable experiments have been predicted
and shown experimentally to yield a violation of Bell' s
inequality. We consider the apparatus depicted in Figs. 1
and 2, but now select to measure only joint probabilities
where a total of N photons are detected at both C and
D. One measures the joint probability PN (8, P) as be-

fore and also the one-sided joint probability P~ (8, —),
which corresponds to the probability of measuring N
photons at C+ and N photons at D where the ana-
lyzer (polarizer or beam splitter) at D is removed. The

P~ (—,P) is the joint probability of detecting N pho-
tons at D+ and N photons at C with the analyzer at
C removed. In terms of a hidden variable theory the
one-sided probabilities are written

Pp "( 8') = f p(A)Pw" (A)P—p'(»d)dA

and as before

Pp (8, 8) = f p(A)Pp [A8)Pp (A, d)dA. ,

(6.1S)

(6.14)

One can now choose [note that P~ (A) and P~ (A) do(~) (2)

not depend on 8 and (t)]

P (A) P (A)
(6.15)

P&~ l(A) as the probability of detecting N photons at D
with the analyzer at D removed given A. One defines

PN (A) as the probability of detecting N photons at C
with the analyzer at C removed. Thus

Pp) (8, —) = f p(A)Pp (A, 8)P» (A)dA, (6.12)

P~ (A, 8) & P~ (A), P~ (A, 8) & P~~ (A). (6.16)

and introduce the auxiliary assumption

where the one-sided state described by A has been factor-
ized using the locality assumption and we have defined

One selects X = Y = 1. Thus one can use the lemma to
derive the inequality
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P~(8, P) —P~(8, gV) + P~(8', P) + P~(8', P')
&m =

PN(8', —) + PN( —,4)

(6.17)

where the marginal probabilities are replaced by the one-
sided joint probabilities. We have dropped the super-
scripts for simplicity.

The weaker inequality (6.17) derived with the auxil-
iary assumption (6.16) has been traditionally used where
only a single photon pair is emitted from the source at
a time and there is a small probability of actually de-
tecting both photons. One can make measurements and
inferences only on the detected ensemble. Special care
needs to be taken with the auxiliary assumptions in sit-
uations of the type considered in Sec. IV. We examine
the parametric down-conversion in the regime where r
can be large. If attempting to test the N-particle in-
equalities given in (6.17), we measure the joint probabil-
ity PN(8, P) and the one-sided joint probability P~ (8, —)
where no polarizer is present at D. Now in the larger r
regime there is a significant probability that more than
% photons are emitted by the source in each signal and
idler 6eld. Let us imagine %+1photons incident at both
of the analyzers at C and D. If all photons are detected,
this emission will not contribute to the experimenter's
measurement of P~(8, —). It will, however, contribute
to P~(8, P) since it, can give a nonzero probability for
precisely X photons being detected at C+. The auxil-
iary assumption (6.16) thus is not reasonable in this case,

P~'o(»8) ~ P~'(A)

P~~o(A, P) & P~il(A),

the derivation of the following inequality follows:

(6.18)

particularly where higher detection eKciencies are con-
sidered. In Sec. VII we consider another situation where
the auxiliary assumption (6.16) will not be valid.

In the situations of parametric down-conversion with
arbitrary I, the Clauser-Horne-type experiment sug-
gested in this paper therefore employs additional detec-
tors at C and D to select the subensemble where
a total of N photons are detected at C and D. We
consider the derivation of a suitably modified Clauser-
Horne inequality. The one-sided probability P~ (8, —)

in Eqs. (6.12)—(6.17) now becomes P& o ~(8, —), the joint
probability of detecting % photons at D (with the ana-
lyzer at D removed), K photons at C+, and zero photons
at C . P~ (—,P) becomes P~ rv o( —,P), the joint Prob-
ability of detecting K photons at C (with the analyzer at
C removed), K photons at D+, and zero photons at D
The Prv (A, 8) becomes P~ o(A, 8), the probability for de-
tecting X photons at C+ and zero photons at C . given

A. P~ (A, P) becomes PN o(A, P), the probability of de-
tecting N photons at D+ and zero photons at D, given
A. The P~ (A) and P& (A) remain as defined previously.(1) (2)

The probability P~~ (8, $) becomes P~ o rv o(8, P), the
joint probability for detecting N photons at C+, zero
photons at C, X photons at D+, and zero photons at
D . . With the auxiliary assumption now being

+N, 0, N, 0(8) 4') +N, o,N, 0(8& Q ) + PN, 0,N, 0(8 ) 4') + PN, 0, N, 0(8 ~ 4' )

PN, O, N(8) ) + PIV, N, O( ~ 0)
(6.19)

This is the inequality tested in Secs. IV and V. The auxiliary assumption becomes the following: for every A, the
probability of detecting K photons at C+ and zero photons at C is always less than the probability of detecting N
photons with the analyzer at C removed (and similarly for D). The additional detectors at C and D make the
auxiliary assumption reasonable.

B. The Nth-order product Bell inequality derivation

We now derive the ¹h-order product Bell inequality. This is a straightforward generalization of previous proofs of
Bell and CHSH [2]. One may write the measured quantity Erv (8, P) defined in (2.8) and (2.9) in terms of the hidden
variables as

Eiv(8, $) = p(A) E~ (A, 8)E~ (A, P)dA

p)A) (P (A8) —P, A, 9))+P,(A, 9) — ) (PI ')~, y)-P„'*',)i y) +PI ', )'Ay)—

(6.20)

where E~ (A, 8) and E~~ (A, P) are the products defined
in (2.8) at positions C and D, respectively, given the state
specified by A. These products may be defined in terms
of the probabilities P~~ l, (A, 8) and P~~ l, (A, P), where i =.

0, . . . , K. Here PN, (A, 8) is the probability of detecting
N —i photons at C+ and i photons at C, given the
state specified by A. The P~~, (A, P) is the probability
of detecting N —i photons at D+. and i photons at D
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given A. Since

E~ (A 8) &1, E~ (A, P) &1, (6.21) Px (A, 8) + Px ~ (A, 8) + Piv z—(A 8) + '

one can derive the following Bell inequality along the lines
of Bell's original proof for N = 1:

E~ (8, 4) —E&(8, 4') + E~(8', 4) + E~ (8', 4 ) I

(6.22)

Rearranging one obtains

z„(o,y) = f fp)s„"(xg)s„',*'(x

(6.24)

(6.25)

For realizable situations to date involving photodetec-
tors, the probability of detecting a total of N photons at
C and D is small even where one has precisely N pho-
tons incident on each analyzer, because of the detection
inefficiencies. Thus E~(8, P) is small and the inequality
not violated. One may introduce an auxiliary assump-
tion to allow a testable experiment by considering only
measurements over the subensemble where a total of N
photons are detected at both C and D. One defines

P~ (A, 8) + P~ ~ (A, 8) + P~ 2 (A, 8) +
(6.23)

where

f(&) = ~(&) [C'(»~)+P~-'i(»~)+ "]
x ~„"'X, +P„"', &, +" (6.26)

~N —EN(81 4') EN(81 0 ) + EN(81 4') + EN(81 4' )( 2) (6.27)

is the probability distribution for the subensemble. With

the assumption S~ (A, 8) & 1 and S~ (A, P) & 1, and

assuming f (A) is independent of 8 and P (this is the auxil-
iary assumption), one can derive the normalized inequal-

ity

and similarly where EN(8, $) is the product E~(8, $) calculated over

D C D

D.

(c)

D+

D

C+ D

p,(eA)

C D.

C

0 Pea&-.4&

D

kr'

D I
t W~ ~ ~

~ ~ ~

10+~~~ ~

measure the P(-,Q) by
summing oper Q the
diferent outcomes
from the polarizer 8

FIG. 22. Possible experimental con6gurations for a test of the CHSH inequality for (a) a measurement of the joint probability
P~(8, P) with two detectors and two analyzers, (b) a measurement of the joint probability PN( , P) with two detec—tors and
one analyzer, (c) a measurement of the joint probability Ps+&(8, Q) with two detectors and two analyzers for the case of a
]3)]3) photon-number state input [the outcomes where three photons and two photons are detected at each detector will both
contribute to the experimenter s calculation of Ps+&(8, P)], (d) a measurement of the joint probability Ps+&(—,P) with two

detectors and one polarizer for the case of a [3)~3) photon-number state input [the situations where three photons and two

photons are detected at each detector will both contribute to the experimenter's calculation of Psgq(8, P)], (e) a measurement
of the joint probabilities with three detectors and two analyzers for the case of parametric down-conversion, (f) a measurement
of the one-sided joint probabilities with two detectors and one polarizer for the case of the parametric down-conversion, and

(g) a measurement of the one-sided joint probabilities with three detectors and two polarizers for the case of parametric
down-conversion.
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the reduced ensemble.
Previously the weaker inequality (6.27) has been used

for situations where a precise number of photons is (as-
sumed) incident on each analyzer at C and D, but (be-
cause of poor detector e%ciencies) the probability of all
the photons being detected and hence contributing to the
measured subensemble is actually small. Our use of the
inequality in Secs. IV and V is somewhat broader. Let us
select to measure the Nth-order correlation S~ or S~.
For higher r values, there is a significant probability that
the source emits greater than N photons into each signal
and idler 6eld. We are thus considering our measured
subensemble to be one where not necessarily all of the
photons are detected. The standard auxiliary assump-
tion still applies here: that for every A, the probability
of detection of a total of N photons at C (and a total of
X photons at D) is independent of the analyzer angle 8
(and P).

VII. THE VALIDITY OF AUXILIARY
ASSUMPTIONS IN THE CASE OF NOISY

DETECTION

In the recent nonde generate parametric down-
conversion experiment of Smithey et al [16], s.ubshot
noise photon-number correlations for twin pulses each
with approximately 10 photons were demonstrated.
Here one was able to use photodiodes with 85 —90%
quantum efficiency. Thus it is possible to work in a truly
macroscopic regime with the high efficiencies indicated in
Figs. 16 and 17. However, a new limitation does become
apparent. Electronic noise limits the resolution available
in determining N, the number of photons. In the experi-
ment demonstrating subshot noise performed by Smithey
et al. with N = 10 photons the uncertainty in this pho-
ton number was of order AN = 324.

We need to examine the effect of this reduction in res-
olution of photon number detected on the Bell-inequality
experiments we have proposed. Let us consider the ¹h-
order Clauser-Horne experiment as seen in Fig. 22(a)
for the PN(8, P) measurement and in Fig. 22(b) for the
PN( , P) case.—Inthe Clauser-Horne inequality we have
the auxiliary assumption that requires

PNl(A, 8) & PNl(A, —), PN (A, P) & PN (A, —). (7.1)

If one requires the use of extra detectors at C and D as
in the down-conversion experiments for higher r, one has
the auxiliary assumption (6.18). This condition must be
satis6ed for the inequality to be valid. These assumptions
are reasonable when dealing with inefficient detectors.
What happens when we have poor resolution instead of
inefficient detectors?

A. An idealized situation
using correlated photon-number states

Consider the case where we have N photons incident
at C and D. Let us consider our poor resolution to mean
that our detectors could detect NEMAN photons. Here we

use the notation N+ 4N to mean the subset of N —AN.
N —AN+ 1, ..., N + AN —1, N+ AN, which is zero or
positive. We would measure the quantities PN~aN(8, P)
and PNyr, N( , p).—Forthe case X = 3, AX = 1, we

have [Figs. 22(c) and 22(d)] (here we do not add the
additional detectors at C, D )

Psyi(8, P) = Ps s(8, P) + Ps 2(8, P)
+P2 s (8, &j)) + P2 2 (8, $),

Ps+i( —,0) = Ps,s(—,0) + Ps, 2(—,4)
+P..(-, 4) + P. .(-,4), (7.2)

where P, ~ (8, P) is the probability of detecting (with per-
fect resolution) i photons at C+ and j photons at D+.
The P, ~(—,P) is similarly defined, but with no analyzer
at C. According to a local hidden variable theory, we

can write the generalizations of (6.12)—(6.14). Thus, for
example,

N+DN( ~ ~) ~( ) N+aN( & )PN j&N(A& ~)dA&

PNkDN( ~ ~)
(x2)

(7.3)

p(A)P ~ (A)P ~ (A, P)dA,

(7 4)

and the auxiliary assumption (6.16) becomes

0&P (A, 8) &P ~ (A),
(~) (~)

N+~N( ~ ) — N~r N( ).(2) (2)

(7.5)

(7.6)

The assumption is that for every emission A, the proba-
bility of detecting N 6 AN photons is never greater than
that without a polarizer.

Importantly, however, because many situations of poor
photon-number resolution will actually correspond to
high N situations where detector efficiencies may be
high, it may not be necessary to use weaker inequalities.
One could consider testing the stronger inequality in the
poor resolution situation. Here one de6nes the marginal

probabilities, for example, Ps+i(P) = Ps (P) + P2 (P)
and Pz~+~i(P) = Pz~ l(P) + P2 (P) as the extensions of
the probabilities defined in (6.3)—(6.5). The stronger
Clauser-Horne inequality can be derived:

PN~~N(8, P) —PN~~N(8, gV) + PN~~N(8', Q) + PN~~N(8', Q')
& 1

N'+aN( ') + N+~N(&)

(7.7)
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B. The parametric amplifier

One can calculate the eHect of noisy resolution in the
case of correlated photon-number states. However, in
the parametric amplifier case the system is a summa-
tion of many correlated photon-number states, as given
by Eq. (4.2). In this case we use (for both Clauser-Horne
and product inequalities) an extra detector in an attempt
to prepare the appropriate subensemble by ensuring that
the sum of the photons at both C+, C and D+, D is
equal to N. Because of the limited resolution, the state
preparation will not be precise. Such an experiment is
depicted in Fig. 22(e). Now for this arrangement, one still
requires use of an auxiliary assumption, even though one
may have perfect detectors, because we are restricting
measurements to a particular subensemble. The question
that must be asked is whether the auxiliary assumptions
of the type (6.18) are reasonable. The assumptions will
break down. Let us examine again the case of N = 3,
AN = 1. The possible states contributing to the mea-
surement are ~2), ]3), ]4), ~5), which can be seen from the
following analysis of which detections will be interpreted
by the experimenter within the limits of his resolution as
contributing to the relevant subensemble:

C+ detects 3 6 1 while C detects 0 6 1 photons,

C+ detects 2 6 1 while C detects 1 6 1 photons,

C+ detects 1 6 1 while C detects 2 j 1 photons, (7.8)

C+ detects 0 6 1 while C detects 3 6 1 photons;

C+ and C together can detect 2, 3, 4, or 5 photons.

(7 9)

For example, the outcome which the experimenter
records as 3 photons at C+ and 0 photons at C may
arise from detection of 3 6 1 and 0 6 1 photons at C+
and C, respectively. First we notice &om the case, for
example, where we actually detect 3 photons at C+ and
2 photons at C that the state ~5) does contribute to

the required subensemble. However, the outcome where
we detect 5 photons at C+ and 0 photons at C is not
included by the experimenter as contributing. Hence we
can see that the probability distribution for detection
may depend on 8, P and hence the auxiliary assumption
used in the derivation of the usual Bell inequality (6.27)
is not valid. The total number of counts for a particular
8 and P is not independent of 8 and P.

The addition of the extra detector in the Clauser-
Horne-type experiment also causes a breakdown of the
auxiliary assumptions (7.5) and (7.6). Let us consider
now the experiment used to determine P~~~N (—,P)
[shown in Fig. 22(f)]. It can be seen that on the side
with no polarizer (and hence only one detector) the state
~5) does not contribute at all, whereas it will contribute to
the measurement of P~ya~(8, P). Thus the auxiliary as-
sumption is not valid. We might consider modifying the
scheme to include two detectors for this "no-polarizer"
measurement [Fig. 22(g)]. We would leave the second
8 polarizer in and measure with two photon detectors
both channels of the output &om the polarizer. Now the
probability PN (—,P) would be interpreted as the joint
probability of detecting N photons at D+ and a total
of N photons at the C+ and C detectors. The auxil-
iary assumptions here would be that of the product case
discussed above in Sec. VIB. This scheme, too, has
problems. At the C polarizer we have the outcomes (7.8)
and (7.9) as considered relevant by the experimenter for
the N = 3, AN = 1, case. Now the experimenter would
want to measure Ps o s (3 photons at C+, 0 photons at
C, and 3 photons at D+) say, but because of the poor
resolution (b,N = 1), one would actually be monitor-
ing the outcomes 3 6 1 photons at C+, 0 6 1 photons at
C, and 3 6 1 photons at D+. The experimenter then
counts the number of times (measures the rate of such
outcomes) the reading (3, 0, 3) appears, but this is really
the number of times one detects (3, 0, 3), (2, 1,3), (3, 0, 2),
and (3, 1, 2) at the output since the experimenter cannot
distinguish between these. To determine the probability

Pspc+ o~f, c s t, g)+(8, $) we could have perfect event-
ready detectors which tell us when there is an emission.
Then the probability is

[number of times the reading (3, 0, 3) occurs]
(number of emissions)

(7.10)

Next one will wish to measure the result
P2 ~t c~ q ~t c 3 g f D+ (8, P). If we examine the probabil-
ities calculated we observe that detecting two photons at
C+ and one photon at C contributes to both the (3,0,—)
result and the (2,1,—) result Hence it w. ill be calculated
twice and so our calculated "probabilities" would add to
greater than one. Alternatively one could "normalize"
by calculating the probabilities as follows:

(7.11)

Here, however, the sum of all probabilities g, &P; ~ I,

will contain terms such as (2,1,3) twice and hence will be
dependent on the analyzer angles 8 and P. This prevents
the derivation of the usual "weaker" Bell inequalities.
Thus one must be careful when determining a measure-
ment scheme for the P; ~ g. Note that experiments de-
signed to test the product Bell inequality proposed here
require the same care with auxiliary assumptions since
these also, in the case of the parametric amplifier, re-
quire more than one detector at C and the measurement
of more than one P; ~, I, .

To conclude, testing the proposed Nth-order Bell in-
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equalities with a poor resolution of photon number de-
tected can pose problems in the case where the incident
state is generated by parametric amplification. This is
because here states of n, where n is not necessarily equal
to N, photon number can be incident on the analyzers
and cause a failing of the usual auxiliary assumptions
which are introduced in this case (even where there is
a high detection efficiency) to restrict measurements to
the case n = N. These problems may be overcome where
one has incident on the analyzers a state of precise pho-
ton number, so that the state preparation is done before
passage through analyzers rather than after.

VIII. CONCLUSION

%e have shown how multiparticle and potentially
macroscopic states predicted to violate a Bell inequal-
ity may be generated from the correlated photon-number
states P o ]m)]N —m)]m)]N —m) (the four-mode sys-
tem) or ]N)]N) (the two-mode system). The proposed
experiment is also a test of quantum mechanics for states
of higher spin. The proposed experiments are extensions
of those using parametric down-conversion to test quan-
tum mechanics where one photon is incident on each an-
alyzer. The inequality is tested by measurement of joint
probabilities where n photons are detected at one space-
time point. The violation is evident for n = N photons,
but reduces dramatically for n & N, where one loses in-
formation about the n —N photons.

The correlated photon-number states may be gener-
ated via parametric down-conversion. For poor detector
efficiencies the sensitivity of the violation to the value of n
means that at larger gains the direct output of the para-
metric ampli6er gives no violation. This is because the
probability of the amplifier generating ~n+i) ~n+i) (where
i ) 0), rather than ]n) ]n), is significant. Hence violations

are predicted only for regimes where the probability of ac-
tually generating the ~n)]n) state where n is large is very
small. Nevertheless consideration of experiments with
N = 2 would not seem unreasonable. For higher detec-
tor efficiencies, it is possible to "prepare" the ]n) ]n) state
by restricting attention to the subensembles where only
n photons are detected at each of the spatially separated
locations. Here auxiliary assumptions of the usual type
are required. In this case, violations are obtained for all
values of parametric gain. Unfortunately, the probability
of actually detecting the appropriate ]n)]n) state is small
because of the super-Poissonian photon-number distribu-
tion of the output signal and idler beams. Here we have
limited consideration to a classically pumped parametric
down-conversion.

Finally, we have included a discussion and prelimi-
nary calculation for the situation corresponding to the
Smithey et al. experiment. Prior to this experiment,
it seemed that the preparation using parametric down-
conversion of the type of correlated photon states we con-
sider would have been difficult for more than two or three
photons in each beam. Yet in their recent experiment,
Smithey et al. have demonstrated subshot noise photon-
number correlations for twin pulses each with 10 pho-
tons. Here one was able to use photodiodes with 85—90 'Fo

quantum efficiency. In terms of Bell's inequality a new
limitation is electronic noise, which limits the resolution
available in determining n, the number of photoelectrons.
Unfortunately in the case of parametric down-conversion,
with the form of "state preparation" we suggest here,
the auxiliary assumptions used in the formulation of the
classical inequality break down. However, if we could
prepare a correlated photon-number system with only a
small number of significant states, then a strong clas-
sical Bell inequality formulated without using auxiliary
assumptions may be violated and hence there is the po-
tential for a possible test of quantum mechanics in the
truly macroscopic regime.
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