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From Feynman's path integral, we derive quasiclassical quantization rules in supersymmetric
(SUSY) quantum mechanics. First, we derive a SUSY counterpart of Gutzwiller's formula, from
which we obtain the quantization rule of Comtet, Bandrauk, and Campbell [Phys. Lett. 8 150, 159
(1985)]when SUSY is a good symmetry. When SUSY is broken, we arrive at a quantization formula.
which is found as good as and even sometime better than the WKB formula in evaluating energy
spectra for certain one-dimensional bound state problems. The wave functions in the stationary
phase approximation are also derived for SUSY and broken-SUSY cases. Insofar as broken-SUSY
cases are concerned, there are strong indications that the new quasiclassical approximation formula
always overestimates the energy eigenvalues while WKB always underestimates.

PACS number(s): 03.65.Sq, 11.30.Pb

I. INTRODUCTION
/2m[E —V(z)] dx = (n+ 2)z h, (2)

The idea of supersymmetry (SUSY) is based on the
expectation that there may be environments where the
distinction between bosons and fermions is irrelevant
[1]. Although there are some indications that the SUSY
scheme works in understanding low-energy phenomena
[2], it is an observed fact that SUSY is generally bro-
ken. Witten [3] utilized SUSY quantum mechanics to
simulate spontaneous breaking of SUSY through non-
perturbative quantum effects [4]. Despite its field the-
oretic origin, SUSY quantum mechanics has many inter-
esting properties that have been utilized for solving var-
ious problems in nonrelativistic quantum mechanics [5].
In fact, Nicolai [6] had already used the idea of SUSY
quantum mechanics for the study of statistical mechan-
ics. As a quantization method, it has been successful in
reproducing exact solutions of the Schrodinger equation
for a class of so-called shape-invariant potentials [7]. This
relatively new method has also proven useful in studying
more complex problems such as tunneling problems [8),
the Kaluza-Klein monopole [9], the three-body partition
function for an anyon gas [10, the Pauli and the Dirac
Hamiltonian for electrons in magnetic fields [11,12], the
magnetic top [13], and others [14].

In 1985, Comtet, Bandrauk, and Campbell [15] pro-
posed for SUSY quantum mechanics a semiclassical quan-
tization formula, which henceforth we shall call the CBC
formula,

2m[E —P'(x)]dx = n7rh, n = 0, 1, 2, . . . , (1)

where xL, and xR are the left and right turning points
given by P (xl, ) = P (xR) = E. This formula is similar
to but diferent from the well-known WKB quantization
rule,

with V(zL, ) = V(xR) = E. In (1), E is the energy shifted
so that E = 0 for the ground state. It differs from E of (2)
by the energy shift e, that is, E = E+ e. The real-valued
function P(x) appearing in (1), which will be referred to
as the superpotential by following the recent convention,
is related to the potential V(x) of (2) by

V(z) = g (x) 6 g '(z) +
2m

where P'(z) = dP(z)/dx. Depending on the sign of the
second term, E —V(x) equals E —V+(z) or E —V (x)
where V~ (x) = P (z) + (h//2m) P'(x) . The ground state
is customarily assumed to belong to V (z), so in (1) n =
0, 1, 2, . . . for V (x) and n = 1, 2, 3. . . for V+(z).

As is well known, the %KB semiclassical quantization
formula gives exact spectra for exactly soluble examples
provided some Langer-like parameter modi6cations are
made (see, e.g. , [5]). Surprisingly, the CBC formula (1)
has been found to be able to reproduce the same exact
spectra without any ad hoc modification [15]. Even for
those problems that are not exactly soluble, the CBC
formula has been claimed to yield better approximation
than the WKB formula does [16].

The success of the CBC formula is truly remarkable.
Nevertheless, the origin of the formula is not very clear.
There have been attempts to derive the CBC formula
from the WKB formula. Since the WKB formula itself
has the Langer-like ambiguity, such attempts only verify
that whenever the WKB formula is acceptable the CBC
formula should work in the same semiclassical limit. Eck-
hardt [17] has derived the CBC formula from the consid-
eration of Maslov's asymptotic theory. However, in his
analysis, the second term of (3) is assumed, in a way
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similar to other semiclassical approaches, to be the only
term that is of O(h). In reality, the superpotential P(x)
itself may sometime depend linearly on 5 (see the ex-
amples in Sec. IV). Therefore, rigorously speaking, the
derivation, as is given in Ref. [17], is valid only within
a limited framework. It is certainly desirable to derive
the CBC formula directly from what may be taken as the
Grst principle.

If SUSY is broken, however, the CBC formula has no
ground for its validity. A natural question arises as to
whether there will be a CBC counterpart for a broken-
SUSY case. In a previous work [18], we have proposed
the following formula for a broken-SUSY case,

(4)

II. SUSY QUANTUM MECHANICS AND PATH
INTEC RALS

Let us start with the SUSY invariant Lagrangian in
one dimension [22]:

l: = —mx' —P'(x) + (@'-Q —Q'Q)
2 2

&'(*)[&' &]

where @ and Qt are Grassmann variables. From this,
Feynman's path integral can formally be constructed,
which consists of integrations over the bosonic coordi-
nate variables x as well as the fermionic Grassmann vari-
ables vP and gt. After carrying out path integration over
the Grassmann variables [22], we can arrive at two path
integrals in bosonic coordinate variables,

with 4 (xL, ) = p (x~) = E. It has also been shown that
this "broken-SUSY formula" can reproduce exact spectra
for the radial harmonic oscillator and the Poschl-Teller
system [19,20].

In the present paper, we wish to show that the CBC
formula (1) can be derived, when SUSY is good, from
Feynman's path integral by a stationary phase approxi-
mation. Then we report that the CBC counterpart, ap-
plicable only to the case where SUSY is broken, can also
be derived &om the same path integral. Furthermore, we

propose that our quantization formula for broken SUSY
is of practical value as an approximation formula which
is as good as or sometimes better than the WKB for-
mula. However, we have no answer why the CBC formula
can provide exact results for shape-invariant potentials
and why the SUSY approximations whenever applica-
ble are better than the WKB estimations. Section II
brieBy describes the backgrounds for our discussions. In
Sec. III, we develop the quasiclassical approach to de-
rive the quasiclassical counterpart of Gutzwiller s semi-
classical formula for the energy-dependent Green func-
tion from which we obtain the CBC formula (1) and the
broken-SUSY formula (4). In Sec. IV, for a couple of ex-
amples with broken-SUSY, including a class of power po-
tentials, we analyze numerically the results of the WKB
formula and the broken-SUSY formula in comparison
with those from Schrodinger's equation. For the systems
whose SUSY is broken, there are indications that the
standard WKB formula underestimates the energy val-
ues, while the broken-SUSY formula overestimates them.
A way to improve approximation for the energy spectrum
of a broken-SUSY system is also suggested. Remarks are
made in Sec. V concerning the limitation of the broken-
SUSY formula.

*"=~(~)
Kg(z", z';7.) =

~ =~(o)
x'Dz(t),

exp — L~ x, x dt

(6)

for the following effective Lagrangians,

1~(z,x) = mz ——qP(x) p P'(x).
2 /2m

h2 d2

, + 0'( ) + 4'(*),
2m dx2 2m

(8)

which characterize the simplest version (N = 2) of SUSY
quantum mechanics as defined by Witten [3]. Natu-
rally, the path integrals (6) describe the propagators that
are associated with the time evolution generated by the
Hamiltonians (8),

Ky(z", z', ~) = (z"
] e ' "l +

~

z').

The Hamiltonians (8) may be factorized as

(9)

a =xtw, (10)

by means of the operators,

A = —+ P(z),
h d

2m dz
—+ y(z). (11)
d

/2m dz

Therefore, it is evident that H~ are positive semi-
definite, i.e., spectrum (H~) ) 0. For the eigenvalue

problems, H~ vP (z) = E @„(x),we can show that(+) (+) (+)

E„=E = E„)0 except for the ground state and(+) (-)
that

The last term in (7) is a nonperturbative quantum ef-

fect arising from elimination of the fermionic degrees of
freedom (the contribution of all fermion loops). The La-
grangians (7) correspond to the Hamiltonians,

It has been pointed out that there are shape-invariant po-
tentials for which the CBC formula cannot produce exact re-
sults [21].

&'"(*)= &&' '(*) 4' '(*) = &'&"'(*)1 1
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for E„g0. Customarily, the ground state is assumed to
be an eigenstate of H . Namely, by choice, H Qo (x) =
ED@0 (x). The lowest eigenvalue of H+ is Ei(—)

If SUSY is a good symmetry, that is, if the ground
state is invariant under the SUSY transformation, then

(12)

which means that there is no degeneracy in the ground
state and that the ground-state energy must vanish.
Thus, when SUSY is a good symmetry, Eo ——0. This
relation together with (11) also implies

4.' '(*) = t4 '(*o)~xul — f 4)q)~q) (»)

g"=z(T)
K(z",z'; ~) =

~ =~(o)
exp ((i/h) S[z(t)]) 'Dz(t) (14)

When SUSY holds, this solution must exist. In other
words, the ground-state function must be normalizable
(or square integrable). The normalizability of (13) poses
a condition on the superpotential P(z). The ground-state
function (13) is normalizable only when the integral of
the superpotential P(z) tends to infinity as x goes to
Woo. For instance, when we expect a purely discrete
energy spectrum, P(z) must be such that lP(z)l ~ oo as
lzl —i oo. If P(z) is a continuous function having an odd
number of zeros and the ground state (13) has a vanishing
eigenvalue, Eo ——0, then SUSY is a good symmetry [3].
On the other hand, if P(z) is continuous and has an even
number of zeros, the corresponding ground state has a
strictly positive eigenvalue and will be degenerate. Hence
SUSY is spontaneously broken. Therefore, the ground
state of H determines whether SUSY is broken or not.
For the present purposes, it is sufBcient to consider L
of (7) which corresponds to H of (8).

Thus the path integral we wish to calculate is

oscillator and their variations [25,26]. It is interesting to
note that many of these soluble potentials are reducible
to the form (3).

III. THE QUASICLASSICAL APPROACH

For a more general potential system, we have to pur-
sue an approximate solution. The most appropriate ap-
proximation method. in evaluating a path integral is the
stationary phase calculation. In the usual semiclassi-
cal stationary phase approximation the action functional
S[x(t)] is expanded about the classical path z,~(t) as

S[ (t)] = S. ( ) + ~S[*(t)1 + ~ S[ (t)1.

7. fixed i 02S)' „exp —S~ . 18

If there are classical paths more than one, we have to
add up the contributions from all these paths. Thus,
the summation in (18) is to cover all the classical paths
x,i(t) between z' and z" with a fixed time interval ~.
This approximation formula is known to give rise to the
exact propagator for the free particle, the harmonic oscil-
lator, and more general quadratic systems, but does not
directly provide the WKB quantization rule (2). The
energy-dependent Green function evaluated by summing
over the classical paths for a fixed energy E is the source
of the &KB formula. The Fourier transformation of the
semiclassical propagator (18) leads to Gutzwiller's for-
mula [28],

The classical action S,) = S,)(z",x', ~) = S[z,)(t)] is an
action evaluated along the classical path from z' to x",
determined by 8S[z(t)] = 0. Then the propagator is
given by the formula of Van Vleck, Pauli, and Morette
(VMP) [27],

with the action for L

where

G(z", x'; E) '" V'lp )(z')p.)(z")
I

Efixed

x ) exp((i/5) W, ) —i(n. /2) v),
Xci (f )

&-(z) = &'(x)— &'(x). (16)

In fact, (14) is Feynman's path integral with a poten-
tial of the form (16). However, the path integral (14),
whether it is subjected to the condition (16) or not, is in
general diKcult to calculate. There are only a very lim-
ited number of examples that can be exactly solved by
Feynman's path integral. Historically, it is known that
path integration for x E R can explicitly be carried out
only for a quadratic system [23]. If we use polar coor-
dinates, then we may include the harmonic oscillator in
an inverse-square potential to the list of exactly soluble
examples [24]. Furthermore, by mapping into a higher-
dimensional path integral, we can solve the Poschl- Teller

where W, ) = W,i(x",x', E) = S,) + Ew is Hamilton's
characteristic function evaluated along the classical paths
x,~(t) with fixed energy E, and v is an integral num-
ber known as the Morse index. The WKB quantization
rule (2) results from the poles of this Green function.
Again, the WKB formula derived by this semiclassical
approximation gives the exact energy spectrum for the
harmonic oscillator in one dimension. However, it does
not yield the exact result for the three-dimensional ra-
dial harmonic oscillator unless the Langer replacement
E(E + 1) ~ (E + 1/2) is made For other .exactly
soluble examples, exact spectra may be obtained from
the &KB formula by applying appropriate Langer-like
modifications. In other words, most VPKB results for ex-
actly soluble systems are not exact without Langer-like
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replacements. The Langer replacement and other simi-
lar modifications are ad hoc procedures which reHect the
ambiguity involved in the choice of terms of O(h2) for
a stationary action. Applying a Langer-like replacement
amounts to introducing a so-called "quantum correction"
term V, (z) in the Lagrangian. This means that an ap-
propriate effective action,

T

S.s(x(t)] =
(
—T~ —V (x) —V.(T)) «,

0 2

may be chosen so as to generate a result corrected by
a Langer-like modification. So far, no general rules
have been established for the choice of such correction
terms. Therefore, whenever a Langer-like modification is
needed, there is no inherent reason why we should make
the action of the form (15) stationary. In fact, we are
free in principle to make any action stationary. Since
our desire is to improve the semiclassical approximation
within the framework of the stationary phase approach,
we must look for a more suitable effective action which
may be made stationary.

signs are to be taken for the motion to the right and
left, respectively. Since the "classical" paths z,x(t) are
specified by bs[z(t)] = 0, the paths q(t) along which the
tree action (21) is stationary are not quite classical. We
shall call them "quasiclassical" paths, and we shall carry
out the quasiclassical stationary phase calculation for
the path integral (14).

Now we expand the tree action (21) about a quasiclas-
sical path q(t) to second order by letting f(t) = z(t) —q(t)
with z(0) = q(0) = z, i(0) = x and z(7) = q(r)
z,x(~) = z":

s„..[*(t)]= s,.( ",*', )+b's[(, (t)].

Here, S~,:—S~,(z",z', 7) = Sq„,[q(t)] is the tree action
(21) evaluated along the quasiclassical path q(t), and the
second variation b2S[((t)], representing the contribution
&om the Quctuation about the quasiclassical paths, is
given by

(26)

A. Sum over quasiclassica1 paths

In order to seek an alternative and equally qualified
approach, let us recall that the derivative term in (16)
is the contribution from all fermion loops, while the re-
maining part of the action (15) contains only the contri-
butions of the tree diagrams in perturbation calculations.
It is uncertain how much such background information
will remain relevant when we accept the SUSY quantum-
mechanical method as a tool in nonrelativistic quantum
mechanics. Nonetheless, we consider that the key to the
alternative approach lies in separating the action (15)
into two parts,

which immediately integrates, if no turning points are
involved, to

V
= -', [a(z") —a(*')] (2S)

where

where m 02(t) = d2$2(q(t))/dq~.
Then we calculate the path integral (14) by the sta-

tionary phase approximation. Because of the quasiclassi-
cal path dominance, the fermionic action (22) takes the
form,

4(*")
V =V [q(t)] =

22 ~()

s[*(t)]= s -.[*(t)1+t [*(t)]

with the "tree" action,

(20)
a(q) = arcsin

. 4(q)
(29)

T

S„..(T(()] = (
—z~ —p~(T)) «, (21)

1
(( [z(&)l = (t '(z(t)) dt.

2m p

and the "fermionic" action representing the fermion loop
corrections,

In general, the quasiclassical motion takes place period-
ically between the left turning point zL, and the right
turning point zR of the quasiclassical paths. At these
turning points, pq, (zL, ) = p~, (z~) = 0, and the momen-
tum changes its sign. The fermionic action (22) thus
turns to an overall phase to the partial propagator cor-
responding to each quasiclassical path:

px, = (ao + i[a(zR) —a(zl. )],
Then, we pursue an approximation for which the tree
action (21) is made stationary.

Namely, we demand that

where k signifies the number of full cycles of the path
q(t), and (po is the remaining phase due to incoxnplete
cycles. If, in particular, the path has no turning point,

bst„,[q(t)] = 0, (23)

p~, (q) = mq = +/2m[E —$2(q)], (24)

and energy E = (9S&„,[q(t)]—/Ow Here, the .+ and—

which determines specific paths x = q(t) with moxnentum
In the literature the terms "semiclassical" and "quasiclas-

sical" are often synonymous. Here, in contrast, ere are difFer-
entiating the quasiclassical calculation from the usual semi-
classical approximation.
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the phase takes the special form (28).
The quasiclassical approximation of the action (20)

S[x(t)] = Sq, + htp + b S[((t)]

reduces the path integral (14) to

If we further define the quasiclassical counterpart of
Hamilton's characteristic function,

~fixed

IC(x", x'; x) — 1 II(00; x), exp
I

—Sx, + tp), (St)
v(~)

Wq, (x",x', E) = Sq, (x",x', T) + ET = pq, (q) dq,

(40l

where

((~)=o
K(0, 0;x) = exp —I'S]0(t)]) III(t). (22)

((o)=o

The remaining path integral (32) for the second variation
(26) over the ( variable can easily be calculated by the
standard technique [29], which results in the prefactor of
the form,

as well as

OTVq,

OE
02TVq, 07
BE2 OF '

BWq, BSq,
Bx(I Bx(I '

BWq, BSq,
Bx' Bx'

(41)

(42)

K(0, 0;r) =
2~ihf(~)

The function f (t) appearing in this prefactor is the solu-
tion of

At this point, if we wish, we can derive the quasiclassi-
cal counterpart of the VMP formula (18) in a way parallel
to the standard derivation of (18). From (42) it is obvious
that

d2„,+0'(t) f(t) =- o, (34)
B Sq, Bpq, (x") m BE

Bx(Bx" Bx' pq, (x") Bx' '

which satisfies the initial conditions, f (0) = 0 and f (0) =
1. The solution can be put, as is easily checked, in the
form (see, e.g. , [30]),

where we have used the relation Bpq, (q)/BE = m/pq, (q)
resulting from (24). From the Hamilton-Jacobi equation
for the quasiclassical paths, E = —BSq,/Bw, there fol-
lows:

f(~) = q(~)q(0)
[q(t)1'

BE B2Sq, Bp„,(x')
Ox' &.t9x' 0~

m (&)
p"( ') &BEi

Since the velocity q(t) changes sign at every turning
point, we have the relation, Using these results, we replace B7/BE in (38) by

m'q(~)q(0) = (-1)"Ip„(x")p,.(x')I

Here v is the number of turning points along a particular
quasiclassical path q(t) between x' and x", that is, the
number of the zeros of f(t) for t C [0, w], which is in this
case the same as the Morse index [31]. It is zero when 7

is small, and hence the solution f (x) of (34) satisfies the
desired initial conditions.

The right-hand side of (35) may also be expressed in
different fashions. Integrating the inverse of (24) gives
the time interval w as a function of x', x", and E,

fixed v
i t92Sq,

2' 5 Ox' Bx"
(43)

x exp —S,+iy —i —v

(B7 ) 1 I II B Sq0=- —,P"(*')Pq.(*")B,B"„
], BE) m2

and arrive at a quasiclassical counterpart of the VPM
formula,

lg 6g

+/2m[E —P2 (q) ]
(37) B. Gutzwiller's Formula for SUSY' QM

(B~1 1 dk

~ [q(&)]'
(38)

In the last equality, the negative sign is to be chosen when

j ( 0. DifFerentiating both sides of this yields

To And the quasiclassical counterpart of Gutzwiller's
formula (19), we have to go over from the propagator
to the energy-dependent Green function by the Fourier
transformation,

Combining (36) and (38), we may rewrite (35) as
G(x",x'; E) =-

ih
(2'/fi)E2- d
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v' fixed

K z",z', r) /qasg(-2) Ip"(*')p..(*")l

t9 R'qc
gE2

x exp —[Ws.(E) —Ev) + sqs) . (45)

Then we put this into (44) and convert the 7 integration
into the E integration by letting dv = l8w/8El dE =
l8 W~, /8E2l dE to get

m
i - 2~in( —1) lpq, (z')I q.(z")l

8 R'qc

gE2 exp —W~, (E)

+ (E —E) ~—+ iq) dE.

Next, we expand the function W~, (E) about E as

(E) = W (E)+
l 8E' l (E —E)(8', l
&8E)z

2 E 8E')z
(47)

and perform the stationary phase integration over E
about E. In this manner, we are able to arrive at the
following quasiclassical approximation formula for the
energy-dependent Green function:

In going over to Gutzwiller's semiclassical formula (19),
the VPM formula (18) is usually used [29,32]. In much
the same manner, we may utilize the quasiclassical coun-
terpart (43) of the VPM formula to compute the time
integral of (44). However, for clarity, we choose a slightly
different approach.

Substituting (39) and (41) into (33), we express the
propagator (31) in the form,

where

Ws' ——W()' + 2kw(zR),

p„' = p,
' +&[a(xR) o(xL)]i(i) (i)

PI = Pp + 2k)(i) (i)

(49)

se(a) = f )(2as[E —its(q)] dq, (99)

and a(a) =avcsin[ d(a)/V E) as given in (29). The quan-

tities defined for k = 0 are

Wo~'i = w(z") —w(x'),

V o" = —,
' lo(x") —a(z')l

(1)
Pp = 0)

Wo~ i = w(x")+w(z'),

Vo'" = —,
' [o(z")+o(z')] -u(x )

(2)
Pp = 1)

Wo~ l = 2w(xR) —w(x") —w(z'),

Vo" = o(») —
2 [o(z") —o(z')1

(3)
Pp = 1)

to perform the summation in (48). Following Schulman's
prescription [29], we group the set of all paths into four
classes: (1) paths which leave x' to the right and arrive
at x" from the left; (2) those which leave z' to the right
and arrive at x" from the right; (3) those which leave z'
to the left and arrive at x" from the left; and (4) those
which leave x' to the left and arrive at x" &om the right.
They may be reBected at the left turning point zL„or
the right turning point x~, or at the left and right turn-
ing points. Within each class, denoted by the superscript
i (i = 1, 2, 3, 4) in parentheses, a path is uniquely charac-
terized by a nonnegative integer k indicating the number
of full cycles the path contains. For a path with k cycles
in class (i) (i = 1, 2, 3, 4), we write (W~, = W& )

G(x",z', E) = —.'" V'lpq (z')p~ (*")I
Efixed

x ) exp((i/5) Wq, (E)
e(~)

+i(a —i(Tr/2) v) (48)

Wo~ i = 2w(zR) —w(x")+w(z'),

V 0 o(zR) —o(zi, ) ——,
' [u(x") —o(z')](4)

Pp = 2.(4)

Now the sum for a fixed E in (48) can be rewritten as

where the sum is over all quasiclassical paths q(t) from
~' to ~" with a fixed energy E'. This is the quasiclassical
counterpart of Gutzwiller's formula (19).

Efixed 4 oo). ()=) ).()
e(~) i=1 le=p

C. Quasiclassical quantization

For each quasiclassical trajectory with the same fixed
energy value E, we have to find TVq„y, and P in order

The second summation leads to a geometric series which
can be easily evaluated. As a result, the Green function
in the quasiclassical approximation becomes
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~ exp ((i/li)Wg'~ + ilpo' —i(K/2)vg'~)
I/ I. E)

teal&„(x')&„(x//)
I

— xp (t [2~(x~)/n, + a(z„) —a(x&) —~])

1 a(x~) —a(xL, ) l
B/ x~ = 'n+ —— 7rh

2 2'/r
(52)

Apparently, the poles of the Green function (51) occur
when &-' '(z) = lp i(*)l "

( u/(x) 1 . P(x) t

x cos p —arcsin
E-i

'

(56)

where n = 0, 1, 2, . . . . This is indeed a quasiclassical
quantization condition, which implies two different for-
mulas depending on whether SUSY holds or is broken.
To determine the values of a(xL, ) and a(zit) explicitly, we
have to recall the conditions at the two turning points,

4'(zI. ) = 4"(xR) = E or 14'(xL, )l = IW(za)l = ~E
which has two solutions [18]. Accordingly, we have the
following two distinct cases:

Case I: g(xR) = —P(zL, ) = +~E. In this case, it is
apparent from (24) that a(zR) = —a(xI, ) = + arcsin1 =
kz /2. Since the ground state is assumed to be an eigen-
state of H, the upper sign should be selected. The
fermionic phase y has a nonzero contribution which can-
cels the fractional part on the right-hand side of (52).
Consequently, the quantization condition (52) results in

u/(xR) = n7rh, n = 0, 1,2, . . . , (53)

Res G(x",x'; E)
E=E

4m cos ( &
u/(z') + 2 a(z')t)

Qlp i(*') I

cos (-„' u/(z") + 2 a(x"))
v'I& i(z")

I

(54)

which coincides with the celebrated formula (1) of
Comtet, Bandrauk, and Campbell [15]. Since P(z) must
have an odd number of zeros in this case, SUSY is a
good symmetry. For the residues of the Green function
G(x",z', E) at the poles due to (53), we have

which is normalized within the quasiclassical scheme. In
the path integral approach, the results are usually nor-
malized by the basic requirement,

lim K(z",x'; r) = b(x" —z').
rw0

Note that these wave functions are only for the excited
states with E„)0 (n = 1, 2, 3, . . .). The ground-state
wave function has already been given by (13).

Case II: /ti(xIt) = P(zr, ) = k~E. In this case.
a(zR) = a(zr. ) = karcsinl = her/2 and the contribu-
tion of the fermionic phase p vanishes in (52). Therefore,
the quantization condition (52) implies another formula,

1
u/(xIt) =

I
n+ —

I
~h,

2)
n =0, 1, 2, . . . , (57)

which is identical with the formula (4) we have proposed
for the broken-SUSY case. The left-hand side of this for-
mula is the same as that of the CBC formula (1), whereas
the right-hand side equals that of the WKB formula (2).
This formula, which is a hybrid of the WKB and the
CBC formula, is nothing but the usual WKB result for
the "tree" Hamiltonian without the fermion loop contri-
butions (p = 0). Since P(x) has an even number of zeros,
SUSY is broken. The hybrid formula (57) is indeed the
CBC counterpart for broken-SUSY cases. Although the
fermion loops do not acct the spectrum in the present
approximation, there is an e6'ect on the quasiclassical
eigenfunctions. The residues of the Green function at
the poles due to (57) are

where

2m E„—2
q dq (55)

Res G(x", x', E)
4m sin(-„' u/(z') + 2 a(x'))

v'I& i(z')I
sin (-„' u/(z") + 2 a(x"))

v lp i(*")I

(58)

is the period (the time interval for a single cycle) of the
bounded motion with energy E . From this follow the
excited state wave functions for qI, ( x ( q~,

lp~. (z)I "
(u/(x) 1 . P(x) i

x sin p —arcsin
E-)

(59)

We immediately find the quasiclassical wave functions,

To obtain the quasiclassical spectrum for H+ the lower sign
has to be chosen. This leads to the same quantization condi-
tion (53). However, n = 1, 2, 3, . . . for this case.

where n = 0, 1, 2, . . . , and qI, ( x & q~.

The quasiclassical quantization condition (52) derived
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IV. APPLICATIONS OF THE BROKEN-SUSY
FORMULA

A. Exactly soluble examples

It is a remarkable fact that the CBC quantization rule
(1) supplies exact energy spectra for shape-invariant po-
tentials while the WKB rule (2) needs the Langer-like
modification. What may as well be remarkable is that
the broken-SUSY forxnula (57) can also provide without
any ad hoc znodification the exact spectra of systems for
which the superpotential has a general form [19,20],

&(z) = &j(z)+ &/'f(z) (60)

where A and B are constants. The radial harmonic os-
cillator, the Poschl-Teller oscillator, and the modified
Poschl-Teller oscillator are such examples [19,20]. Since
these examples are basic, it would be instructive to com-
pare SUSY coznpatible forzns and broken-SUSY compat-
ible forms of the superpotential explicitly.

(a) The xxxdial harmonic oscillator

in the above &om the path integral is identical with
the rule obtained earlier by Eckhardt [17] from Maslov's
asymptotic analysis. In fact, he also identified the first
case (53) with the CBC formula. However, he did not
recognized that the second case (57) corresponds to bro-
ken SUSY. The hybrid formula (57) was related to bro-
ken SUSY in Ref. [18] and applied to solve quantum-
mechanical problexns in Refs. [19,20].

SUSY formula [34], but those soluble are reducible to the
form given above.

B. The power potential problems

The new quasiclassical formula (4), like the WKB for-
mula (2) and the CBC formula (1), can serve signifi-
cantly as an approximation formula even for non-shape-
invariant systems. In order to present a conspicuous
difference between the approximate results of a SUSY
system and a broken-SUSY system, let us studies a few
exaznples.

The first exaznple we consider is a class of superpoten-
tials of the form,

P(z) =Ax", A&0, k=1, 2, 3, . . . , (61)

which is not shape invariant and not exactly solvable.
In a recent work [16], Khare has studied the case of the
odd power, that is, the case of k = 2d —1 where d is
a positive integer. Since the superpotential is of an odd
power, it has an a single zero but a zero of order 2d —1.
Therefore, the CBC formula is applicable. In the case
of an even power, say, k = 2d, the zero of the super-
potential is of order 2d, so that SUSY is broken. The
CBC formula is no longer applicable. In the earlier work
[16], the even power case has been left out f'rom being
treated within the &amework of SUSY quantum znechan-
ics. The broken-SUSY formula (4) enables us to handle
even power cases and to suppleznent Khare's analysis of
the odd-power problem. 4

The partner potentials derived from (61) for k = 2d
are

V (r) = mu r + — + (r/ —1j2)her,
1 2 2 l(l+ 1)h2

2 2mp2 V (x) = A x 6 x
2' d

/2m
(62)

(l = 0, 1,2, . . ., r & 0) for which

m
P(z) = (ur + x)—

2 2mr'

where x) = —l —1 (good SUSY) or x) = l (broken SUSY).
(b) The Poschl Teller oscillato-r

V (z) = Vp[e(~ —1) csc x+ A(A —1) sec x]
—Vp(rt —A) 2,

(m&1, A&1, 0(z(vr/2) for which

P(z) = ~Vp[A tan x + rl cot x],

where x) = —e (good SUSY) or xl = e —1 (broken SUSY).
(c) The modified Poschl Teller oscillator-

V (z) = Vp[K(K —1)csch x —A(A —1) sech z]
—Vp(xj —A) 2,

(e&1, A&l, x&0) forwhich

(t (z) = [A tanh(x) + x) coth(x)],
2m

where rI = ~ (good SUSY) or rt = e —1 (broken SUSY).
There are other systems soluble exactly by the broken-

Obviously, V+ (x) = V (—x). Hence it is sufFicient to con-
sider V(x) = V (z)+e. As is the case of the CBC integral
for an odd power [16], the integral in the broken-SUSY
approximation formula (4) can be explicitly calculated,
yielding an approximate energy spectrum expressed in a
closed form,

2d/(2d+i)
g/(d+) ~~

(2m j
("d')

- 4d/(2d+1) (63)

After the Srst version of this analysis was submitted for
publication, a similar work on the even-power potential ap-
peared in Ref. [33]. The emphasis there difFers from ours.

We coznpare numerically these energy values with
those obtained from the usual WKB approximation (2).
In addition, we make exact numerical integrations of
the Schrodinger equation. The relative deviations 4 =
(E,„,t, —E ~~, „)/E,„,i {in %) from the exact eigenval-
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10 P x axis diverges as d ~ oc. This is in contrast to the
odd-power potential considered by Khare, which reduces
in the case of V+(z) to a standard one-dimensional box
in the limit d m ao.

The energy eigenfunctions for large d, as observed by
numerical integrations, are of the form

Q,', l(z) = WF(x) sin[(2n+ l)(x+ 1)7r/4], (65)

-10

where X is a normalization constant and the envelope
function F(z) has for large d a shape as shown in Fig. 3.
In the limit d m oo it consists of two unit-step functions
denoted by 6I:

FIG. 1. Relative errors of WKB (+, x, *) and broken SUSY
((&, , A) for the power potential (62) shifted by s = 2 and
parameters d = 1 (+, Q), d = 2 (x, ), and d = 3 (*,E).

lim E„=(h2ir /32m) (2n+ 1) (64)

which coincides with the energy spectrum for the even
states of a particle in an infinite square well of width four

(—1 ( z ( 3). In fact, for large d, the potential V (x)
has the form of an infinite square well of width two with
an additional deep negative dip near x = 1. The area
enclosed by the negative part of V (z) and the positive

ues are shown graphically in Fig. 1 for d = 1, 2, and 3.
We have chosen units such that A = m = I = 1. For the
ground-state energy shift we have taken e = 2. Graphs
of the corresponding potentials V (x) are given in Fig. 2.

The results for d = 1 show that the WKB approxima-
tion of the ground-state energy (n = 0) is better than
the estimate by formula (4). Even for excited states the
results of WKB are generally better than those from (4).
However, for the cases where d = 2 and 3, the broken-
SUSY formula (4) provides better approximations for the
ground-state energies. Except for the first few exited
states, formula (4) is always better than WKB. In the
limit d m oo, we obtain from (63)

lim F(x) =
2 8(x+ 1) —g(x —1) .

d.~oo
(66)

This means that the potential V (x) becomes that of an
infinite square well with Dirichlet boundary conditions
at x = —1 and Neumann boundary conditions at x =
l. It should be noted that the behavior of V (z) near
x = 1 is very similar to that of the derivative-b potential
U(z) = —Ph'(z —1) where P ~ oo as d ~ oo. It is known
that U(x) for P m oo produces the Neumann condition
at x = 1 and decouples the two half-lines x & 1 and
z ) 1 [35]. These asymmetric boundary conditions are
in a sense remnants of the broken SUSY. Therefore, in
the limit d ~ oo, the potential V(z) becomes equivalent
to the left half (—1 ( x ( 1) of an infinite square well for
—1 & x & 3 having the b' potential at x = 1, in which
only the even states of the standard infinite square well
of width four survive. The spectrum (62) is indeed exact
in the limit d m oo. This would suggest that for large
d the new formula (4) will give better energy estimates
than the WKB formula (2) does.

Although the broken-SUSY formula (4) does not nec-
essarily improve approximations as is seen in the case of
d = 1, it adds an important advantage if applied in com-
bination with the WKB formula (2). A closer look at
the relative errors given in Fig. 1 makes us realize that
the WEB estimates are always below the exact values
and that the results of the broken-SUSY formula always
above the exact values. The mean values of the results
of (2) and (4) will give improved energy estimation. This

10

0.5

FIG. 2. The potential V (z) in (62) for parameters d = 1,
2q allci 3.

FIG. 3. The envelope function F(z) defined in (65) for
large d.
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interesting feature is not unique to the power potentials.
There are strong indications that for any broken-SUSY
system the WKB result is an underestimation whereas
the broken-SUSY calculation results in an overestima-
tion.

C. More examples and improved approximations

Eimp =
2 (EwKB + Ebroken)
1 (67)

In Table I and Table II, numerical comparisons between
the improved values and the exact values are shown for
the examples (a) and (b). In both cases the broken-
SUSY formula is better than the WKB formula. This
is clearly demonstrated by the negative sign before the
deviations of the improved values &om the exact results.
Hence averaging of the WKB and the CBC results has

Let us examine additional examples for which the su-
perpotentials are not power functions (a) P(z) = cosh z
and (b) P(z) = exp(z2/2).

Both of these superpotentials satisfy the symmetric

conditions P(zL, ) = P(z~) = ~E at the turning points.
Naturally, the CBC formula is inapplicable. Thus, we
calculate the energy values by using the WKB formula
and the broken-SUSY formula, and compare their results.
Here, for convenience, the ground-state energy shift has
been set to e = 0, which implies E = E. In Fig. 4,
we observe again that the WKB formula (2) underesti-
mates the energy values whereas the broken-SUSY for-
mula (4) overestimates them. We have also examined
other examples [20,36]. Remarkably, al/ the examples we
have examined so far have commonly exhibited the fea-
tures that the results of the broken-SUSY formula are
as good as the WKB approximations and that the two
estimations are separately distributed above and below
the exact values. Therefore, averaging the results &om
the two formulas will lead to an improved approximation
for a system whose superpotential satisfies the condition
&(zr) = &(») = +~E:

TABLE I. Comparison for P(z) = cosh z. The relative
errors parenthesized are given in /0 .

0
Exact
1.7190

3.5578

5.7122

8.1421

4 10.8210

5 13.7291

WKB
1.6688

(—2.92)
3.5165

(—1.16)
5.6754

(—0.64)
8.1088
(-o.41)
10.7906
(—0.28)
13.7021
(-o.2o)

Broken SUSY
1.7650

(+2.68)
3.5890

(+0.88)
5.7380

(+0.45)
8.1652

(+0.28)
10.8430
(+0.20)
13.7516
(+0.16)

Improved values
1.7169

(—0.12)
3.5528

(—0.14)
5.7067

(—0.10)
8.1373
(-o.o6)
10.8168
(—0.04)
13.7269

(—0.02)

Obtained by averaging the WKB and broken-SUSY result
according to (67).

no particular significance. In Fig. 5, we show a numerical
comparison of the WKB estimation and the CBC approx-
imation for the odd potentials P(z) = z~z~, P(z) = zs,
and P(z) = z . This time, we employ the shift s = 2.
Naturally, the WKB formula (2) yields di8'erent results
for the two potentials V (z) and V+(z). In Fig. 5, al-
though we use the same symbols for both WKB results,
the data for V+(z) are connected by thick lines while
those for V (z) are connected by thin lines. For the
CBC formula (1) or (52), we have to use by choice only
V (z) to which the ground state belongs. Note that the
lowest energy for V+(z) is Et. Since the ground-state
energy of V (z) vanishes in this case, the relative devia-
tions 6 become infinite. Therefore, the estimates for the
ground-state energy by the WKB formula are omitted
in Fig. 5. As is apparent in Fig. 5, the WKB calcula-
tion for V sometimes overestimates and the CBC value
may become lower than the Schrodinger evaluation. The
CBC approximation for P(z) = z~z~ with n = 2 gives
b = —0.009% and thus is slightly below the exact value.

TABLE II. Comparison for P(z) = exp(z /2). The relative
errors parenthesized are given in 70 .

4(%)0

FIG. 4. Relative errors of WEB (+, x ) and broken
SUSY (0, 0) for superpotentials, P(z) = cosh z (+, 0) and
P(z) = exp(z /2) (x, ).

0
Exact
1.7663

3.8391

6.4793

9.6317

4 13.2606

5 17 3411

WKB
1.6684

(—s.s4)
3.7455

(—2.44)
6.3874
(-1.42)
9.5414
(-o.94)
13.1727
(—o.66)
17.2562

(—0.49)

Broken SUSY
1.7965

(+1.71)
3.8712

(+o.gs)
6.5126

(+0.51)
9.6664

(+O.s6)
13.2976
(+0.28)
17.3810
(+0.2S)

Improved values
1.7325

(—1.92)
3.8084

(—0.80)
6.4500

(—o.4s)
9.6039

(—0.29)
13.2352

(—o.i9)
17.3186
(-o.is)
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(%%uo)

FIG. 5. Relative errors of WKB (+, x, *) and CBC
(&&, , A) for superpotentials, P(z) = z~z~ (+, &&), P(z) = z
(x, ), and P(z) = z (*,4). The energy shift is e = 2.

D. A nonlinear Geld model

Let us also suggest a possible application of the broken-
SUSY in Geld theories. In analogy to the class of po-
tentials characterized by the superpotential (62) we may
consider a one-dimensional Geld theory deGned by a La-
grangian density of the form

+ P+'"+ ~+' + ~c" '[+', +] (68)
de ' 4„ae
dx dx

which characterizes a one-dimensional Ginzburg-Landau
field 4'(z) coupled to a fermionic field @(z). It is known
[38] that the inverse correlation lengths for such models
are given by the energy eigenvalues of the corresponding
Hamiltonian (8). A quasiclassical estimate of the eigen-
values by (2) and (4) will thus give simple lower and
upper bounds of correlation lengths, respectively. This
might lead to some insights, in particular, to the nature
of phase transitions of such Geld theories even in more
than one dimension. A recent study of Kapuscik, Uzes,
and Barut [39] shows that an exact result of the nonlin-
ear complex oscillator yields a spectrum very similar to
the present quasiclassical result.

the broken-SUSY formula overestimates while the %'KB
formula underestimates. Because of this special feature,
the approximation can be improved by taking an average
of the results from the two formulas.

Unfortunately, the present approach stops short in an-
swering the question as to why the CBC formula, and
the broken-SUSY formula in a limited extent, can yield
exact spectra for shape-invariant potentials without the
Langer-like modiGcation. It has been argued that the
exactness of the lowest stationary phase approximation
may be assured if all the higher-order corrections are
zero. However, it is dificult to show in a general way
that all the higher-order contributions vanish. Further-
more, there are instances that the Grst-few-order correc-
tions even to the WKB approximation vanish while the
Langer-like replacement is still required. It has never
been proven that the Langer-like correction to the %KB
result is indeed stemming from the higher-order terms in
h. The question remains to be answered.

As has been discussed in the end of Sec. III, the con-
ditions at the turning points helps to discriminate good
SUSY and broken SUSY. The antisymmetric condition
P(zl, ) = P(zn) —corresponds to a case where SUSY is
good, while the symmetric condition P(zl, ) = P(zR) im-
plies broken SUSY. If $2(z) is symmetric about the axis
of z = (zL, + z~)/2, then the parity of the superpo-
tential immediately dictates whether SUSY is broken or
not [18]. It may be worth noticing that the fermionic
phase p for full cycles precisely cancels the Morse index

for each path, that is, ps' —po' = Ie/21(os' —oo' ).
when SUSY holds. This is not true when SUSY is bro-
ken. Recently, it has also been pointed out that there is
a close connection between the Maslov corrections and
the parity of the underlying problem [37].

Finally, we have to touch upon shortcomings of the
quasiclassical approach. For a shape-invariant potential,
the scalar function P(z) can be found in a rather simple
form. However, it is not easy to find the function P(x)
for an arbitrary potential V(z). Even if we can get the
function in an analytical form, the integration of the CBC
formula (1) or the new formula (4) will be diKcult. For
instance, if V(z) =- nx", we have the Riccati equation
[40] to solve

V. CONCLUDINC REMARKS
P'(z) + aP (z) = bz", (69)

In this paper, we have derived kom Feynman's path
integral the SUSY counterparts of the Van Vleck —Pauli-
Morette formula for the propagator and the Gutzwiller
formula for the energy-dependent Green function by the
quasiclassical approximation. From the poles of the
Green. function in the quasiclassical limit, we have ob-
tained the CBC formula (1) for exact SUSY and the
quantization condition (4) for broken SUSY. We have
then pointed out a limited role of the broken-SUSY for-
mula in reproducing exact energy spectra and demon-
strated by few examples that the broken-SUSY formula,
whenever applicable, is generally as good as and some-
time better than the WKB formula. We have also ob-
served that the interesting feature that in approximation

with a = —/2m/fi and b = —nv 2m/fi, whose solution
is given by P(z) = a 'u'(x)/u(x) with

where Z„(z) is a solution of Bessel s differential equation;
for example, the Bessel function J (z). Therefore, quan-
tization cannot be done analytically by either the CBC
formula or the broken-SUSY formula (4). The WKB for-
mula (2), however, leads to analytical results in this par-
ticular example. For a more general potential, we must
solve the generalized Riccati equation,
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which is not an easy task. In this regard, neither the CBC
nor broken-SUSY formula surpasses the breadth of the
WKB formula as an approximation formula even though
there are occasions where the SUSY formulas give bet-
ter estimations. Yet, we have to recognize that for many
shape-invariant potentials the SUSY formulas mysteri-

ously yield exact results which the WKB rule fails in
providing.
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