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We have applied the finite-element method to electron-molecule collisions. All the calculations are
done in the body frame within the fixed-nuclei approximation. A model potential, which is added to the
static and polarization potential, has been used to represent the exchange effect. The method is applied
to electron-H, scattering and the eigenphase sums and the cross sections obtained are in very good
agreement with the corresponding results from the linear-algebraic approach. Finite-element calcula-
tions of the R matrix in the region where the static and exchange interactions are strong, however, has
about one-half to one-fourth of the memory requirement of the linear-algebraic technique.

PACS number(s): 34.80.Gs, 03.65.Nk

The finite-element method (FEM) has been used exten-
sively to solve problems in all areas of science and en-
gineering. These problems, which can be very complex in
nature, are commonly described by differential, integral,
integrodifferential, or variational equations which are
very suitable for finite-element applications [1-3]. One
begins the analysis by breaking up the region of interest
in the problem into small elements. Within each element,
the dependent variables of the governing system equa-
tions are approximated by interpolating or trial functions
such as polynomials. System equations are then
transformed into linear algebraic equations in each ele-
ment by substituting the assumed interpolating functions.
Next, element algebraic equations are assembled together
in a much larger set of algebraic equations called the sys-
tem equations, which incorporate the interior boundary
conditions (continuity requirements at the boundary of
two adjacent elements). These algebraic equations which
approximate the system equations are solved for the ex-
pansion coefficients of the dependent variables in terms of
the trial functions. These expansion coefficients can be ar-
ranged to be the values of the dependent variables at
every node (end points of an element), which are then ob-
tained by solving the algebraic system equations. The
global boundary conditions of the problem need to be im-
posed before these equations are solved, since they intro-
duce linear constraint equations that must be added to
the system equations. System equations obtained from
the FEM are normally huge for complex systems, but can
be solved economically because the coefficient matrices
are sparse. The accuracy of the results can be improved
systematically by either reducing the size of elements
over which the solutions are approximated by interpolat-
ing functions, or by increasing the degree of the interpo-
lating functions until the desired convergence is reached.

In the recent years, the FEM has been applied to
quantum-mechanical problems in atomic, molecular, and
solid-state physics [4—6]. For example, the FEM is very
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suitable to study few-body problems by means of solving
the appropriate Schrodinger equation. Wave functions
are approximated by interpolating functions in each ele-
ment with the overall finite-element solution being accu-
rate over the entire domain.

In this paper, we apply the FEM to study electron-
molecule scattering within the rigid-rotor (RR) approxi-
mation [7]. The body-frame fixed-nuclei (BF-FN)
Schrodinger equation for this problem is given by [8]

[V2=2V,,(r,R)+k}Ju(r,R)=0, (1

where k2 and u(r,R) are the energy and wave function of
the scattering electron, respectively. In (1), r represents
the position vector of the scattering electron with respect
to the center of mass of the nuclei, and R is the vector
representing the internuclear separation of the target.
The interaction potential between the scattering electron
and the target molecule is represented by ¥V, (r,R). This
potential can be written in terms of its static, polariza-
tion, and exchange components as

Vi GR)I=V (LR + Vo (LR) AV (LR) . (2)

Static potential results from the Coulomb interaction
between the scattering electron and the constituent elec-
trons and nuclei of the target molecule. This potential
term is implemented here by averaging the Coulomb po-
tential energy over the X 12; wave function [9] to obtain
Vi (r,R).

For polarization, we use an ab initio potential
developed by Gibson and Morrison [10]. This polariza-
tion potential Vpol(r,R) is determined from self-
consistent-field (SCF) calculations where the induced po-
larization is determined as the difference between two
energy-optimized functionals of an adiabatic electron-
molecule Hamiltonian. With the scattering electron fixed
in space, these two functionals correspond to polarized
and unpolarized target wave functions, respectively. The
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nonadiabatic effects are then incorporated using a non-
penetrating approximation originally introduccd by Tem-
kin [11]. The polarization potential has the asymptotic
form '
ag(R)  a,(R)
le(r,R)~—T—*2'rT
where ay(R) and a,(R) are spherical and nonspherical
polarizabilities, respectively.

The exchange effect is the result of explicitly imposing
the antisymmetrization requirement of the Pauli principle
on the system wave function. In this calculation, we use
an approximate treatment of the exchange effect which
simplifies the computation. The particular model poten-
tial used is a variant of the free-electron-gas (FEG) poten-
tial originally proposed by Hara [12]. In this model ex-
change potential, we treat the ionization potential of the
neutral target I as a parameter. The resulting tuned
free-electron-gas (TFEG) potential [10] can be simply
added to the static and polarization components of the
interaction potential. The tuning procedure is carried
out in the BF-FN formulation within the static-exchange
approximation, in which induced-polarization effects are
neglected. This procedure requires knowledge of eigen-
phase sum [13] in one symmetry at one energy from an
exact-static-exchange calculation, in which integro-
differential BF-FN radial scattering equations are solved
[14].

The interaction potential can be expanded in terms of
Legendre polynomials as

Vie(n,R)= 3 v, (r,R)p, (r,0) , (4)
A

P,(cos0) , (3)

where v, (7,R) is an expansion coefficient which can be
used to generate the potential matrix elements in the
FEM analysis of the radial BF-FN Schrédinger equation
as described below.

The BF-FN Schrodinger equation involves the vector
r. This equation can be transformed into a set of coupled
differential equations of variable r by expanding the wave
function u(r,R) in terms of spherical harmonics Y, ,"(?) as

ur,R)= 3 %u,"(r,R)Y{‘(?) , )
!

where A is the projection of the angular momentum
along the internuclear axis (2 axis). Substituting (5) into
(1) gives [15]

d®  I(I+1)
ar: 2 +kd ufl (r,R)
=2§ Vn'(r,R)u{",O(r,R) , (6

which is the standard BF-FN radial equation. In this
equation k3 represents the initial energy of the scattering
electron, [ is the orbital angular momentum of the
scattering electron, and /,, designates a particular linearly
independent solution. The coupling matrix elements
Viu(r,R) are evaluated at internuclear separation R in
terms of the Legendre expansion coefficients v, (7,R) as

V,p(r,R)=Zg;b(ll';A)v;\(r,R) s o)
A

where the angular-coupling coefficients are [16]
DA [(2I+1)(20'+1)

xXC(1,lI',A;0,0,0)C(1,1I',A; — A, A,0) . (8)
In (8), C(,l',A;0,0,0) represents the appropriate

Clebsh-Gordan [17] coefficient. The BF-FN K matrix
KA(R) is obtained by imposing on the solutions of (6) the
K-matrix boundary conditions [18]

ujl (i R)~8y 71 (kor)—Kf (R)y(kor), r—oo

9)

where Z(kor) and A(kyr) are the Ricatti Bessel and Neu-
mann functions, and 8,,0 is the Kronecker delta function.

The partial cross sections can be obtained from the equa-
tion
T
o' (R)=-% S ITj (R, (10)
0 1,

where the T matrix is given by
TAR)=2KMR)[I—iKMR)]7!. (11

In the R-matrix propagation technique, we seek an al-
ternative solution g, (7,R) to Eq. (6) defined by [15]

auno(r=a,R)

u”o(r,R)=2_gIT(r,R)—ar- . (12)
]

Here r =a defines the maximum radial distance occupied
by most of the charge cloud of the molecules, where the
static and exchange interactions are strong. The R-
matrix boundary conditions imposed on g,,o(r,R) are

clear from Eq. (12). At r=0, gu,(r,R) is the zero matrix
and at r=a, [aguo(r=a,R)]/ar is the identity matrix.
Since &, (r=a,R) is just the R matrix, it can be pro-

pagated into the asymptotic region to find the K matrix
and scattering cross sections [19].

In this paper, we apply the FEM to electron molecule
scattering, assuming R-matrix boundary conditions.
These boundary conditions have a clear advantage over
the K-matrix boundary conditions in memory usage, as
discussed below. We compare our results with those ob-
tained from the linear-algebraic (LA) approach [15], and
show that for 1% accuracy, the finite-element code re-
quires far less memory than the LA code. The
justification for using the LA approach for comparison is
as follows: this technique is one of the few that can imple-
ment exchange exactly. The significant memory advan-
tage of the FEM over the LA approach when implement-
ing model exchange is the motivation to believe that once
exact exchange is implemented into the finite element
code, it still requires far less memory than the LA code.
Even though the sparsity of the system matrix in the
FEM is lost when exact exchange is introduced due to the
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coupling of the wave function at different points, our pre-

liminary studies show that the FEM requires fewer
meshes to compute the R matrix in the region of interest,
resulting in a smaller system of equations to solve.

In what follows, we first discuss the finite-element im-
plementation of the BF-FN radial equation and its ap-
propriate K- and R-matrix boundary conditions. Next,
the eigenphase sums and the scattering cross sections ob-
tained from the finite-element and LA approaches, with
both implementing R-matrix boundary conditions, will be
compared. Finally, the clear advantage of the FEM in
memory usage because of the sparsity and smaller size of
its system of equations will be covered.

The finite-element model applied to this problem is
based on the Galerkin method [1]. The wave function
u,,o(r,R) in any element is approximated by [20]

2 —
ullo(r): E [¢a(x )ua+¢a(x)aa], 0=x=<1 ’ (13)
a=1
where
_2x?=3x%+1, a=1
$alX¥)= 302 93 g=2 t4)
and
_ x3-2x2+x, a=1
$ax)=13_12 4oy (15)

define the basis for the expansion of the wave function in
every element. In Eq. (13), x =0 and 1 represent the end
points of any element with the actual radial distance r
within an element given by r =(n —1)h + hx, where n is
the element index and h is the mesh size. These
definitions force u, and #, to be the values of the wave
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function and its derivative at the end points of an element
(x=0,1).

To implement the FEM using K-matrix boundary con-
ditions, we multiply Eq. (6) by each of the basis functions
¢, and ¢,, and integrate in the range O to r,,,, where
Ymax 1S the radial distance beyond which the asymptotic
behavior of the wave function is assumed to be valid. We
now have

f rmax
0

2
a2 HUtD o

dr? r?

ulll\o(r)

—2; Vielrugy (r) ]¢,.(x Ydr=0, (16)

where ¢,(x) (i =1,4) represents any of the basis functions
¢, and ¢,,.

The integral in (16) can now be discretized into N small
elements, and within each element u,,o(r) is approximat-

ed by Eq. (13). Once each integral over an element is
evaluated, the results can be added together to obtain the
linear homogeneous equations AU=0 which approxi-
mate Eq. (6). The size of the square coefficient matrix A
is (2N +2)m, where N is the total number of elements in
the finite-element analysis, and m is the number of cou-
pled equations. Matrix A is sparse and can be divided
into m? partitions of diagonal matrices with a bandwidth
of 3. Each partition would then represent the contribu-
tion of one of the radial wave functions u,,o( r) to the

overall set of coupled differential equations. Implement-
ing the boundary condition of Eq. (9) gives an additional
set of nonhomogeneous equations from which the K ma-
trix can be found. This matrix is then used to find the
scattering cross sections and eigenphase sums for the

TABLE 1. Calculated values of the scattering cross sections in square bohr (top line) and eigenphase
sums in radians (lower line) from the finite-element and linear-algebraic techniques. All the results
shown are based on five channels with » =a set to 10 bohr. This table shows that for all symmetries, the
results obtained from these two methods are in agreement to within less than 1%.

3, 2, I, IT, Total
(eV) LA FEM LA FEM LA FEM LA FEM LA FEM
0.047 33.178 33.452 0.394 0394 0.012 0012 0.016 0.016 33.600 33.874
(—0.094) (—0.094) (0.011) (0.011) (0.001) (0.002) (0.002) (0.002) (0.108) (0.109)
0.070 34.588 34864 0.506 0.505 0.015 0.015 0.035 0.035 35.144 35419
(—0.117) (—0.117) (0.015) (0.015) (0.002) (0.003) (0.003) (0.003) (0.137) (0.137)
0.100 35.953 36230 0.650 0.650 0.018 0.018 0.067 0.067 36.688 36.964
(—0.142) (—0.142) (0.021) (0.021) (0.003) (0.003) (0.005) (0.005) (0.171) (0.171)
0.500 41.874 42.129 2.866 2.854 0050 0.045 0.743 0.742 45.533 45.775
(—0.344) (—0.345) (0.098) (0.097) (0.011) (0.011) (0.038) (0.038) (0.491) (0.491)
1.000 42.438 42.656 6.198 6.164 0.086 0.086 1.693 1.690 50.415 50.596
(—0.497) (—0.498) (0.202) (0.201) (0.021) (0.021) (0.080) (0.080) (0.800) (0.800)
3.000 35.778 35.886 16.038 15946 0.224 0.223 4209 4.201 56.249 56.257
(—0.849) (—0.851) (0.585) (0.583) (0.057) (0.057) (0.216) (0.216) (1.707) (1.707)
5.000 28.723 28.778 16.849 16.772 0.344 0.343 4860 4.849 50.776 50.742
(—1.051) (—1.053) (0.817) (0.815) (0.090) (0.090) (0.306) (0.305) (2.264) (2.263)
7.000 23.231 23.256 14.846 14.796 0.438 0.436 4.725 4714 43240 43.202
(—1.190) (—1.192) (0.946) (0.944) (0.121) (0.120) (0.364) (0.346) (2.621) (2.620)
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electron molecule system.

The finite-element implementation of the R-matrix
boundary conditions is similar to the previous case, ex-
cept that the upper limit of the integral in Eq. (16) is
r=a. Since r =a is at least one order of magnitude small-
er than r_,., the finite element implementation of the R-
matrix boundary conditions require far less computer
memory than the K-matrix boundary conditions.

We have applied the FEM to electron-H, scattering us-
ing the R-matrix boundary conditions. Table I shows the
cross sections and eigenphase sums obtained using this
method and the corresponding results from the LA ap-
proach. In both calculations, we have used five channels
with r =a set to 10 bohr. The energy range used for com-
parison is 0.047-7.0 eV. For all energies, the number of
elements used in the FEM analysis is 14, with two equally
spaced elements in each of the following intervals of r:
0-0.7, 0.7-1.5, 1.5-2.5, 2.5-4.0, 4.0-6.0, 6.0-8.0, and
8.0-10.0. The mesh size obtained in each subdomain
(0.35, 0.4, 0.5, 0.75, 1.0, 1.0, and 1.0) represents the max-
imum value allowed to obtain stable results. Increasing
the number of meshes in the FEM analysis beyond 14 and
thereby reducing the step sizes does not change the cross
sections, implying that convergence is achieved. From

Table 1, it is clear that the results obtained from the FEM
and LA approaches are in agreement to within less than
1% for all energies. All the results shown in this table
are computed on a sparcstation 2 with 20 Mb of memory.
The average CPU time required to obtain the cross sec-
tions for a given energy and symmetry using the FEM
and LA codes is less than 20 s. To obtain the R matrix in
the region of strong static and exchange interactions, the
finite-element code requires a system matrix of size 150
with a density of 17%. the LA code, on the other hand,
results in a full matrix of size 275. Using the standard
IMSL (International Mathematical Statistical Libraries)
routines to solve the appropriate system equations re-
quire 2—-4 times more memory for the LA code compared
to the finite-element code [21]. As a result, for large mol-
ecules, where the number of channels and/or effective ra-
dii for the static and exchange potentials increases
significantly, the LA approach has the disadvantage of
requiring far more storage.
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