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Fundamental limit on energy transfer in k-photon down-conversion
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We show that in the k-photon down-conversion a fundamental limit on the energy transfer does
exist providing the signal mode is initially in the vacuum state and the pump mode is excited. In
particular, in the two-photon down-conversion less than — of the pump energy can be transferred
from the pump to the signal mode. With the increase of the order of the nonlinear process under
consideration the efficiency is even smaller. On the contrary, we show that no restriction on the
efficiency of the energy transfer in the kth harmonic generation does exist, i.e., in this process the
total energy from the initially excited mode can be transferred into the mode which initially was in
the vacuum state. We study restrictions implied by the fundamental limit on the energy transfer in
the k-photon down-conversion on nonclassical effects which can be observed in the signal mode in
this process.

PACS number(s): 42.50.Dv, 03.65.—w

I. INTRODUCTION

In quantum optics due attention is paid to quantum
nonlinear processes [1] in which nonclassical states of
light are generated [2]. A parametric amplifier [3] rep-
resents a nonlinear optical system in which states of
light exhibiting nonclassical effects such as squeezing of
quadrature fluctuations [4,5] or sub-Poissonian photon
statistics [5,6] can be produced. Moreover, the time evo-
lution of mean photon numbers of the light modes in the
parametric amplifier is characterized by a typical quan-
tum collapse-revival pattern [7].

Field modes in the parametric amplifier (i.e., the pump
and the signal modes) do not interact directly. This in-

teraction is mediated via atoms of a nonlinear medium
(crystal). Nevertheless, using the standard procedure one
can derive an effective Hamiltonian describing a nonlin-
ear coupling between the two modes of the parametric
amplifier [see Eq. (1)]. This effective coupling between
the modes is very small compared to the optical pump
frequency, therefore the modes do not interact intensively
enough. To enhance observable effects, one can place the
nonlinear crystal into a perfect resonator (cavity) which
supports the frequency of the signal and the pump modes.
The cavity serves to enhance the interaction of the light
with the nonlinear crystal. In this arrangement the quan-
tum dynamics leads to a strong entanglement between
the pump and the signal modes [8]. Moreover, a back ac-
tion of the signal mode on the pump causes the appear-
ance of nonclassical properties also in the pump mode.
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These effects were studied in detail recently in Ref. [8].
Recently Hillery and co-workers [9] have studied the

degenerate parametric amplifier described in the inter-
action picture and in the rotating-wave approximation
by the Hamiltonian (we consider a two-photon resonance
between the pump mode with a frequency iob and the
signal mode with a frequency io, i.e. , iob = 2~ )

H2 ——A2[(at) b+ (a)2bt],

where a (b) is the annihilation operator of the signal
(pump) mode and A2 is a coupling constant propor-
tional to the second order polarizability of the nonlinear
medium. The dynamics governed by the Hamiltonian (1)

A

is characterized by the integral of motion L = n + 2nb,
i.e., the total number of excitations in the pump mode
and the signal mode is conserved. In other words, the ex-
istence of the integral of motion L reflects a conservation
of the flow of power between monochromatic fields which
are coupled through a nonlinear medium (the so-called
Manley-Rowe relations [10]). In particular, Hillery et al.
in Ref. [9] have shown that if an initial state of the pump-
signal modes is characterized by small Quctuations of the
conserved quantity I = n + 2nb then the number Quc-
tuations in the signal (a) mode are approximately twice
those in the pump (b) mode. In Ref. [9] the process gov-
erned by the Hamiltonian (1) with the pump (b) mode
initially prepared in a number (Fock) state and the signal
(a) mode in the vacuum state has been considered. It has
been shown that in this nonlinear process (the so-called
degenerate down-conversion [1]) the signal mode can ex-
hibit a higher degree of sub-Poissonian photon statistics
than the pump mode only in the case when the pump
is significantly depleted, namely, only in the case when
the mean photon number (nb) in the pump mode at time
t is smaller than one third of the initia1 photon number
(nbp) in the pump, i.e. , (nb) ( nbp/3 Here a natu. ral
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In this case the operator L = n + knb is an integral of
motion and represents a quantum-mechanical interpre-
tation of the Manley-Rowe relations in terms of photon
numbers [10]. If the modes are initially prepared in num-
ber states then at any stage of the time evolution the
number fluctuations of the a mode are k times those of
the b mode, i.e.,

In the process of the k-photon down-conversion with the
b mode initially in a number state ~nbo) and the a mode
in the vacuum state, we find the following relation be-
tween photon-number fiuctuations in the pump mode

[((6nb) )] and the signal mode [((b,n )2)]:

A~ AQ AQ

A~ AQ Ago AQ

nq neo
(4)

From the above it directly follows that if we want to ob-
serve in the k-photon process the signal mode with the
degree of sub-Poissonian photon statistics higher than in
the pump mode then we have to transfer the &action

~
of the initial energy of the pump mode into the sig-

nal mode, i.e., the pump mode has to be significantly
depleted. Moreover, with the increase of the order of the
nonlinear process this &action of the transferred energy
has to be larger.

In this paper we will show that in the k-photon down-
conversion there exists a fundamental limit on the effi-
ciency of the energy transfer from the pump mode into
the signal mode which is initially prepared in the vacuum
state. Moreover, we will show that the higher the order
k of the nonlinear process the smaller is the amount of
energy (for a given initial photon number in the pump
mode) which can be transferred &om the pump to the
signal mode. From here then it follows that the degree of
sub-Poissonian photon statistics in the signal mode will
always be smaller than in the pump mode.

Here we should note that in addition to the efFect of
the fundamental limit on the eKciency of the energy
transfer the quantum interaction between the pump and
the signal modes leads to a strong entanglement between
the two modes under consideration [8]. Obviously if the
pump mode is described as a classical field, then there is
no entanglement between the modes and no pump deple-

question arises whether such significant depletion of the

pump mode in the down-conversion process can be ob-
served. In other words, is it possible that the pump mode
loses 2/3 of its initial intensity? One of the main purposes
of the present paper is to give an answer to this question.

To generalize the problem we consider a k-photon non-
linear process which is governed by the interaction Hamil-
tonian which in the rotating-wave approximation reads
(we assume a k-photon resonance, i.e., orb ——ku )

(2)

tion can be observed. Within this parametric approxi-
mation the interaction Hamiltonian (1) has the form (see
[2,11])

The Hamiltonian (5) describes the production of highly
correlated photon pairs with reduced quadrature fiuctu-
ations. The evolution operator U(t) = exp( —i' "t) (in
what follows we use units such that 5 = 1) correspond-
ing to the Hamiltonian (5) is equivalent to the squeeze
operator S = exp[((at)2 —('a2] (where ( = —iA2t). This
squeeze operator describes the Bogoliubov transforma-
tion by means of which the initial vacuum state of the
signal mode is transformed into the squeezed vacuum
state [2]. The degree of squeezing depends on the pa-
rameter (, i.e., the longer the interaction time the more
energy is transferred &om the classical pump to the sig-
nal mode and the higher is the degree of squeezing of the
signal mode (ideally, for times long enough an arbitrary
amount of the energy can be transferred to the signal
mode which is coupled to a classical current). Moreover,
the classical pump mode is not affected by this nonlinear
process. On the other hand, if the quantum nature of
the pump mode is taken into account then a completely
different picture is obtained. First, the pump and the
signal modes become entangled due to the quantum na-
ture of their interaction. One of the consequences of this
entanglement is that the signal mode via back action on
the pump mode can change the statistical properties of
the pump as well as the signal [8]. In addition, the en-
ergy is transferred not only &om the pump to the signal
mode but also in the reverse way. This happens when the
signal mode which has initially been in the vacuum state
becomes significantly excited. Therefore we can consider
the back action of the signal mode on the pump mode as
a physical reason why just a &action of the pump energy
in the down-conversion process can be transferred &om
the pump to the signal.

In the present paper we will study the k-photon down-
conversion as well as the process of the kth harmonic gen-
eration which is governed by the same interaction Harnil-
tonian (2), but the initial state of the modes a and b is
opposite than in the case of down-conversion, i.e., the
mode a is supposed to be in a highly excited state and
the mode b is supposed to be initially in a vacuum state.
We will show that, in spite of the fact that both the
k-photon down-conversion and the kth harmonic gener-
ation process are governed by the same Hamiltonian, in
the case of the down-conversion there exists a fundamen-
tal limit on the energy transfer, while in the case of the
harmonic generation the total energy from the a mode
can be transferred to the b mode.

IX. THE Ie-PHOTON DOYEN-CONVERSION

In this section we will study how the energy (i.e., pho-
tons) is transferred between the modes in the k-photon
down conversion process (2) in which the annihilation of
one photon of a quantized pump mode gives rise to k
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photons of signal mode. The regime of k-photon down-
conversion can be associated with an initial state of the
form

and therefore the mean photon number in the pump
mode at time t can be expressed as

IC'o) = 10)-IC'p) ~ = ):t ~10)-IN) ~ = ):~~10 N) = ) io, , + 2 ) io, , cos[(E, —E,.)t],

).It~I'=1 (6)
where

~,',, = (Eil@o)(C'olE')(E*lnblE~).

l@o) =Io »
Our results can then be straightforwardly generalized to
the case of an arbitrary superposition state (6) because
the mean values of observables (such as the photon num-
ber) over the state (6) are equal to the sum of their mean
values over independent subspaces weighted with the ini-
tial probability to find a state within a given subspace.

let us assume a subspace characterized by L
kN and formed out of the (N + 1)-dimensional basis

(IO, N), lk, N —1), . . . , Ik(N —1), 1), lkN, 0)). The N+ 1
eigenvectors satisfy the stationary Schrodinger equation

&~IE~) = E'IE')

and can be expressed in the photon-number basis as

N

IE, ) = ) c,„lkn,N —n).

We notice that if E~ is an eigenvalue in Eq. (8) then also
—E~ is an eigenvalue of the Hamiltonian HI, . Moreover,
the corresponding eigenstate has the form

E, ) = ) (—1)"c,—„lkn,N —n). (10)

Now the state vector I4 (t)) describing the signal-
pump system at time t which initially has been prepared
in the state (7) can be expressed through the eigenstates
IE,.) in a standard way:

I@'(t)) = ): * "IE )(E Ic")

where the signal (a) mode is initially in the vacuum state
IO), and the initial state of the pump (6) mode is de-
scribed by the state vector Icp)q. In (6) we use notation
such that lm, n) denotes the signal-pump state with m
(n) photons in the signal (pump) mode. The dynamics
governed by the Hamiltonian (2) cannot be described in
a closed analytical form. Nevertheless, it can be solved
numerically due to the existence of the integral of mo-
tion L = n + kni, (see, for example, [12], and references
therein). Due to this conservation law the whole Hilbert
space is split into a direct sum of dynamically indepen-
dent and finite-dimensional subspaces which are labeled
by eigenvalues of the operator L Theref. ore we will first
study the dynamics of the down-conversion on a chosen
particular subspace corresponding to the initial state

The projection (E~I@o) of the initial state (7) on the
eigenstate IE~) equals c~p [see Eq. (9)]. From Eq. (12)
we can obtain an estimation of the minimum number
of photons in the mode b Bec.ause of the fact that the
time variable t enters the expression for the mean photon
number only via cosine terms, we can find that for any
time t the relation

) ~,', —2) I~,',
I

&n, (t) &) ~,', +2) I~,', I

(14)

is valid. As a consequence of the relation (14) it follows
that in the process of k-photon down-conversion with the
initial state (7) the 6 mode will always contain a number
of photons which is not smaller than

~~=) ~,', —2)

Therefore, if the signal-pump initial state is described by
the vector (7) then it is in principle impossible to transfer
from the pump to the signal more than (nt,p uri, ) ph—otons
(here we remind the reader that nqp denotes the initial
photon number in the pump mode). In other words, the
maximum number of photons which can be observed in
the signal mode during the time evolution is equal to
k(ngp —ioi, ).

From the fact that the parameter ipse given by Eq. (15)
is larger than zero (see later) it follows that there exists
a fundamental limit on the number of photons (i.e., en-

ergy) which can be transferred from the pump to the sig-
nal mode in the k-photon down-conversion process with
the initial state given by Eq. (7). There is one exception
to this general behavior; namely, if the pump mode is

initially prepared in the Fock state with one photon, i.e.,
I@p) = IO, 1), then this photon can be completely trans-
ferred into the signal mode, which means that the pump
can be completely depleted. Otherwise, as soon as the
initial number of photons in the pump is larger than 1 a
portion of the initial pump energy corresponding to the
number of photons equal to ~g will be "trapped" in the
pump.

To illustrate this "trapping" effect we have collected in
Table I some particular values of the quantity (ngp —B&i,),
i.e., the maximum number of pump photons which can be
transferred via A:-photon down-conversion into the signal
mode. To make this illustration even more transparent
we plot in Fig. 1 the energy-transfer efficiency parameter
( defined as
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TABLE I. Maximum numbers of photous neo —wz [see Eq. (15)] which can be in principle
transferred from the pump mode to the signal mode in the process of k-photon down-conversion.

The pump mode is supposed to be prepared initially in the Pock state ~N = neo)q and the signal
mode in the vacuum state.

neo —'ws

%=2
k=3
k=4

N =20
14.356
3.541
0.543

N =21
15.372
6.178
2.770

N =40
28.629
5.503
0.645

N =41
29.701
9.217
3.222

N=60
42.908

7.045
0.704

N =61
44.021
11.614
3.486

N =80
57.190
8.359
0.745

N =81
58.337
13.659
3.673

A~ —&g

&50

1.0

g 0.6—
(D

"- 0.4—
(D

0.2—

0 0 I I I I I I I

20 40 60 80 100
N

as a function of the initial photon number neo in the
pump mode. We analyze separately the case when the
pump mode is initially prepared in the Fock state with
an even number of photons [Fig. 1(a)] and the case when
the pump mode is initially prepared in the odd Fock state
[Fig. 1(b)]. In both cases we study the k-photon down
conversion process with k = 2, 3, and 4. From Table I and
Fig. 1 we see three important features of the process of
k-photon down-conversion. First, the efBciency param-
eter ( decreases with the increase of the initial photon
number in the pump mode. Only the trivial case with
n~ = N = 1 is characterized by total energy transfer
&om the pump to the signal mode (i.e., only in this case
does ( = 1). For any other initial Fock state [nba ——N)s
with N & 1 some part of the initial energy is trapped
in the pump for any t & 0, i.e., we can observe an effect

of the inhibition of the pump depletion which is due to
the effect of the back action of the signal on the pump
mode. From Fig. 1 we clearly see that the efBciency
parameter is a monotonically decreasing function of the
initial number of photons in the pump mode. Secondly,
we should stress that there exists a significant sensitiv-
ity with respect to the fact whether the initial number
of photons in the pump is even or odd. It is important
to note that this sensitivity of dynamics with respect to
the "parity" of the initial Fock state is preserved also for
very large numbers N. Therefore we present two figures
[Fig. 1(a) and Fig. 1(b)] in which we consider either even
or odd initial number of photons in the pump mode, re-
spectively. From Table I and Fig. 1 we see that there is
a significant difference between the maximum number of
photons which can in principle be transferred &om the
pump to the signal mode which depends on the "par-
ity" of the initial number of photons in the pump mode.
In particular, in the case of the down-conversion process
with k & 2 we find for two neighboring subspaces corre-
sponding to N = 2m and N = 2m+ 1 that the efficiency
parameter ( is much smaller in the case when the pump
contains initially an even number of photons. Thirdly, for
a fixed number of photons in the pump mode at t = 0,
the efBciency parameter ( decreases with increase of the
order of the nonlinear process under consideration. In
other words, the larger k the smaller the &action of the
energy which is transferred &om the pump to the signal.
In particular, for N = 2 we can derive an explicit ex-
pression for the efBciency parameter ( as a function of

1.0 4Ai, BI,/(AI, + Bg)2, (17)

0.8—

g 0.6

."0.4

0.. 0 I I I I I I I 1 I f I I 1 I I I I I I
i

I I I I I I I I I [ I I I I I I I I I i I I I I I I I I I

1 21 41 61 81 101

PIG. 1. The efliciency parameter ( [see Eq. (16)] in
k-photon down-conversion as a function of the initial number
of photons n&o in the pump mode which is initially prepared
in the Pock state! N = neo) z. We plot separately two pictures
for the case when initially the pump mode is prepared in the
Pock state with an even number of photons (a) and an odd
number of photons (b). The solid line corresponds to k = 2,
the short-dashed line to k = 3, and the long-dashed line to
k = 4. The signal mode is initially in the vacuum state.

where Ag = 2k! and BI, = (2k)!/k! From this expres-
sion it is clearly seen that ( monotonically decreases as
a function of k.

To understand the phenomenon of energy trapping in
k-photon down-conversion we will analyze the dynam-
ics of the signal-pump system in the basis composed of
the eigenvectors of the Hamiltonian (2). For illustration,
we will consider only a particular subspace of the whole
Hilbert space corresponding to the initial state vector
]0,N). Let us assume the three-photon down-conversion
process with the initial-state vector ]0, N = 41). In Fig.
2 we plot absolute values of the matrix elements is~ [see
Eq. (13)] through which the number of pump photons toq
"trapped" in the pump mode can be expressed [see Eq.
(15)]. Graphical representation of the number its simply
corresponds to the sum of diagonal bars minus the sum
of heights of the off-diagonal bars. The eigenstates ~E~)
are labeled in order of increasing eigenvalues with j = 0
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w(i, j)

FIG. 2. Matrix elements ~m,
~

[see Eq. (12)j in the
three-photon down-conversion (k = 3). The initial state is
taken to be ~0, N = 41).

attached to the first state with a non-negative energy.
It is seen from Fig. 2 that there are just two dominant
contributions coming from two diagonal elements

arioso

)

and zus i i. The off-diagonal elements are strongly sup-
pressed; therefore their contribution to the number uii, is
negligible. This means that the dynamics of the down-
conversion is determined just by torso dominant eigenvec-
tors ~Eo) and ~E i) for which we can find the relation
[E i) =

~

—Eo). These two eigenstates have dominant
overlap (E~ ~@o) with the initial state ~0, N) as can be seen
in Fig. 3 where we plot ~(E~ ~C'o) [2. The orthogonality of
the eigenvectors implies the relation P„(—I)"co2„=0

[see Eqs. (9) and (10)] which suggests that ui~ i o

ufo i (E i~nb~Eo) = g„n(—I)"co„is a small number

(at least in comparison with tv i i = uit o). The other

initial-state weighted matrix elements zv; . are small ow-

ing to small overlaps of the remaining eigenvectors with
the initial state. From the above we can conclude that the

effect of the energy trapping in the pump mode is caus~xi
by the fact that the initial state ~0, %) of the signal-pump
system has a significant overlap with just two mutually
orthogonal eigenvectors, so the dynamics can effectively
be described on a two-dimensional subspace spanned by
these two eigenvectors. Moreover, the off-diagonal terms
w, [see Eq. (13) and Fig. 2] are negligible, so the pa-
rameter mg is approximately equal to twice the value Of

'Noo.

Earlier in our discussion we have noticed that the eN-
ciency of the energy transfer from the pump to the sig-
nal mode strongly depends on the "parity" of the initial
pump state. If initially the pump mode is in a Fock state
with an even number of photons (let us say X = 40) then
in three-photon down-conversion the initial-state vector
of the signal-pump system, i.e. , ~0, N = 40), has a domi-
nant overlap with just one eigenvector ~Eo) (see Fig. 4)
which has an eigenvalue equal to zero. Because of the fact
that the initial state ~0, K = 40) is almost an eigenstate
of the Hamiltonian of the system under consideration we
have to expect that much of the energy is trapped in
the pump mode for any t ) 0. For k & 3 this energy
trapping is much more pronounced. On the other hand
for two-photon down conversion (k = 2) the initial state
with an even photon number (let us say ~0, N = 40)) has
a comparable overlap with three eigenstates ~Eo), ~Ei),
and ~E. i)—:

~

—Ei). Because of this fact the dynamics
of the two-photon down-conversion with the initial states
~0, X = 40) and ~0, X = 41) (or ~0, K = 39) ) are rather
similar. Nevertheless, if we compare two "neighboring"
subspaces corresponding to initial pump photon numbers
equal to N and X + I then we can conclude that in the
case of even initial photon number more energy is con-
fined in the pump mode, i.e. , the efficiency of the energy
transfer is smaller than in the case with odd number of
pump photons.

We should note here that the parameter iUi, repre-
sents a rather rough estimation of the number of pho-
tons trapped in the pump mode. Nevertheless, it clearly
reveals the fact that in the case of k-photon down-
conversion the efficiency ( of the energy transfer de-
creases as the initial number of photons in the pump
mode increases (we have to stress here that this does not

0 5

0 ~ 4-

0, 3 0.6,

Qv 0.2 '-

0.4 I-

0.1
0.2

0
L ~ ~ ~ E ~ I I I I I I ~ ~ I I ~ ~ ~ ~ ~ I ~ ~ I I I I ~ ~ ~ ~

-20 -15 -10 -5 0 5 10 15 20
~ I I ~ I I ~ I I I ~ ~ I ~ ~ ~ ~ ~ ~ ~ I I ~

-20 -15 -10 -5 0 5
I ~ ~ ~

10 15 20

FIG. 3. Overlaps P(j ) = ~(E~ ~40)
~

of the initial-state vec-
tor ~4t) = ~0, N = 41) with eigenvectors of the interaction
Hamiltonian for three-photon down-conversion. Eigenvectors
are indexed in the order of their increasing eigenenergies.

FIG. 4. Overlaps P(j ) = ~(E~ ~40)~ of the initial-state vec
«r ~40) = ~0, N = 40) with eigenvectors of the interaction
Hamzltonian for I%. = 3.



50 FUNDAMENTAL LIMIT ON ENERGY TRANSFER IN k-PHOTON. . . 3497

mean that the maximum number of photons transferred
&om the pump to the signal decreases with the increase
of N). In the case of the two-photon down-conversion
(It = 2) the efficiency parameter ( for large values of
N does converge to a limiting value which is approxi-
mately equal to 0.7. Simultaneously we have to stress
that ms is just the lowest estimation of the number of
photons confined in the pump mode. In fact, the number
of "trapped" photons is much larger than ms which is due
to the fact that the eigenstates ~E~) are not equidistant,
i.e., E~+q —E~ P const (see [3,Z]). As a consequence, the
off-diagonal terms which contribute to the mean photon
number n~(t) given by Eq. (12) and which are "respon-
sible" for the energy transfer to the signal mode oscillate
on different frequencies. Because of this dephasing the
maximum number of photons transferred into the signal
mode is much smaller than toq (here we assume that the
initial number N of pump photons is larger than unity).
Numerical calculations of the time evolution of the mean
photon number presented in Fig. 5 show us that for the
two-photon down-conversion there exists a fundamental
limit on the efficiency of the energy transfer. For N » 1
this efBciency is less than 2/3.

Qur results can be straightforwardly generalized to the
case of the initial states (6) when the signal is still in the
vacuum state but the pump mode is in an arbitrary su-
perposition of Fock states. In k-photon down-conversion
the resulting mean photon number nq is given as the
sum of mean photon numbers nq(N) from particular sub-
spaces which are weighted with the initial probability to
find a state within a given subspace:

ng(t) = ) ib~i'ng(N; t). (18)

Usually the pump mode is assumed to be prepared in a
highly excited coherent state with a Poissonian photon-

41

1 1 I I I I f I I I I [ I I I I f I I I I

81

61-

41-
(c)

0.0 1.0 2.0 3.0 4.0
A2t

FIG. 5. The time evolution of the mean photon number of
the pump b mode in the two-photon down-conversion. The
initial state of the pump is equal to the Foe% state ~N)& with
(a) N=41, (b) N =61, and (c) N=81.

number distribution (PND) with the mean photon num-
ber equal to n~ I.n this case the state ]No neo)q gives a
dominant contribution to the initial superposition of Fock
states of the pump mode. Due to the fact that the eigen-
values E~ corresponding to eigenstates ]E~) in different
subspaces labeled by the parameter N are not equal, the
mean photon numbers ns(N, t) which are given by Eq.
(12) do not evolve "in phase. " Therefore ns(N, t) corre-
sponding to different values of N do not reach their min-
ima simultaneously, from which it follows that the trans-
fer of photons from the initial coherent pump with the
initial mean photon number neo equal to No to the signal
mode is less efBcient than the transfer of the energy when
the pump is initially prepared in the Fock state ~No) s. In
addition, the transfer of the energy would be even weaker
if the pump is initially prepared in the squeezed vacuum
state with the mean photon number equal to No. This
deterioration of the efBciency of the energy transfer is
caused by two effects. First, the squeezed vacuum state
has a super-Poissonian photon statistics, which means
that the PND of the squeezed vacuum is much wider than
the PND of the coherent state with the same mean pho-
ton number. Therefore the effect of the "dephasing" is
more pronounced. Secondly, the squeezed vacuum state
in the Fock basis is composed of only even Fock states.
We have shown earlier that the energy transfer for initial
even Fock states is much worse than for the odd Fock
states; therefore we have to expect that the efBciency of
the energy transfer with the initial superposition of even
Fock states will be very small.

In this section we have shown that the efficiency of
the energy transfer in the two-photon down-conversion is
less than 2/3 and for higher k is even smaller. For ex-
ample, for the three-photon process it is only 15'%%uo and
for A, = 4 less than 4'%%ua if the pump is initially in the
number state with 101 photons. Because of this trap-
ping of the pump energy the pump mode will be always
more sub-Poissonian than the signal [see Eq. (4)]. In
other words, the number fluctuations in the signal mode
measured by the Mandel q parameter which is defined as
q = ((bn )2)/(n, ) —1 (see [13]) can never be smaller
than the Mandel q parameter of the pump mode in the
down-conversion process. Simultaneously, the maximum
degree of quadrature squeezing one can observe in the
signal mode is significantly restricted by the amount of
energy which in principle can be transferred from the
pump to the signal mode (see [Z,14]). This illustrates a
crucial consequence of the fundamental limitation of the
eKciency of the energy transfer in the A:-photon down-
conversion on the statistical properties of the pump and
the signal modes.

III. THE &TH HARMONIC GENERATION

In the previous section we have analyzed dynamics gov-
erned by the Hamiitonian (2) when at t = 0 the mode
b was in the excited state while the mode a was in the
vacuum state. We have shown that in this process (the
k-photon down conversion) a significant portion of the
initial pump (mode b) energy is "trapped" in the pump
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and is not transferred into the signal mode. Now we turn
our attention to the

mo e a is excited (for simplicity we will assume that the
a mode is initially in the Fock state lkN) ) and h

is in he vacuum state l0)i, . We will study whether in
this "reverse" process (the so-called kth harmonic gen-

p ace. One of the motivations f hs or suc an investigation
es in t e fact that following the arguments presented by

Hillery et aL [9] we can derive a relation

(19)

from which it follows that if the a mode loses 1/k of its
initia intensity n o then the degree of number fluctua-
tions in this mode will become larger than in the mode

To answer the question whether in the kth harmonic

photon number of the a mode for the initial state

l@o) = lkN, O). (20)

This state isis within the same subspace of the Hilbert
space as the state l0, N) examined in the previous section.

the time evolution of the mean h t bn p o on number in the
moae a as

n (t) = ) ter, , + 2) tir;, cos[(E; —E,)t],
i(j

,q
= (Ejl@o)'(OolE;)(E'ln IEj). (21)

Accor ing to Eq. (9), the overlap (Ez lCro) for the initial

as in the case of the k- h-photon down-conversion we can
introduce a quantity

=) t'ai, , —2) (22)

which measures the number of photons which cannot in
princip/e be transferred via the kth harmonic generation
from the a mode to the b mode.

The magnitudes of the initial-state wei hted

, . of the imtial state given by Eq. (20) with
N = 41 and k = 3 are presented in Fi . 6. The
state lkN = 123 0) belongs to the same dynamically in-c, =

~ escribed independent subspace as the state [0 N = 41) d

ig. 2 (the eigenstates are labeled in the same wa
contrast with the k- h

in e same way . In
wi he k-photon down-conversion csee Fi . 2i

in the case of thethe kth harmoiuc generation (see Fig. 6)

the sum o
the sum of the ofF-diagonal eleme ten s m; - compensates

any k and N )) 1 in the kth harmonic generation ter ( 0
which means that in principle ll h t ' '

iia p o ons initiau. y stored

'h

0.7

w(j. , j) 0

0.2

FIG. 6. Absol ute values of the state-weighted matrix ele-
men s io, see q. (21)] for the third harmoxdc gene t'

N = 41. The dynamically independent Hilbert subs ace is
the same as in Fig. 2.

n j. er su space ss

m the a mode can be transferred to the mode b Th.
ements m; refiect the overlaps (E;lC'o) of the

o e . e

initia state (20) with the eigenvectors (9). From Fig. i
is seen that the initial state given by E . 20

'
h k-

has significant overlaps with many ei en-
states and therefore man

many eigen-

the mode a can be transferred to the d bo e mo e compare

As there
'

here is in principle no restriction on th ffi
'

armonic generation, one can expect that the

loses 1/k of its initial intensity and its Mande g pararn-
eter exceeds the q parameter f th b do e mo e see [7]).

IV. CONCLUSIONS

We have analyzed an important question about the ef-
6ciency of the energy transfer from one mode to another

o. os I

0.04

0.03

C4

0.02 .

0 ~ 01-

0 ~ ~ 4 ~ k '4 ' 1

-20 -15 -10 -5 0 5 10 15 20

j
FIG. 7. Overla s P

iC'o) = kN, O k = 3
p j of the initialstate vector

) ( = 3, N = 41) vrith eigenvectars vrithm

the same subspace as in Fig. 3.
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in degenerate k-photon processes. We have shown that
in the k-photon down-conversion a fundamental limit on
the energy transfer does exist, providing the signal mode
is initially in the vacuum state and the pump mode is ex-
cited. In particular, in the two-photon down-conversion
less than 2/3 of the pump energy can be transferred to
the signal mode. With increase of the order k of the non-
linear process under consideration the efficiency is even
smaller. On the contrary, we have found no restriction on
the efficiency of the energy transfer in the kth harmonic
generation, i.e., in this process the total energy of the
mode a can be transferred to the mode b which initially
was in the vacuum state.

The fundamental limitation on the energy transfer in
the k-photon down-conversion implies very strong restric-
tions on nonclassical effects which can be observed in
the signal mode. In particular, the degree of squeezing
obtainable in the process under consideration is limited

by the amount of the transferred energy. Analogously,
the signal mode cannot exhibit a larger degree of sub-
Poissonian photon statistics than the pump mode.

In this paper we have discussed the k-photon down-
conversion process with the signal mode initially pre-
pared in the vacuum state. We should note that as soon
as the signal mode is initially excited (even though the
mean photon number in the signal is much smaller than
in the pump mode) the maximum number of photons
which can be transferred from the pump to the signal in-
creases significantly. This "stimulated" transfer of energy
from the pump to the signal mode considerably affects
the dynamics of the modes under consideration. Gener-
ally speaking, the efficiency of the transfer of the energy
from one mode to the other mode depends on the over-
lap of the initial state of the signal-pump system with

eigenstates of the nonlinear Hamiltonian under consid-
eration. In particular, in the k-photon down-conversion
(the signal mode is initially in a vacuum state) the ini-
tial signal-pump state has a significant overlap with only
a few eigenstates and therefore the energy exchange be-
tween the pump and the signal mode is not efBcient (ob-
viously, if the initial state of the signal-pump system is
an eigenstate of the Hamiltonian, no energy is transferred
between the modes). On the contrary, the initial state
of the signal-pump system corresponding to the kth har-
monic generation has a considerable overlap with many
eigenstates of the nonlinear Hamiltonian (2), which re-
sults in an intense interaction between the pump and the
signal mode. As a consequence energy can be transferred
between the modes with very high efficiency (in principle,
close to 100%).

In the investigation of the degenerate k-photon pro-
cesses we have neglected losses due to the dissipative cou-
pling of the signal-pump system to an environment. In
practice, environmental infiuence inevitably leads to de-
terioration of the efficiency of the energy transfer from
one mode to the other because part of the energy is lost
due to the dissipation process. Anyway, we can expect
that for decay rates small enough and the pump mode
initially highly excited our results remain valid.
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