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Hexagons and squares in a passive nonlinear optical system
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Pattern formation is analyzed and simulated in a nonlinear optical system involving all three
space dimensions as well as time in an essential may. This system, counterpropagation in a Kerr
medium, is shorn to lose stability, for sufBcient pump intensity, to a nonuniform spatial pattern.
We observe hexagonal patterns in a self-focusing medium, and squares in a self-defocusing one, in

good agreement with analysis based on symmetry and asymptotic expansions.

PACS number(s): 42.65.—k, 42.50.Ne

I. INTRODUCTION

Spontaneous pattern formation is a topic of great cur-
rent interest across many fields of science [1,2]. Nonlinear
optics is particularly interesting in this field [3,4] because
optical patterns invite both applications and fundamen-
tal interest, the latter extending into the quantum do-
main [5].

Communications and information-processing applica-
tions have stimulated much progress in the field of "1+1"
patterns in optics, involving one space and one time di-
mension. Solitons and related phenomena, and their ap-
plications, are a superb example. The well-known anal-
ogy between dispersion and difFraction enables many of
these results to be carried over into the spatial domain,
with investigations of spatial solitons, both bright [6—8]
and dark [9]. The natural extension into a second trans-
verse dimension yields a "2+1" class of problems which
have proved both rich and controversial, particularly in
relation to "vortices" in lasers [10,11].Driven dissipative
systems have proved rewarding in this "2+1" domain,
with predictions [12,13] and observations of hexagonal
structures and turbulence in a variety of configurations,
notably a Kerr-like medium with feedback mirror [14,15].

In this work we investigate a still bigger and harder
problem, namely a "2+2" system, in which all three space
dimensions as well as time are involved in the nonlinear
interaction. We adopt the standard paraxial approxima-
tion, which is why we have a "2+2" rather than the ul-
timate "3+1"system. The configuration is conceptually
very simple, and in essence extremely common in nonlin-
ear optics, namely a slab of nonlinear medium in which
optical fields counterpropagate. A seminal experiment
using sodium vapor reported far-field hexagon structures
[16]. More recently a similar configuration employing ru-
bidium vapor with continuous-wave excitation displayed
a rich spectruxn of patterns, including hexagons (both
near and far field) and rolls, as well as other less generic
patterns [17].

Neither of these media is adequately described by a
Kerr nonlinearity, but the phenomena we describe are

much more dependent on the geometry than the partic-
ular form of the nonlinearity. Indeed Grynberg [18,19]
and co-workers have themselves used a Kerr model to
obtain qualitiative and even semiquantitative agreement
with these experiments. On the other hand, pattern for-
mation in Kerr media need not, and generally does not,
exhibit the key features to be discussed below. For ex-
ample cross-phase modulation and standing-wave e8'ects,
which are essential to the formation of square patterns,
are absent in recent experiments in liquid-crystal light
valve systems [20,21] which exhibit a large quasi-Kerr
nonlinearity, and are in fact examples of "2+1" systems
as are Refs. [14,15].

In parallel with the atomic vapor experiments, the-
oretical and computer investigations of systems of this
type [18,19,22—25] lent credence to the hypothesis that
these patterns could be ascribed to self- and cross-phase
modulations of the counterpropagating fields. Analytical
results, in the linear limit, gave thresholds and charac-
teristic length scales in acceptable agreement with the
experiments, while simulations in both one [23] and two
[24] transverse dimensions confirmed the linear analysis,
and suggested that hexagonal patterns are indeed the
natural formation, at least for self-focusing media.

In this work we report substantial extensions of these
previous results, particularly in the regime of self-
defocusing Kerr media. We are able to demonstrate by
nonlinear perturbation analysis that two very difFerent
pattern-forming modes exist, indeed coexist, in this sys-
tem. One is a fairly conventional hexagon-forming mode
and is dominant in self-focusing media. The other might
be described as a roll-pattern mode, but we find that
rolls are unstable. Instead square patterns emerge, and
seem to be dominant for self-defocusing media where the
medium supports short-period index gratings, and thus
patterns with a well-defined and finite critical transverse
wave vector [22]. By varying the grating parameter G
(see below) one can favor one or other of these modes,
but the infIuence of the less-favored mode makes itself felt
quite close to the instability threshold, mediating defect
formation and a Hopf bifurcation.
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II. BASIC MODEL

We consider forward and backward amplitudes I" and
B in a Kerr medium of length L, as shown in Fig. 1. For
simplicity we assume that the response is instantaneous
and that the 6elds, and any instabilities, are scalar. In-
cluding the vector nature of the 6elds or the material
response leads to plane-wave instabilities [26,27], a com-
plication we want to avoid. Furthermore, the Kerr slab
is assumed to have perfect antireQection coatings since
otherwise cavity instabilities [28] may be present.

With these assumptions in mind the following equa-
tions are obtained:

= iPV'E + iD(IF I' + GIBI')E,

= i/3V'B+ iD(GIF I'+ IBI')B.
Bz Bt

(2 1)

We have scaled z to the slab thLickness L and t to the tran-
sit time noh/c. The diffraction parameter P is LA/4m in
"real" units, where A is the optical wavelength, and the
Laplacian is in the transverse coordinates x, y only, es-
tablishing the "2+2" nature of the problem. The stress
parameter D scales Kerr efFect, slab thickness, and 6eld
amplitude into a siagle nonlinearity parameter, such that
a single field of unit amplitude experiences a self-phase

F(x,y, z, t) B(x,y,z,t)

Lz-—
2

FIG. 1. Kerr medium and beam con6guration.

shift of D radians in traversing the slab. The remaining
parameter, G, relates the self- and cross-phase modula-
tions. Physically, G values between 2, 1, and (trivially)
0 are of interest [23], but all real values can be analyzed
in a single &amework.

Boundary conditions are all-important in this prob-
lem: we assume that the slab is irradiated &om each side
by constant input beams. Stability of any solution pair
I",B is then a boundary value problem, not an eigenvalue
problem: it requires that all solutioas of the linearized
equations coasistent with the bouadary conditioas must
be damped in time. This is in marked contrast to re-
lated propagation problems [29], where stability merely
requires that all eigenvalues of the perturbation matrix
have negative real parts.

These equations are derivable &om a Lagrangian

—((EE; —F'Fg + BB; —B"Bg) + (FF; —E'F, —BB,* + B'B,))
——((1+G)(IFI'+ IBI')'+ (1 —G)(IEI' —IBI')') + P(IVFI'+ IVBI') dx « (2 2)

(~, + ~.)(IEI') = (~~ —~.)(IBI') = o (2.3)

whose form strongly indicates that G = 1 is a special
case, and indeed the corresponding "1+1"problem is in-
tegrable for that case [30]. That "1+1" system is not
integrable for other nonzero G values: we will be mainly
concerned with such values. An immediate consequence
of the manifest invariance of the Lagrangian under phase
rotations of either I' or B are the conservation laws

the conservation laws (2.3) and the absence of reffections,
instability in this system arises through spatial redistri-
bution of the optical energy as it traverses the slab due
to cross- and self-phase modulation. This redistribution
involves all three spatial dimensioas in an essential way.

It is the linear, and noalinear, stability of the homoge-
neous solution (2.4) which we are going to consider in the
following sections. In order to do so we make a change of
variables to a basis most convenient to display the struc-
ture and symmetries of the problem. We 6rst set

Here the ( ) brackets denote either an integral or an aver-
age over transverse coordinates, while the derivatives are
along the respective characteristics. It follows that input
plane waves at z = +1/2 give rise to a simple zero-order
homogeneous solution

E = Fo(1+f), B = Bo(1+&)

along with the boundary conditioas

f(z = —-', ) = S(z = +-', ) = 0.

(2.5)

Fo(z) = Fo(—2) exp (iD(l + G) (z + -') ),

Bo(z) = Bo(+z) exp(iD(l+ G)(i —z)).
(2.4)

On replacing (2.5) into (2.1) we find the following coupled
equations:

(~ +~*)f='0v'f+'D((f+f'+ lfl')
+G(~+ t" + I&l'))(1+ f)

In the analysis and numerical investigations we adopt a
scaling such that the input amplitude is unity and vary
D, which is equivalent to varying the input, intensity (or
indeed the slab thickness or Kerr coefficient). Because of

(Og —8, )b = iPV 6+iD(G(f + f'+ If l )

+(b+ b' + lbl'))(1+ ~).

(2.7)
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f =
4 (Ug + Us + i(Uz + U4) );

b = 4'(Us Ug + i(U2 —U4)).

(2.8)

We will use the notation that V g Ik = [Uq, Uz] and
W 6 R = [U3 U4] . Using (2.8) in (2.7) leads to the
compact form

This form displays the symmetries and physics of the
problexn but for analytical purposes we choose a diferent
basis by reexpressing the four variables (f, f', b, b') in
terms of a real column vector U E IR = [Ug, U2, Us, U4]:

linear solution which has an even symmetry in z, while
the other group of curves defines a linear solution that
has an odd symmetry in z. Since the symmetry of the
linear solution is important in terms of pattern selection,
we show in Sec. IIID that the first mode to become un-
stable for DG ) 0 is an even xnode, while an odd mode
first becoxnes unstable for DG ( 0, provided the spatial
grating is present (G ) 1). In Sec. III E we compute the
adjoint solutions of the linear problem, as we will need
those to carry out a nonlinear analysis.

A. Linear equations

Jt9)U+ ZU = DAfj (U~U) + DAI2(U[U~U), (2.9)

with boundary conditions given by

V(x, z = —2) + W(x, z = —2) = 0,

W(x, z=-,') -V(x, z=-,') =O.
(2.10)

The detailed form of the operators in (2.9) are shown in
Appendix A. The linear operator 8 = 8, —M, M being
a matrix which depends on V'2, D, and G. The nonlinear
operators are of the order indicated by their arguments,
i.e., JVq is quadratic while Aq is cubic. Equation (2.9)
will be the starting point for our analysis.

It has previously been shown [23] that, in most param-
eter regimes, the equilibrium plane-wave state becomes
unstable, on increasing ~D~, to a transverse perturbation
with finite wave number, a precursor for pattern forma-

tion. The resulting instability is stationary in the sense
that its temporal &equency is zero. For self-focusing me-

dia (D ) 0), all values of G (G g 0) result in such an
instability. For self-defocusing media (D ( 0), however,

there is a set of G for which the equilibrium solution
first becomes unstable to a short-wavelength perturba-
tion, which actually coincides with the phase-conjugate
oscillation (PCO) limit [23] of this system. We will only
consider values of G for which this is not the case.

The linearized equations are obtained by dropping all
nonlinear terms in (2.9) to give

JBgU+ ZU = 0. (3.1)

III. LINEAR ANALY'SIS

In this section we will review the linear stability analy-
sis of (2.9), and present results which turn out to play an
important role in deciding which patterns our nonlinear
system may select. In Sec. IIIA we will calculate the
explicit form of the linear solutions, and derive the equa-
tion which defines when such solutions exist. This is done
exclusively for the case of equal puxnp intensities, since
we can take advantage of the consequent re8ection sym-
metry to obtain fairly simple exact solutions. We do not
expect these results to change dramatically for the case
of slightly unequal pump intensities provided we operate
close to the instability threshold. In Sec. III B we review
the. form of the neutral stability curves, which come in
two groups, and present the explicit form of the linear so-
lution on each of these curves. Furthermore we show that
the analysis for negative values of the grating parameter
G presents no new difficulties and gives insight into the
structure and symmetry of the problem. In Sec. III C we
demonstrate that one group of threshold curves defines a

We look for solutions of the form

U(x, z, t) = u(z)e'"'"+"', A = o + i~,

which must satisfy the boundary conditions

v(z = —-', ) + vr(z = ——,') = 0,

w(z = -') —v(z = 2) = 0.

(3.2)

(3.3)

Several authors have previously analyzed this problem
in great detail [22,23,25,31—33]. The threshold for insta-
bility of the homogeneous solution (2.4) is obtained by
setting 0 = 0. When the input beams are of equal in-

tensity, the lowest threshold for instability corresponds
to a static instability ~here u = 0. The instability may
become oscillatory when the pumps are of unequal in-

tensity, and we refer the reader to previous publications
[25,32,33], detailing the resulting linear analysis, for this
case. Here we only consider the case of equal puxnp in-
tensities. In this regime we may set u = 0, in which case
the linear equations (3.1) decouple into the form

D,u(z) = Mu(z), M =
2

0 Pk2
—@./Pkz 0 , g=1, 2, (3.4)

where 01~ pk (pk +2D(G 1)) and Q2 —pk (pk 2D(G+ 1)). Notice—that @q or @2 may be imaginary. Solutions
to this system are of the form

Mu(z) = exp (M(z + —))u(——) =
0 (3.5)
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where the off-diagonal nature of M~ makes explicit expo-
nentiation straightforward (see Appendix B):

exp(M, .z) =
cos ~z

sin ~z

k2
sin ~z

cos ~z

(3.6)

On applying the boundary conditions we find that

(exp(Mq) + exp(M2))v( —2) = 0. (3.7)

Nontrivial solutions exist when det( exp(Mq)
+exp(M2)) = 0. From Eq. (3.6) this condition is given
by

2 + 2 cos(@g) cos($2) + —+ —sin(gg) sin(tP2) = 0,
A)

(3.8)

which agrees with previous analysis of this system [23].

B. Threshold curves

The threshold curves for onset of stationary instability
are given by the solutions of (3.8). To generate neutral
stability curves in the Pk2 Dplane w-e choose a value of
k2 and find the value of D which solves Eq. (3.8) for a
given value of G. Due to the transcendental nature of
(3.8) we find that there are an infinite number of neutral
stability curves. These curves, however, split into two
groups because (3.8) may be factorized to give

Hl H2 ——0,

10
k

FIG. 2. Threshold intensity for focusing (D & 0) and de-
focusing media (D ( 0). The solid lines represent neutral
curves de6ned by H~ ——0 while the dashed lines represent
those de6ned by H» ——0.

analysis for negative G presents no new difBculties. In
fact the results are almost identical and yet the dif-
ferences are very important. Notice that G m —G

Since Qz ~ Qz ~ Hq ~ H2 the thresh-
old curves are identical, except that any curve de6ned
by Hq ——0 for positive G will be defined by H2 ——0 for
negative G, and vice versa.

The crossing points occur when H~ ——H2 ——0. The
difference, Hl —H2, is given by

Hz —H2 —— ———sin(Qz/2) sin($2/2)

4DGPk2
sin(Qq/2) sin($2/2).

1 2

where the function Hl is defined by

H~(4i @2) = —'»n(4~/2)»n(42/2)2

+ cos(@i/2) cos($2/2) (3.10)
Hy ——H2 ——cos(@g/2) cos($2/2). (3.12)

In general then Hl ——H2 when one or both of the sine
terms vanish. This happens if @; = 2m+, m = 1, 2, ... and
when this is the case

and H2(vP&2, $22) = Hz(gz, g~). A group of threshold
curves are de6ned by H~ ——0 with the other group
of curves de6ned by H2 —— 0, and they cross when
Hq ——H2 ——0. In Fig. 2 we plot against Pk the lowest
value of !D! for which Hq ——0 and the lowest value of
~D! for which H2 ——0, for the key cases of G = 1, 2. The
threshold diverges as k ~ 0, while for large k we 6nd
that ~!DG[ -+ n. /2, which is equivalent to the standard
PCO limit.

As !D! is increased, the system becomes unstable on
crossing the lowest curve. Instability will therefore oc-
cur at the k value that has the lowest value of ~D!.
We denote this point in the Pk Dplane as the cr-iti-
cal point and label it (Pk„D,). Note that in three of the
four cases illustrated this value of k corresponds to that
of the minimum threshold intensity. In the fourth case
(D ( 0, G = 1) the lowest threshold occurs in the large-
r domain, and is exactly the PCO limit. As mentioned
earlier this case, and any like it, will not be considered
further.

One of the reasons for considering G E R is that the

4Pk2)

~'(, ~m2 —n2~
(Pk ) = —m +n +sgn(D)'

(3.13)

A little calculation shows that [D[ is smallest for m =
n+1, larger differences giving higher-order modes. These
formulas are very useful for checking the threshold curves
generated by (3.8).

We now have all the ingredients to write down the

If @; = 7r then Hq ——H2 ——0 requires that v)~ = (2n+1)x,
i g j,n = 0, 1, 2, ... . Hence the crossing points are given
when both @q and @2 are integer multiples of m, say mar,
nm where one of the m, n must be even, the other odd. If
DG & 0 then m & n and m ( n if DG ( 0. The location
of the (m, n) crossing point in the Pk Dplane is given-
by (m & n & 0),
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2 (sin@q sin@21+
CDS)Ill) + L'os(@2)

(3.i4)

This one-parameter family of solutions constitutes the
null-space (N) of ( exp(Mq))+exp(Mq) and consequently
N is one-dimensionaL Using (3.14) the linear solutions
are given by (3.5) and the solutions in terms of the orig-
inal basis can be constructed through (2.8). These solu-
tions are defined at all points in the Pk2 Dpla-ne which
lie on a threshold curve. Determination of the linear so-
lution at the critical point requires that we know where
the critical point is. Except for a few special cases we
have to compute this point numerically. We can, how-
ever, say something in general about the symmetry of the
linear solutions on the neutral stability curves.

C. Symmetry of linear solutions

The counterpropagating system (2.1) is invariant with
respect to re8ections about the midplane z = 0. This
means that the linearized version of (2.7) is invariant un-
der exchange of f and b while refiecting about the mid-
plane. This symmetry, although noted earlier [19], has
not been taken advantage of in previous analyses. As
we pointed out earlier, away &om the crossing points
dim[N(exp(Mq) + exp(M2))] = 1, which allows us to
conclude that

f(x, z) = pb(x, —z), b(x, z) = pf(x, —z). (3.15)

On applying this symmetry one more time we see that
p = +1. In terms of our new basis this symmetry takes
the form

linear solution at threshold. In particular we will be in-

terested in the linear solution at (Pk2, D,). Away from

the crossing points the solutions of (3.7) are given by

D. First curve crossed

We have been able to show that the linear solutions at
threshold can be characterized by a symmetry involving
the exchange of the counterpropagating fields. On one
set of curves f(x, z). = b(x, —z) while on the other set
f(x, z) = —b(x, —z). As we increase our stress parameter
the system first becomes unstable at (Pk2, D,). If we

know which curve this point lies on then we immediately
know about the symmetry of the linear solutions at the
onset of instability. It is therefore of interest to calculate
which curve we cross first. We have been able to prove
the following result for G g' [

—1, 1] (see Appendix B):

If DG & 0 then H2 ~ 0 first;

If DG & 0 then Hq ~ 0 first.
(3.1S)

Thus the even mode gives the first minimum (i.e., the
one closest the optical axis k = 0) for DG ) 0, and the
odd mode for DG ( 0. Since in most cases this is also
the mode with the lowest threshold D, this has profound
consequences for the nonlinear behavior and the pattern
formation, as we will see in the following section.

E. Adjoint solutions

(3.19)

then integration by parts shows that u+ must satisfy

8+u = (8, + M')u = 0, (3.20)

along with the adjoint boundary conditions

Before proceeding to consider the nonlinear stability of
(2.4) we calculate the adjoint solutions of (3.1), since we

will need these in the following section. If we define the
adjoint problem in the usual manner [34],

U(z) = pPU( z), P =— —1 0
0 1

(3.i6)

uA uA
1(1/2)+I ~ 1(1/2) =o

(3.21)

The possibility of having two values of p, combined with
the result that the threshold curves are defined by one of
two factors being zero, suggests that the value of p may
depend on which neutral curve we are on. Indeed this
is the case, and we have proved the following result (see
Appendix B):

Again the solution to (3.20) can be explicitly calculated,
and indeed a little algebra reveals that it is possible to
write the adjoint in terms of the linear solutions through

If Hq =0 and H2 P 0 then p = —1;

If H2 ——0 and Hq g 0 then p = +1.
(3.17)

u (z)= 0 ~ u( —z), lC=K 0 0 1
(3.22)

Therefore the linear solutions have even symmetry (p =
+1) when we cross a curve defined by H2 ——0 while they
have odd symmetry (p = —1) when we cross a curve
defined by Hq ——Q.

IV. NONLINEAR ANALYSIS

In this section we present the results and details of a
nonlinear analysis of the full counterpropagation equa-
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A. Theory

In the preceding section we saw that there is a critical
value of D, above which the homogeneous plane-wave so-
lution (2.4) becomes unstable to perturbations at a finite
wave number. Of course, due to the rotational degener-
acy of the problem, there are a continuum of such modes
and in two transverse dimensions these lie on a circle of
radius k, . From a linear point of view all of these modes
are equally favored and the final outcome is determined
by nonlinear coupling between these modes. In many
physical systems the resulting dynamics is limited to one
(rolls), two (rhombi), or three {hexagons) modes. The
goal of this section is to investigate which con6guration
is preferred for our system.

Our analysis is restricted to considering the possible
patterns near onset where

(4.1)

and we proceed by expaading the field U in an asymp-
totic series depending on the stress parameter e,

U(x, z, t) = ) p„(~)Ui"l( zx, t), (4.2)

where the members of the series are determined by the
nonlinear balances and pe(e) is chosen to balance the
linear growth rate with the leading nonlinear correction.
The zeroth-order solution U~ ~ is taken to be a linear
combination of the Fourier modes which lie on the critical

tions. A previous nonlinear analysis of this system [19]
removed the longitudinal structure by taking, w'hat es-
sentially amounts to, a mean-6eld limit. This limit, how-
ever, forces hexagoaal structures since it assumes that
the linear solution is aa even mode. The relevance of
this last comment will become clear. In Sec. IVA we
present the technical background required to carry out a
"weakly noalinear" aaalysis, both for completeness and
for the reader not versed ia these techniques. Having
done so we 6rst apply these techniques in one transverse
dimension, both to demoastrate the solution process and
to show that excellent agreement between numerical and
analytical results can be obtained. This is detailed in
Sec. IVB. Finally, we analyze in Sec. IVC pattern for-
mation in two transverse dimensions. Ia particular we
show that in self-focusing media the quadratic noalin-
earity that is responsible for hexagonal pattern forma-
tion is large and makes hexagons the likely pattern, as we

demonstrate by numerical simulation in the following sec-
tion. Furthermore, we show that in self-defocusing me-
dia the quadratic term vanishes, as a direct consequence
of the symmetry of the linear mode. Further analysis
points to the likelihood of square patterns which satu-
rate at quintic order rather than the usual cubic order,
another prediction that we have confirmed through nu-

merical simulation. Our analysis reveals many subtleties
and complexities involved in this problem which we have

only partially resolved. These features may interest the
patterns community in general.

circle, each with their own amplitude A~

( N

Ui l =- u~ ~(z) ) A,.e'" "~"+c.c. ; ~k,
~

= A:, (4.3)

where uI i(z), which depends on A:, is the longitudinal
structure of the neutrally stable mode. To make al-
lowance for the slow temporal dynamics of these modes
we allow their amplitudes to depend on multiple time
scales so that

0 =EOT +6T +.. .2 (4.4)

ci, A~ = eA~ + a, t A( A' —) p, (A(A( A~.
l=1

j = 1, ..., X (4.5)

and have been derived by many authors in a multitude
of physical contexts. The quadratic coefBcient 0~~ can
only be nonzero when kz. + ki + k = 0 (N = 3). In ro-
tationally degenerate problems (where the critical modes
lie on a circle) this condition may only be satisfied when
each of the three wave vectors mutually subtend an angle
of 2vr/3, thus forming an hexagonal pattern. If 0'i~ is

nonzero we know that, suKciently close to threshold, the
quadratic term will initially dominate, leading to hexago-
nal patterns. However, since there is no saturation at this
order, we cannot say, in general, what the loag term be-
havior of the system is. Experience [1] leads us to expect
that hexagonal patterns of transcritical type will domi-

nate. This situation is generic in the absence of further
structure or symmetry. However, a symmetry such as
the inversion symmetry A; ~ —A, may force o.

~~ = 0.

Figure 2 indicates that above threshold there exists a fi-

nite bandwidth of modes which become unstable. %e
may include this sideband degeneracy efFect by allowing
the A~'s to depend on slow spatial scales X and Y but
we pay the price in that the dynamics of the A~'s are de-
scribed by partial difFerential equations. The advantage
is that not only do we correctly capture the behavior
near D„but the partial differential equations that the
.4~ 's satisfy are universal, and are often referred to as
the order parameter equations [2]. At this point we are
primarily interested in the existence of certain patterns
and so we may ignore the 6nite bandwidth effect, derive
a set of ordinary differential equations for the A~'s, and

determine which patterns are likely. If necessary we can
then add the envelope structure which allows for trans-
verse modulations of the amplitudes.

Replacing (4.1), (4.2), and (4.4) into (2.9) gives rise

to a set of equations at each order in ~. For a givea
value of e, equations for the amplitudes A~ are obtained
as solvability conditions which must be applied ia order
to compute the iterates U~ &, U~ ~, . . . in the expansion
(4.2). When the solvability conditions up to third order
are combined (this is the first order with saturation) we

arrive at amplitude equations which assume the generic
form
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The cubic terms are generically present, with or with-
out the inversion symmetry, and arise from interactions
which involve three-wave mixing of the form k~ +k~ —k~.

If the quadratic coefficient is O(a~~2) then we may bal-
ance linear, quadratic, and cubic terms by choosing A~

also to be O(e~~ ). In this case the behavior is captured
by the bifurcation diagram [35] shown in Fig. 3. For
Ey ( 6 ( c3, 6] Q 0 hexagons are stable while for e ) E'2,

rolls are stable. In between, e2 ( e ( e3, the two states
may coexist although one may invade the other.

If, on the other hand, the coefficient o~~ is O(1)
then the subcritical solution which balances linear and
quadratic terms is unstable and there are no small am-
plitude stable solutions. Nothing can rigorously be said
about the final outcome, although in many problems the
hexagonal branch will turn around and become the stable
solution. It appears that a hexagonal pattern is generi-
cally preferred [1] close to threshold unless the inversion
symmetry A; ~ —A; is present, although we know of no
concrete results concerning this.

Before we consider hexagons in more detail, we first
look at the case of rolls (N = 1). The reason for this
is twofold. Since this calculation only involves one mode
the algebra is not too involved and we may step through
it in order to highlight certain parts of the solution pro-
cess. For hexagons and rhombi we will not show the
details, only the final result. Furthermore, the only rel-
evant "pattern" in one tranverse dimension is the roll
and we will be able to show excellent agreement between
analysis and numerics in this case.

balance we choose po(e) = e ~, pq(e) = e, p2(E) = e ~,
and so forth. We expand the operators in (2.10) in terms
of e (see Appendix C) and group the resulting terms at
each order in e. At first order we recover the linear prob-
lem

O(e ~ )
. 2( )(V )U( ) = (8, —M(V' ))U( ) = 0,

(4.7)

which has the solution given in (4.6). At next order we

have

and the source terms on the right hand side generate
new Fourier components at both k=0 and k=2k, . We
therefore seek a solution of the form

U(')(z, z) = u(')(z; k = 0)(iAi'+ c.c.)
+u(')(z;k = 2k, )(A2e3'"'*+ c.c.) (4.9)

and for each Fourier component u(~) (z; k) we obtain the
nonhomogeneous boundary value problem

l:( )(k) u( )(z;k) =R(z), (4.10)

where the operators are defined by

O(e): r(')(V')V(') = D N, (V(') ~V('))

= D N (u iu( ))(Ae'"'*+ c c )

(4 8)

B. One transverse dimension
Z(')(k) = 8, —M(k),

(4.11)

In one tranverse dimension, the null space of l: is one-
dimensional, so we choose the zeroth-order solution U~ ~

to be of the form

U( ) (z, z) = u( (z; k, ) (Ae' + c.c.), (4.6)

rr rrrrrr ~
~Qrrr

where the roll amplitude A is determined by a nonlinear
balance between linear and cubic terms. To capture this

R(z) = D,JVj(u( )(z; k, )~u( )(z; k,)).

The vector u(~)(z; k) must satisfy the same boundary
conditions as the linear eigenvector (3.3). The solution
of (4.11) can formally be written as

z
u( ) (z; k) = exp (M(k) (z —z )) R(z) dz

-Z/2

+exp(M(k)(z+ 1/2)) u ')(—1/2;k). (4.12)

If we define the indefinite integral in (4.12) to be

g(z;k) 6 R = [gyp JQ) J3pg4] then the boundary term,
u(~) (—1/2; k), is given by the solution of

(„(~))
(e '+ e ') ', (—1/2k)(~)

)

0

Rolls

FIG. 3. Amplitude of the hexagon state (H) and the roll
state (R) as a function of the stress parameter e. Solid lines
denote stable states, dashed lines unstable states.

)
(1/2; k) —

( [
(1/2; k). (4.13)

0 ~4 l E ~2 )
The operator on the left hand side is the linear oper-
ator of Eq. (3.7) which becomes singular for k = k, .
For k P k, we can invert it and obtain the boundary
term u( ) (—1/2; k). Thus we have completely determined
u( )(z; k) which gives us the solution at O(e) through
(4.12). Although we can write down the formal solu-
tion, including the exponential in (4.12), there are many
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details involved and in general we calculate ul l (z; A.') nu-
merically. Having solved at O(e) we now proceed to third
order, where the equations read

~os;A = A —plAl'A (4.15)

and, on returning to unscaled units, we obtain the am-
plitude equation

7o~tA = eA —~IAI'A. (4.16)

If p ) 0 there is a stable solution of Eq. (4.16), with am-

plitude given by A = ge/p. In one transverse dimension
these rolls are the only possible solution and in Fig. 4 we
plot the amplitude A obtained from (4.16) along with the
results of numerical simulations on the full system (2.1).
We only show the result for a defocusing medium with
G = +2, but the agreement is also excellent for other
values of G in both focusing and defocusing media.

C. Two transverse dimensions

We will now consider pattern formation in two tran-
verse dimensions, where we must examine the stability
of the roll solution to other patterns, such as rhombi or
hexagons. Since transcritical hexagons are expected to
dominate, we erst determine when they are possible. In
order to do so, we make use of our results concerning the

U{o)+Z(o)U( ) Z( )U(o) + D (P/' (U( llU( ))

+~, (U(i) ]U(o) ))
+D ~ (U(o) lU(o) lU(o) ) (4 14)

At this order we generate source terms at k = k, and
k = 3k, . In order to maintain an asymptotic expansion
which is uniformly bounded in space, the Fredholm al-
ternative [34] requires that the projection of the source
terms on the null space of the adjoint l:+ must be zero.
The only terms that may have nonzero projection are
those with critical wave number k = k, . There are both
linear (in A) and nonlinear (cubic) source terms at k =
k, . The linear terms arise from JOT, U~ ~ and Z~ ~UC ~

while the cubic terms arise &om both JVi and JV2. Pro-
jecting these terms against the adjoint, v(z), leads to the
result

symmetry of the linear solutions to prove, in a very sim-
ple manner, that the odd mode (f(x, z) = —b(x, —z))
has the inversion symmetry A~ ~ —A~. As a result
a = 0 and transcritical hexagons are not possible if the
odd mode is the most unstable.

In the original basis the linear solutions take the form

I f(x, z)
'

fo(z) f~-,i, .
„

b( )
—

b ( ) g Age ~ + C.C. (4.17)

and the amplitudes A~ obey

OgA~ = eA~+ o.A)A* (4.18)

Since our linear equations are invariant under reQections
about the midplane then [b(x, —z), f(x, —z)]' is also a
solution to the linear problem. We know that f(x, z) =
pb(x, —z) and hence the A~ 's must also obey

voBiA; = eA; —) p;~. lA~l A, , i = 1, . . . , N, (4.20)

BgA~ = eA~ + po.A) A* + ~

As a consequence o = 0 when the most unstable mode
is odd, since p = —1 in this case. As mentioned earlier,
this is true for DG & 0 and for a self-defocusing medium
(D & 0, G ) 0) the odd mode has the lowest threshold for
G ) 1.3. We are lead to the conclusion that transcritical
hexagons are not possible in this regime, and we will
consider the possibility of rhombic patterns shortly.

For self-focusing media, where the most unstable mode
is even, there is no inversion symmetry and, as shown
in Fig. 5, o g 0. Further inspection of Fig. 5 re-
veals that o is O(l) for all G. As we mentioned earlier,
this means we may not simultaneously balance linear,
quadratic, and cubic terms and we can say nothing fur-
ther about hexagons, except that we expect them to be
the stable solutions close to threshold, an expectation
which is borne out by the numerics, as will be shown in
the following section.

We now address the question of pattern formation in a
self-defocusing medium, where we know, &om the discus-
sion above, that transcritical hexagons are not possible.
If we consider solutions which consist of a superposition
of N sets of rolls at various orientations then the follow-
ing equations result:

0.0 I

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Stress parameter ~

FIG. 4. Roll amplitude for a self-defocusing medium
(D ( 0) with G = 2. The numerical curve is obtained by
simulation in one transverse dimension.
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1.0—
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I

Q
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0 10
I

20
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40

FIG. 5. The quadratic coeKcient o. for a self-focusing
medium (D ) 0).
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bT
08~A (4.21)

with the potential function E(Ai, ..., A~, Ai, ..., AN)
given by

N N N

& = —e):IA*I'+ -):).7')IA*I'Ill'
i=1 i=1 j=1

(4.22)

On difFerentiating (4.22) with respect to time it immedi-
ately becomes clear that

N

BiF = —2ro) lBt,A l
& 0 (4.23)

and hence X is a Lyapunov function, implying that the
dynamics of (4.20) will naturally move towards minima
of T. This is invaluable in deciding which configuration
may be selected, especially if the matrix elements p;~ can
be computed explicitly.

Now consider the problem with two modes at angle
8. We can always scale the amplitudes such that pii ——

p22 ——1, in which case

where the constants p,~ depend on the angle between the
modes k; k~ = cos8;z. If chiral symmetry holds (8 ~
—8) the cubic coefficients are symmetric, i.e., p;~ = p~;.
A remarkable property of (4.20) is that it is a gradient
system in the form

in (4.24)]. To saturate the growth one should proceed to
quintic order, and one would expect that it will again be
the 8 which minimizes p that prevails at that order.

&,s = ~s+ elsl2S' —blsl's (4.25)

Following the procedures outlined in the calculation for
rolls, we have computed the two mode amplitude equa-
tions for our system. The only significant difFerence is
the appearance of new source terms at second order with
wave number k2 = 2k2(1 6 cos 8) which present no added

complications to the solution process. In Fig. 6 we show
the value of the cubic coefficient p as a function of the
angle 8 for the physically relevant case of a defocusing
medium with t = 2. We immediately see that there is a
finite band of 8, centered about 7r/2, for which p(8) & —1.
As mentioned above this implies that all patterns with
angles in this range fail to saturate at cubic order. We ex-
pect the configuration which minimizes p(8) to dominate
at quintic order. Note that z/2, which would correspond
to a square, does not minimize p(8). However, the value
of 8 which does is very nearly z/2 and the difference is
indetectable in our numerical simulations of (2.1).

The failure of the pattern to saturate at cubic order
suggests that the equations should be expanded to quin-
tic order —a rather formidable undertaking. We have
not done this but we do observe squares numerically,
and indeed they saturate at quintic order. The ampli-
tude equation for a square pattern [Ai ——Sexp(i/i),
A2 ——S exp(i/2)], to quintic order, is of the form

~oBcAi ——eAi —(lAil +p(8)lA2l )Ai,

roAA2 —eA2 (lA2l + 1(8)lAi l )A2.

(4.24)

This system has three types of fixed points given by the
following.

(i) The plane-wave equilibrium state A~ = 0,j = 1,2.
(ii) Roll solutions given by Ai ——Rexp(i/i), A2 ——0 or
Ai ——0, A2 = R exp(i/2) with roll amplitude R = i/e.
(iii) Rhombic solutions given by Ai ——Sexp(i/i), A2 ——

Sexp(i/2) with amplitude S = ge/I + p(8).

If p & 0, b & 0 the homogeneous solution (S = 0) to
(4.25) exhibits a subcritical bifurcation at e = 0 [36].
Subcritical solutions exist for e E [

—p2/4b, 0]. We have
already calculated p but, as mentioned above, we have
not explicitly evaluated b. We do find, however, that
(4.25) describes the results of our numerical simulations
very well, if we choose a large value of b'. For a defocusing
medium, G = 2, we have p = 0.707 and choosing b = 500
gives excellent agreement with numerics, as shown in Fig.
7. In fact the quintic saturation is so strong that the
region of subcriticality is narrower than we can detect
numerically.

If e ( 0 then the equilibrium solution is the only stable
solution. For e & 0 we can compare the value of the
Lyapunov function for rolls and rhombi:

X (Rolls) = —e /2, and X (Rhombi) = —e /1+ p(8).

There are essentially three regimes into which the dy-
namics may fall.

(i) If 7(8) & 1 for all 8, then rolls are stable with respect
to rhombic perturbations.
(ii) If p(8) & —1 for all 8, but p(8) & 1 for some 8, then
the 8 which minimizes p within this range will be pre-
ferred, as it has the lowest Lyapunov value.
(iii) Finally, if p(8) & —1 for some 8 then this configu-
ration does not saturate at this order [solutions blow up

-2
0.00

I

0.79
I

1.57
0

I

2.36 3.14

FIG. 6. The cubic coeKcient p as a function of the angle
8 between the two modes AI and Aq, for a self-defocusing
medium with G = 2.
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FIG. 7. Square amplitude for a self-defocusing medium

(D ( 0) with G = 2. The numerical curve is generated by
simulation in two transverse dimensions.

V. NUMERICAL SIMULATIONS

Previous simulations in one transverse dimension [23]
verified the correctness of the linear analysis. As we have
just demonstrated, however, it is vital to extend the sim-
ulations into the second transverse dimension. This was
recently done for the case of Gaussian input beams and

self-focusing media, and the spontaneous appearance Of

seemingly stable hexagonal patterns in the high-intensity
center of the beams was confirmed [24].

We have undertaken much more extensive and defini-
tive simulations employing periodic boundary conditions
to simulate plane-wave excitation. For self-focusing me-
dia, the results confirm that hexagons are preferred, and
persist some way below the linear instability threshold,
much as in the previously discussed systems. For self-
defocusing media, no previous simulations in two trans-
verse dimension have been published, so the emergence of
square patterns (which are rather stable) is unexpected.

The numerical method used in these computations was
a modified beam propagation algorithm, typically on a
64 x 64 x 20 computational grid with a 128 x 128 x 40
grid used as a check. The operator was split into diBrac-
tion and plane-wave propagation. The difFraction prop-
agation was performed spectrally using the fast Fourier
transform to convert &om spatial to spectral coordinates.
The remaining operator was integrated so as to enforce
the conservation law (2.3) numerically. Figure 8 shows
the characteristics of the system. Along those character-
istics, only the phases of the corresponding fields change.
Integrating for that phase change yields

F,"+= F" i. exp iD. fF[ + GJB[

= F" i exp(iD~F". i~ dz) exp(iDG([B" i[ +4]B"
~

+ [B"+i~ )dz/6), (5.1)

B"+ = B +i exp iD G)FJ + fB]

= B,"+i exp(iDIB,"+il'dz) ex' (iDG(I&,"-il'+ 41+,"I'+ I+,"+i]')dz/6) (5.2)

where the integrals are along the characteristics for I'"

and B, respectively. The phase is accurate to third order,
and the amplitude is exact. The overall accuracy of the
scheme is second order due to the splitting error, but
enforcing the conservation law (2.3) leads to excellent
results even, with coarse sampling [37].

In all simulations we initially fill the medium with the
homogeneous plane-wave solution (2.4), and apply input
plane waves with low-level random noise across the trans-
verse plane. VVe maintain this noise for several transit
times otherwise it would propagate out of the slab in
just one transit and the instability would develop very
slowly. We run the simulation long enough for a pattern
to emerge (typically 40 transits) and saturate (about 150
transits), although it may not always become stationary
(in time). We then explore parameter space by varying
D and restarting the computation, using the final state
of the previous simulation as an initial condition.

The results of our simulations are summarized in Fig.
9 in the (D, G) plane, together with curves of minimum
threshold in each quadrant. As expected we observe
hexagons for DG ~ 0 and squares for DG & 0. These
patterns were all obtained at 10'%%uo above threshold with
]G]=2. Note that in the third quadrant the hexagonal

pattern is inverted, a honeycomb structure rather than
the bright spots as in the first (physical) quadrant.

For self-focusing media the hexagons persist below the
linear stability threshold, as indicated in Fig. 3. Indeed
for both G = 1 and 0 = 2 they finally lose stability to
the plane-wave solution (2.4) at —15' below threshold,
which can be attributed to the large quadratic interaction
coefficient o. One intriguing feature we have observed in
this case is that there is a Hopf bifurcation, on the other-
wise stable hexagon branch, close to the linear instability

pa+i g'A+1
J7

p~n ~n gnj s j & j j j+» +&

FIG. 8. Characteristics for the counterpropagating system.
The index j represents the z position on the mesh while the
index n represents the t position on the mesh.
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FIG- 9. Typical patterns generated by nu

merlcal slmulatlon The sohd hnes represent
the neutral curves in the (D, Q) plane. Each
pattern represents the amplitude of the for-

ward Beld I' as it exits the Kerr slab. Gray
scale, &om white (high intensity) to black

(low intensity), is used. These patterns were

each generated for ~G~ = 2 at 10% above the
linear instability threshold.
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threshold. This bifurcation leads to a dynamic exchange
of energy between two types of hexagons. The first has
a wavelength corresponding to k=k, while the other cor-
responds to k=~3k, . In fact the hexagon at k=~3k, is
driven by the hexagon at k=Ic, through the interaction
of the mo es Aq and A2 which results in a wav bve num er

i + k2, ~k~ = ~3k, . The numerical results show
that the new amplitude is not slaved to the amplitude of
the fundamental hexagon but in deriving the amplitude
equation (4.5) this slaving assumption is implicit since we

take as our linear solution only modes with wave numbnum er
,. If we include modes with wave number ~k~ = ~3k, as

part of our linear solution and write down phenomenolog-
ical amplitude equations for their interaction with modes
at ~k~ = k„then the resulting dynainical system displays
a Hopf bifurcation, as shown in Fig. 10. The reason

for allowing modes with k g k, to become "active" is
simple. The intertwining curves in Fig. 2 demonstrate
that many wave numbers are only weakly damped with
respect to the growth of modes at k = k, . A resonant
interaction, such as kq+ k2, allows this weak damping to
be overcome, hence the Hopf bifurcation.

For self-defocusing media all our simulations resulted
in the observation of very stable square patterns. Ac-
tually we use the term "square" rather loosely since our

iscrete grid is not capable of discerning a square &om a
nearly-square rhombus. As mentioned earlier the squares
saturate strongly at quintic order, but the reason for this
is unclear at present.

UI. CONCLUSION

Hopf Bifurcation

CL
E

O
th
CO

0 0 ~0~% OW D

Fraction above Threshold

FIG. 10. Evidence of a Hopf bifurcation for a self-focusing
medium (D ) 0), where the underlying pattern is hexagonal.
The solid dots represent the minimum of the resulting periodic
solution.

In summary, counterpropagation in a slab of nonlin-

enging problem in the elucidation, interpretation, and
simulation of spatial patterns.

Analytical results conform to related systems in certain
respects, but the nonlinear behavior, as yet not fully ex-
plored, already displays interesting and unusual features

e hexagon-square dichotomy is one such feature; an-
other is the presence of the Hopf bifurcation, on what
would normally be a stable region of the hexagon branch.

any other features remain to be studied, not least the

polarization instability discussed above is close enough
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to the amplitude instability threshold to require a vec-
tor field treatment. Matching simulations to experiments
will involve still more complications, such as finite time
response and finite beam width.

On the simulation side, though smooth constant in-

put beams have been shown to develop spatial or spatio-
temporal structures through interaction with Kerr me-
dia, computer simulation is stretched when three, or even
four, independent variables must be tracked over sub-
stantial ranges of these variables. To help both experi-
mentalists and simulators, there is a need for effective an-
alytic techniques to deal with finite, and even narrow, op-
tical beams —small aspect-ratio systems, as they would
be termed in Quids.

Some comments as to optimum conditions for obser-
vation of these phenomena are appropriate. This is par-
ticularly so for the predicted square patterns, since the
hexagonal strucures already have some experimental sup-
port in atomic vapor experiments [16]. Vapors are not
likely to show squares, however, because atomic diR'usion
is likely to wash out the grating term which is essential
for square formation in the present model.

Semiconductors are worth considering, because they
show very large negative Kerr coefficients [39]. Again
there is a problem in that carrier difFusion will normally
annul the grating, but an interesting way around the
problem exists if quantum-well material is used. In such
materials the photoexcited electrons and holes are con-
fined within wells much narrower than the optical wave-

length, and so if the wells are such that the confinement
is in the direction of optical propagation (which is the
normal configuration), then the grating factor should be
close to its maximum value. Transverse diffusion may be
quite large in these materials, but this should not have
a significantly deleterious effect on pattern formation, at
least in broad beams.

Many of the phenomena discussed have close similari-
ties with Quid patterns, particularly hexagons and their
defects. Optics does, however, ofFer some advantages over
Buids. That optics has a speed advantage is self-evident:
optical systems are often very fast, even embarassingly so
for the purposes of observation. That fact is not partic-
ularly relevant to pattern formation, however. Perhaps
the most important advantage of optics over Huids is that
most nonlinear optical systems have, at least in princi-
ple, a quantum description, and there is a possibility of
addressing the interface between classical and quantum
patterns. For example, it has recently been pointed out
[5,38], that there is a Heisenberg-type uncertainty prin-
ciple between the near- and far-field patterns. This ulti-
mately arises from the optical phase, which is a classical
remnant of a quantum variable.

One other potential advantage of optics over Buids is

ACKNOWLEDGMENTS

We wish to thank the Arizona Center for Mathemat-
ical Sciences (ACMS) for support. ACMS is sponsored
by AFOSR Contract No. F/8671-9000589 (AFOSR-90-
0021) with the University Research Initiative Program
at the University of Arizona. This research was also sup-
ported by SERC under Grants No. GR/F 49811, No.
GR/F 75087, No. GR/G 12665, and No. GR/G 15031,
and under a Twinning Programme of the European Com-
rnunities. Financial support from NATO is also grate-
fully acknowledged. We also thank E. M. Wright, A. C.
Newell, G. Luther, and G. McDonald for interesting and
fruitful discussions.

APPENDIX A: MODEL EQUATIONS

For analytical convenience we tranform (2.7) into (2.9)
through the change of basis (2.8). The matrix J which
premultiplies BqU is given by

OI SOJ I 0 y
I

p
o

The linear operator 8 is defined by

Mg 0
0 M2

(A2)

where the components of M are

that it may be possible to form very small-scale patterns.
This would be of interest if the objective is to apply the
pattern-forming properties to information storage or pro-
cessing [40]. How, then, do the patterns described above
scale? The transverse scale is determined by the thick-
ness of the slab, so that small-scale patterns could be
achieved by using very thin slabs. Of course this also re-
quires an increase in intensity to maintain the nonlinear
phase shift. Interestingly, these two scalings combine in
such a way that the power to generate a pattern with
a given number of spots (pixels) is independent of the
scale of the pattern (and is determined just by n2 and
the wavelength). Since the time scales will also go down
with the length scales, there is some possibility of us-

ing pulsed excitation to achieve pattern formation, e.g. ,

in semiconductors, if continuous wave excitation is too
weak or causes thermal problems. Ultimately, it may
be necessary to go beyond the paraxial limit on which
our model is based, but there is no reason to doubt that
wavelength scale pattern formation may be possible.

0
PV2 —2D(G —1)

0
PV'+ 2D(G+ 1) (A3)

The quadratic nonlinear terms in (2.7) transform to give
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A, (U)U) =—1
(G —l)U1U4 —(1 + G) U2U3

(1 —G)U2U4+ (3 —G)U1U3
(G —1)U1U2 —(G + 1)U3U4

((3 —G)U1U1 + (1+G)U2U2+ 3(1+G)U3U3+ (1+G)U4U4)/2

(A4)

while the cubic nonlinear terms become

X2(U[V[V) =—1
16

G+
16

(U1 U1 + U2U2 + U3U3 + 3U4U4) U2 —2U1 U3U4
(U1U1 + U2U2 + U4U4 + 3U3U3) U1 + 2U2U3U4

—(U1U1 + U3U3 + U4U4 + 3U2U2) U4 —2U1U2U3
{U.U. + U.U. + U4U4+ 3U1U1)U3+ 2U1U2U4

—(U1U1 + U2U2+ U3U3 U4U4)U2+ 2U1U3U4
(U1U1 + U2U2 + U4U4 —U3U3) U] 2U2U3U4

—(U1U1 + U3U3 + U4U4 —U2U2) U4 + 2U1U2U3
(U2U2+ U3U3+ U4U4 U1U1)U3 2U1U2U4

APPENDIX B:LINEAR ANALYSIS

The transformation to the new basis, detailed in Ap-
pendix A, allows us to explicitly construct the solutions
of (3.4). For the Mz defined in (3.4) we need to calculate
exp(Mzz). The off-diagonal nature of M~ means that

(Bl)

To make use of this we write exp(Mzz) in the form

4z4
exp(M~z) = I—,+

and on applying the boundary conditions (3.3) we obtain

2q(exp(M1) —exp(M2))v( —1/2). = pv( —1/2). (87)

This is an eigenvalue problem in p and we already know
that p = +1. The corresponding eigenvectors are given
in (3.14). Substituting these into (87) results in

~ sin($1) sin($2) ~

M, t'

Q, z—

which allows us to write

y3 3

) Now we assume that we are on a neutral curve defined
by H1 ——0, which implies that

cos(v(1/2) cos($2/2) = ——sin($1/2) sin($2/2). (89)

exp(M, z) = cos(@z.z) + sin(g, z).M~

The final result is

exp(M, z) =
cos gz

sin(Q;z)

k2
sin{g~z)

cos ~z
(84)

u(l/2) = exp{M1) 0
(—1/2)0 exp(M2) (85)

Using the symmetry in (3.16) we find that

Now we prove the result that one group of neutral stabil-
ity curves {H1 ——0) has solutions which have odd sym-
metry in z (p = —1) while the other group (H2 ——0) has
solutions with even symmetry in z (p = +1). First we
will prove that if H1 ——0 and H2 g 0 then p = —1. To
do so we evaluate (3.5) at z = 1/2,

Replacing (89) into (88) leads, after some algebra, to
the result that p = —1. Note that to use the eigenvectors
in (3.14) we had to assume that H2 p 0, i.e., we are
not at a crossing point. The corresponding proof that
H~ ——0 implies p = +1 is very simple. If we make the
transformation Q1 ~ Q2 in (88) then p ~ —p. Since
H~ ——0 ~ p = —1 then H2 ——0 ~ p = +1 because
41 +42 «Hl ~H2.

Finally in this Appendix, we would like to prove the
result that on increasing ~D~ we first cross a neutral curve
defined by H2 ——0 if DG & 0 and Hz ——0 if DG & 0, for
positions sufficiently close to the optical axis (k=0). The
proof is outlined below.

If D = 0 then @1 ——@2 ——pk and H1 ——H2 ——l.
Choose k2 such that pk ( s. Expand the terms in
(3.10) for sxnall D and it becomes clear that

H1 1+ sin (Pk /2),
2DG

(810)
exp {M1)

0 (M )
u( —1/2) = pPu( —1/2), (86) H2 1 — sin (Pk /2).

2DG
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If Dt ) 0 then H~ increases while H2 decreases. If
DG ( 0 then Hq decreases while H2 increases. To
prove that the function that is initially decreasing ac-
tually passes through zero Grst we will show that the
functions next meet when they are both negative. From
(3.11) we see that for Hq ——H2 we require that Q; = 2m+,
m = 1, 2, ... . Assuming G g' [—1, 1] then increasing ~DG~
(holding G fixed) increases either gz or f22 while the other
decreases. VPhen the increasing one passes through 27r

then Hq ——H2. Say @; = 2m. At this point we have &om
(3.11)

Hl = H2 ——cos(g;/2) cos(Q~/2) = —cos(@~/2) ( 0,

since g~ started out less than m and continued to de-
crease. Thus both Hq and H2 passed through zero and
the one that started ofF decreasing must have passed
through zero first. Hence if Dt ) 0 we have H2 —+ 0
first while if DG & 0 we have IIq ~ 0 first.

We have shown which curve we cross for small k, but

it could happen that the curves cross themselves before

reaching a minimum. It turns out, however, that a line

fmm the origin to the first crossing point is tangential,
at the point where the curves cross, to the first curve

crossed for small k and hence that curve must also be
the minimum. As mentioned in the text, in most cases
this is also the curve with the lowest threshold ~D~ and

thus defines the critical point.

APPENDIX C: NONLINEAR ANALYSIS

In order to calculate the amplitude equations for the

counterpropagating system we need to expand the gov-

erning equations (2.9) in terms of the stress parameter
e. Given the scalings shown in (4.1), (4.2), and (4.4) we

obtain

JBtU = J(eBz', + e BT', + )(e U( +eU( ) + '') = e / JBT', U ) + (Cl)

(g(o) eg(l) + )( 1/2U(0) + U(1) + s/2U(2) + )
—e~/2g(o)U(o) + eg(o)U(~) + es/2(g(o)U(2) g(~)U(o)) +. . . (C2)

DID(U[U) = D,(1+e) A'g((e' 'U +eU ' + )~(e' 'U + eU ' + .))
= eDJVg(U ~U ) + e D (JVg(U ~U

'
) + JV (U ~U )) + (C3)

DAg(UiU]U) = D,(1+ e) A'g((e' U + )](e' U + )i(e' U + ))
= e / D,JV (U( ) (U( )

)
U( )

) +

where the important linear term l'.{ ~ is given by

+{y) 't98

196

BM~/Be
0

0
BM2/Be (C5)

The matrix M was given in Appendix A and a simple calculation reveals that

0 0 BM2
2D, (1 —G) 0

0 0
2D.(G+1) 0
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