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We consider the integrability problem for a quantum version of the perturbed nonlinear

Schrodinger (NS) equation, including a higher spatial dispersion and nonlinear dispersion of the

group velocity (the corresponding classical equations are well known in the nonlinear fiber optics
and in other applications). Employing the Bethe ansatz (BA) technique, which is known to yield a
complete spectrum including the so-called quantum solitons (multiparticle bound states) of the un-

perturbed NS system, we Snd that the particular cases of the model which correspond to integrable
classical equations, viz. , the derivative NS and Hirota equations, are also fully integrable at the
quantum level. In the generic (nonintegrable) case, the model remains integrable in the two-particle
sector. In the three-particle sector, the BA produces unphysical states with complex energy. It
turns out that the Hamiltonian in this case becomes non-Hermitian. We propose a procedure for

Snding the physical eigenstates of the system. We build an example of such a state and we show

that it describes inelastic scattering.

PACS number(s): 42.50.Dv, 42.50.Ne

I. INTRODUCTION

The nonlinear Schrodinger (NS) equation is a general
description of the propagation of small-amplitude enve-
lope waves in weakly dispersive, nonlinear media. It plays
an important role in a number of physical applications
[1]. One very interesting example (which will be referred
to here) is the propagation of solitons in nonlinear opti-
cal fibers [2] (see the Appendix). Recently a significant
interest in the quantum version of the NS equation was
invoked by the experiments, in which quantum proper-
ties of the optical solitons in fibers were observed [3]. The
nn~ber of photons bound in the 6ber soliton is typically
10 —10 and such an object seems to be a classical one;
however, the quantum features manifest themselves as
the quantum fiuctuations. In addition one can observe
interesting eHects, as squeezing, due to the nonlinearity of
the medium [3]. In the opposite limit, few-photon bound
states (solitons) were recently discussed in [4] and new ex-
periments were proposed in order to observe these states
using the nonlinear Fabry-Perot resonator. The main
part of this resonator is a quasi-one-dimensional nonlin-
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ear optical cavity. As it was shown, the electro-magnetic
6eld propagation in this cavity is also governed by the
quantum NS equation [4]. The photons produced by laser
source penetrate the cavity and form there two-particle
bound states —diphotons —which are then detected.

A fundamental property of the NS equation is its exact
integrability both in the quantum [5] and in the classical
versions [6]. There are various approaches to studying
quantum integrable systems. One of the simplest and
most physically clear ones is based on the Bethe ansatz
(BA) and we will follow this technique. The BA method
was employed in the early works [5,7] to solve the quan-
tum NS equation. The BA yields wave functions of the
bound multiparticle states (quantum solitons) which are
constituents of the spectrum of the exactly integrable
quantum NS system. Note that the physical solitons, for
example, in 6bers, are usually de6ned as wave packets
(coherent states) composed of the Bethe eigenstates [8].

The NS equation that appears in physical applications
usually contains additional terms that destroy the exact
integrability. Such terms appear as generic high-order
corrections, when the unperturbed NS equation is the
lowest nontrivial order of expansion in powers of small
amplitude and small inverse wavelength. Regarding the
unperturbed equation as the zeroth-order approximation,
one can use a perturbation theory to handle the addi-
tional terms. The perturbation theory has been system-
atically applied to the classical NS equation (see, e.g. , the
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review paper [9]). In the quantum case, the perturba-
tion theory may be applied in the semi-classical (WKB)
approximation for solitons containing a large number of
quanta. For the so-called breathers, i.e., solitons gov-
erned by the sine-Gordon equation, a systematic %'KB
perturbation theory has been employed in Ref. [10]. The
NS solitons may be regarded as a small-amphtude limit
of the sine-Gordon breathers, so the results obtained in
Ref. [10] may be directly applied to them.

The objective of this work is to develop the analysis
of the perturbed quantum NS system by means of the
BA technique. This technique is not itself perturbative;
therefore the theoretical analysis of the quantum 6ber
solitons developed thus far [8] in terms of the BA tech-
nique has been restricted to the pure NS equation. We
will show that, nevertheless, this technique is applicable
to the perturbed version of the NS model and, even in
the nonintegrable cases, it produces results which can be
useful for further analysis and which provide a deeper
insight into the general problem of what is integrability
vs nonintegrability in quantum systems. In this work we

try to proceed as far as possible without recourse to the
perturbation theory.

One of the physical motivations of our studies is an-
swering the question whether the quantum few-particle
solitons survive in a system with higher dispersions. I et
us consider, for example, the experiment proposed in [4].
It is natural to expect that the nonlinear cavity of the
Fabry-Perot resonator in this experiment has apprecia-
ble coefficients of higher dispersions. Does it mean that
the detection of the two-particle bound states is impos-
sible? We conclude that two-particle solitons still exist
and thus one may hope to observe them. Nevertheless,
when the third photon is added to the cavity, it can de-
stroy the soliton. This means that the photon source
should be tuned so that no more than two photons are in
the cavity at the same time. As for the nonlinear 6bers,
our few-photon results are not directly applicable in this
case (because of the great number of photons in the fiber
solitons), but they explain qualitatively the phenomena
of nontrivial scattering of the solitons in 6bers.

As a fairly fundamental perturbed model, we mill take
the higher-order NS equation well known in the theory
of optical 6bers [ll]:

In Eq. (1.1) iII is a complex envelope of the dispersive
waves, t and x stand for temporal-like and spatial-like
variables, the coefficient c measures nonlinearity of the
medium, and the real perturbation parameters e~ and
~2 account for the higher linear dispersion and for the
nonlinear dispersion of the group velocity, respectively.

This paper is organized as follows. In Sec. II we sum-

marize some properties of the classical perturbed NS
equation (1.1) which are important for comparison with
the results obtained in the quantum case. In Sec. III we

apply the BA technique to searching for exact multipar-
ticle eigenstates (quantum solitons) of the Hamiltonian
corresponding to the quantum model (1.1). We demon-

strate that in the known particular cases, ia which the

classical perturbed NS equation (1.1) remains exactly in-

tegrable, the quantum version is integrable as well. Then,
in Sec. IV, which plays a central role in the work, we

consider models which are nonintegrable in the classi-
cal limit [this is the generic case since the integrabil-
ity survives only for few particular values of the ratio
ez jei in Eq. (1.1)]. We concentrate on the simplest and
most physically meaningful example of the nonintegrablc
model, namely, Eq. (1.1) with e2 -——0:

It seems plausible that the general inferences obtained
for the model (1.2) remain true for other nonintegrable
cases.

It is known that Eq. (1.2) does not have classical soli-
ton solutions. If one takes an initial configuration in
a form close to the unperturbed NS soliton, it will de-

cay into radiation exponentially slowly in time [12]. The
nonintegrability of Eq. (1.2) at the classical level demon-
strates itself also when one analyzes a collision between
the quasisoliton pulses: unlike what is mell known for
the integrable systems, in this case the collision is inelas-
tic, giving rise to emission of radiation [13]. In Sec. IV
we demonstrate that the BA equations for the quantum
model (1.2) admit an explicit solution for the simplest
two-particle bound states. So, at this level there is no dif-
ference &om the integrable case. However, when trying
to solve the BA equations for the three-particle solitons,
we find that the BA produces unphysical eigenstates cor-
responding to complex energies. We show that in this
case, while the Hamiltonian becomes non-Hermitian over
the entire domain of its definition, it remains Hermitian
on a certain subdomain. The BA states do not belong to
this subdomain; hence they are unphysical. We propose a
procedure by which physical states can be constructed us-

ing combinations of the BA states. These physical states
describe nontrivial inelastic scattering processes. In turn,
the inelastic scattering is the most generic property of the
nonintegrable classical systems [9]. We expect this to be
a generic picture of the onset of the perturbation-induced
nonintegrability in quantum solitonic systems.

In Sec. V we discuss, in some detail, the approach
to the classical limit in the quantized model (1.1). We
demonstrate that in the particular cases in which the
model remains exactly integrable, it goes over into a clas-
sical integrable higher NS equation. However, in the non-
integrable case we encounter the same problem which has
been Inentioned before, that is, the appearance of the for-

rnal eigenstates with complex energies.

II. SOME PROPERTIES OF THE CLASSICAL
HIGHER NS EQUATIONS

It is well known that the higher NS equation (1.1) is

exactly integrable in two particular cases: (i) the deriva-
tive NS (DNS) equation with c = ai —0 and (ii) the
Hirota equation [14] with e2 —— 3eic In case—(i) t.he
DNS equation has the exact one-soliton solution in the
form [15—171
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4h. sin(e2N) exp(20 —2io —2ie2N)
@.oi *,h =

exp(48) + exp(ie2N)

+OO

II = dz[@ 4 + (ie, 4 @ + H.c.) + c4 '@'

where +(ie,@ 'C4. + H.c.)]. (3 1)

and

2 sin(e2N)

0 = sgn(eg) 6 sin(e2N) (z —zp),
0 = sgn(e2)6 cos(ezN)x+0'p,

dXO 2

dt
= 4sgn(E'z) 6 cos(e2N) )

d&0 4

dt
= 2A cos(2e2N).

(2.2)

(2.3)

Here 4(x, h) is considered as the field operator obeying
the following equal-time commutation relations:

[4'(*) ~(~)] = [~'(z), ~'(~)] = o,

[4(*) 4'(~)] = ~(*-u)

The physical meaning of quantization of the envelope
field is discussed in the Appendix.

It is well known [5,7,18] that, introducing the annihi-
lation and creation operators

N = de%'C, (2.4)

+OO

P = —i de%'C . (2.5)

Being nonrelativistic, the soliton s energy E is related
to P and N as follows:

Here N and P are the soliton's "number of quanta"
(wave action) and momentum, respectively, which are
given by

b(x)—:5 '~'4(z), b (x) —= li '~'kt(z), (3.2)

one may regard the Hamiltonian (3.1) as describing a
gas of nonrelativistic bosons with the purely pairwise lo-
cal interaction, a classical analog of which is the one-
dimensional gas of hard particles interacting only when
they collide.

The perturbed classical NS equation (1.1) conserves
the "number of particles" and momentum given by
Eqs. (2.4) and (2.5), as well as the classical Hamiltonian.
In accordance with this, the quantum Hamiltonian (3.1)
commutes with the operator of the number of particles

E—:f dz[4" 0' + (ie2@ 44' + c.c.)] = 2, (2.6)
+OO

N= d 4t@. (3.3)
tan(eg N)m 2 ~ (2 7)

Note that the effective mass m depends on e2N and
can change its sign. As N is positive, it follows &om
Eq. (2.2) that, for sgn(e2) = kl, the soliton's momentum
is, respectively, either always positive or always negative.
At the same time, the soliton's velocity

Thus, following the general idea underlying the BA tech-
nique, one may separate the full Fock space ~F) of the
quantum system into disjoint N-particle sectors ~F~).
Then we introduce, as is usually done [18,19], the N
particle wave functions (matrix elements) according to
the definition

BE P dzp

BP m dh
(2 8)

f~(zi) ",ziv) =,(O]b(zi), ",b(ziv) ~Fiv) ~ (3.4)

changes sign together with the mass m at eqN = 2. As
it follows from Eq. (2.1), the continuous family of the
soliton solutions exists in the interval

(2.9)

In the following section we will demonstrate that the
DNS equation remains exactly solvable at the quantum
level and the classical solution described by Eqs. (2.1)—
(2.6) may be regarded as the classical (to be specified
below) limit of the exact quantum solitons.

III. THE QUANTUM MODEL
AND THE BETHE ANSATZ

To quantize the model based on Eq. (1.1), we intro-
duce its Hamiltonian, following the Wick quantization
procedure:

where b(x„) are the annihilation operators defined by
Eq. (3.2) and x„are particles' coordinates. The cor-
responding element of the Fock space ~F~) may be ex-
pressed as

d Jt

ih —]tv) = H(Fx).
dt

(3.6)

The projection of the second-quantization Hamiltonian
H on the N-particle sector is given by

N = Hefts,
Ot

(3.7)

~F~) = dz f~(zi, ..., z~)b( i)z, ..., b(z~) ~0)
n!

(3.5)

and the usual (linear) Schrodinger equation for the evo-
lution of the N-particle states is given by
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N

H~ =— nS—~ + 2hiei )
lt9x

(0 c)
+25. ) b(zl —x ) c+ i~2

~

+
l&m,

c)zm j
(3 8)

Equation (3.7) with the effective Hamiltonian (3.8) is
the quantum Schrodinger equation for N particles in-
teracting through the modified pairwise b-like potential.
When the perturbing term proportional to ~2 is included,
the efFective potential acquires an additional term pro-
portional to a derivative of the b function. In terms of
the gas of classical particles, this means that a collision
gives rise to additional shifts of the colliding particles de-
pending upon the particles' momenta. The perturbing
term proportional to ~q changes the kinetic energy of the
particles.

The Schrodinger equations of this type were investi-
gated in a general form by Gutkin [20] using the BA
method. The essential point of the BA technique is
that in the regions zl g z the interaction potential
is zero and the wave function is simply the sum of the
free-particle wave functions. The problem is to match
the solutions in the difFerent regions (sectors). If such a
matching is possible in all the configuration space, the

I

system is solvable by the BA technique. It has been
demonstrated by Gutkin that in the general case only
the symmetric (antisymmetric) form of the BA is valid
for equations such as (3.7). The solutions with another
kind of symmetry cannot be found by means of the BA.
As we work with bosons, these circumstances do not lead
to additional diKculties. It turns out that all the neces-
sary coeKcients for the BA solution may be obtained
from the two-particle problem. Hence, following [20], we

will, first of all, consider the two-particle states (N = 2).
At zi & x2, Eq. (3.7) has constant coeKcients and in
this region we seek a solution of the form

f2(xi, z2) = exp[z(Azi + pz2)]. (3.9)

In the region zi & x2, the same solution should have the
representation

f2(zi z2) —+(A p) exp[i(Azl + pz2)]

+B(A, p) exp[i(uzi + Az2)]. (3.10)

The matching coeQcients A(A, p) and B(A, )LI) play a
key role in the BA technique. Substituting Eqs. (3.9)
and (3.10) into Eq. (3.7), demanding continuity of the
wave function f (xi, x2) at xi ——z2, and integrating the
equation over an infinitesimal vicinity of this point, one
can readily find

A(A, p) = (A —p) + 3ei (A —p) (A + p) —ih[c —e2 (A + p)]
(A —p) + 3ei(A —y)(A + y)

8 = I —A.

(3.11)

(3.12)

Having found the two-particle matching coeKcients
(3.11) and (3.12), one can construct the N-particle sym-
metric BA as follows:

l(N
'V (1) & o, g (i) +9 (2) — " Q' —i Q~(j)

NEj=1 g~(2)

{3.14)

fAi(zi & *2 «ziv)
( —~ A(k ( ), k (i))i

A(k, ki)

x exp(i[k (,)zi+ + k (iv)ziv])

) ( exp( ). (3.13)

In Eq. (3.13) A stands for the set of the wave numbers k„
(it is assumed that ki g k for / g m) and P implies
summing over all permutations of the numbers (1, ..., N).

Note that the wave function (3.13) can be viewed as
an exact scattering state of N free particles, which is a
delocalized wave function. At the same time, by their na-
ture, quantum solitons should be described by localized
wave functions. The crucial step that makes it possible
to use the BA for the quantum solitons is the fact that
we can analytically continue the wave function of free
particles to complex values of the wave numbers, so that
the wave function be localized [7]. To do so we denote
Im(k ) = q„ for the complex wave numbers. The condi-
tions for boundedness of the analytically continued wave
function (3.13) in the domain zi & z2 « . . xiv are

A(ki„ki, ) = 0)

A(ki„ki, ) = 0,

( tw(&) —i & kiw&(&)

N(l)

) qi, =0. (3.16)

It is implied that the inequalities (3.14) must hold to
gether for all the permutations u. Generally speaking,
these inequalities are incompatible, and if they do not
hold for some permutations, the corresponding coeK-
cients ( must vanish [see Eq. (3.13)]. This idea has been
successfully employed to build the multisoliton states of
the quantum NS model [7,21]. Applying this approach
to the perturbed model, it can be shown that the condi-
tions necessary for vanishing of the "surplus" coefBcients
C may be expressed as follows. The full set A of the
complex wave numbers k„should be separated into sub-
sets Ai = (ki„), 1 & n & Ni, so that gi N(l) = N, and
inside each subset the following equations hold:
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N(1)

Kx = ) Re(kx ), (3.17)

which parametrizes the solution. Now, the last equation
of the system will be the following:

Note that some of the subsets A~ may contain only one
wave nuxnber (Nx = 1), which must then be real due to
Eq. (3.16). Each subset Ax with Nx & 1 corresponds to
a quant»m soliton, so that an eigenstate parametrized
by the subsets (Ax) describes a scattering state of these
solitons [21], the subsets with Nx = 1 corresponding to
an admixture" of &ee particles to this multisoliton state.
The scattering of the solitons and free particles is purely
elastic, as it does not change the wave numbers involved
[21,7].

The equations (3.15) for the complex wave numbers
can be obtained in another way. Considering the Bethe
equations for a system of quantum particles with the a-
like interactions in a box with periodic boundary condi-
tions [18], one can verify that Eqs. (3.15) are a limit of
those equations for the infinite spatial period.

We proceed to solve the system (3.15) for the set (kx j,
in order to obtain the wave function corresponding to a
one-soliton state containing N~ particles. One can see
that the system (3.15) and (3.16) is not complete, as
Eq. (3.16) is actually not a complex equation but just an
imaginary part of some complex equation. To complete
the system, we introduce the soliton's total momentum
AK~ which is real,

t'ch hÃc2 )E = 5) k„= [1 —N tan(P) cot(NQ)]
~

—K—
462 )
(3.22)+5 tan(P) cot(NQ) K,

where P = hK is the soliton's momentum and, again,
y = tan-x(ne, ).

We can show that the string (3.21) satisfies the condi-
tions (3.14) (i.e., the soliton exists) only for

NcK&K

NP &+

(3.23)

(3.24)

(c ( 0 and e2 & 0). When NP & m, the string forms a
closed circle and the conditions (3.14) break down.

Finally we would like to mention that the existence of
complete set of the Bethe eigenstates for arbitrary N is
equivalent to the full integrability of the quantum system
since one can easily show that the values

Similarly, the system of equations (3.15) and (3.18) can
also be solved for the DNS model, i.e., that with eq ——0.
We obtain the following solution:

k„=
~

K — '
~

.
" ( ) e-'&"+'-'""+ ', (3.»)

2E2 ) sin(NQ)

where P:—tan (he2). Note that the solution (3.21) goes
over into Eq. (3.20) in the limit e2 ~ 0. The energy E of
the DNS soliton corresponding to the string (3.21) can
be calculated as follows:

w'(t)

) kx„= Kx. (3.18)
N

I„=) k". , n = (0, 1, ..., N) (3.25)

For an arbitrary integer N~ and real K~, the solution can-
not be found in an explicit form. However, it can be read-
ily found for the particular cases in which the correspond-
ing classical perturbed NS equation is exactly solvable.
First we consider the Hirota equation with e2 ———3ceq.
In this case, using Eq. (3.11), we obtain that Eqs. (3.15)
take exactly the same form as for the unperturbed NS
model:

remain integrals of motion. When N + oo one obtains
the infinite number of conservation laws. The problem
of how to represent I in the secondary-quantized form
was considered in [22].

IV. THE NONINTEGRABLE CASE

k), —k), ——ihc,

kt, —k~, ——ihc,

(3.19)

Proceeding to the generic nonintegrable case, we wiO
concentrate on the simplest nonintegrable model corre-
sponding to the classical equation (1.2). For this model,
Eqs. (3.15) take the form

kt „, , —k)„(,) = &bc

The solution, which exists for all real Kx [see Eq. (3.17)]
and for any integer Nx, is [18]

kx —k2 + 3ex(kx —k2) = iclx,

kg —ks + 3&x(k~ —ks) = ich,

(4 1)
Kk„=—+. [Nx —(2n —1)]ihc-
N/ 2

(3.20)

(the finite set of the wave numbers k on the complex
plane is referred to as a "string" [18]). The boundedness
conditions (3.14) are satisfied if c ( 0. Thus the Hirota
equation remains integrable in its quantized form and its
spectr»m is actually the same as that of the unperturbed
model.

kN xkN + 3&1—(kxv x
—kxv) = 'ich.

Unlike the linear equations (3.19), the nonlinear systexn
of Eqs. (4.1) and (3.18) does not have a sixnple analytic
solution in a general form. Therefore we start the anal-
ysis from the simplest case N = 2. The solution is then
fairly simple:
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A" ich
2 2(1+3eiK)

(4.2)

If we choose the signs c & 0 and ei & 0, the boundedness
conditions (3.14) for the two-particle quantum soliton are
satisfied on the semiaxis K & —

s
= K, (recall the real

quantity K—:ki+k2 determines the soliton's momentum
P = RK}. The total energy of this soliton E2 can be
readily calculated to be

gi = Xy —X2,

g2 =&2 &S

(4.7)

(4.8)

(4.9)

and try wave functions in the form

of H3, namely, the set of wave functions, on which the
Hamiltonian H3 is determined. First, we separate the
center of mass movement. To do this, we introduce new
coordinates

E2 ———(K + eiK ) ——c 5 (1+3eiK)3 &23 —1

2 2
(4.3) f(x„x„x,) = exp(iKH)g(y„y2). (4.10)

K —k2 ich
2 [1 + 3ei(K k2)1

(4.4)

For the sake of convenience we introduce two new vari-
ables Q = K + 2, and q—:k2 + s . Then the equation
for q is

(2chb '
—3q +4Qq +2Q q —4Q q+Q =

I I

. (45)(3ei)

Note that the first term in Eq. (4.3) is the kinetic energy
of two &ee particles, while the second one is their binding
energy. The latter diverges when the total momentum K
approaches the boundary value of the soliton's existence.
This divergence is actually a consequence of unbound-
ness &om below of the kinetic energy in this case. It may
be renormalized by adding to the Hamiltonian density
a term proportional to 4*4 . At K ( K,„, there
are only the delocalized eigenstates describing scattering
of two free particles. Following the approach of Ref. [7],
one can show that the eigenstates (4.2) constitute a com-
plete set in the two-particle sector of the quantum model
(1.2). Thus the two-particle sector of this model remains
integrable, which also follows kom the existence of two
fundamental conservation laws.

In the sector N = 3, we eliminate ki and k2 from
Eqs. (3.15)—(3.17) and obtain

Then we obtain a Hamiltonian which governs a move-
ment of three particles in their center of mass kame:

Hs, lc —Hf, + 2hc[b(yi) + b(y2) + b(yi + y2)], (4.11)

( 02 82 82
Hf„„=—2(l+ 2 iK)

I( clyi cly2 yi y2 )
02 (8 8

+6i ei
~yi~y2 q~yi ~y2&

(4.12}

The wave function symmetry conditions read now as fol-
lows:

g(yi, y2} = g(-y2, -yi),
g(yi, y2) = g(yi+ y2, -y2),
g(yi y2) = g(-y» yi + y2) .

(4.13)

= —2hcg (for yi & 0, y2 ——0), (4.14)

This means that it is enough to know the wave function

g in the quadrant Qs ——(yi & 0, y2 & 0).
The Hamiltonian (4.11) contains singular potentials so,

acting on an arbitrary continuous function g, it can pro-
duce a singular function in general. It can be avoided
only if g satisfies the following boundary conditions:

—2(1+ 2eiK)
I &

—
2& I

+ 6iei
I

2
( cjg Og l . ( 82g 82g&

E yi y2) & yi y2 yi)

A straightforward analysis of the algebraic equation
(4.5) dexnonstrates that it has two real and two complex
roots for q if

—2(1+ 2e, K) I

(Og Bgl . ( Og ~gl
& y2 yl) ( yi y2 y2)

ch

36i
(4.6)

and four complex roots in the opposite limit. A direct
check of the inequalities (3.14) demonstrates that two
solutions out of the four satisfy these inequalities. For
K & Qo —

2
= Ko, the energy for both localized eigen-

states is reaf, while for K & Ke the energy proves to
be comp/ex, taking complex conjugate values for the two
localized eigenstates. Thus we can formally build the
complete set of the eigenstates of the Hamiltonian in the
three-particle sector, but it contains the unphysical states
corresponding to complex energies.

The appearance of eigenstates with complex energy
obviously means that our Hamiltonian (3.8) is non-
Hermitian. To understand this let us find the domain

= —2licg (for y2 & 0, yi ——0). (4.15)

& —= (ZIH. ,~g) —(Hs, xzlg)
0 0

6 Gyi dg2z' (Hfy. ,pg)

dpi ding ~fusee& g . (4.16)

Using the conditions (4.14) and (4.15) we obtain

4 = 18iei[z'(g„, —g„,) + g(zv, —
zil )]Iv, „, 0 . (4.17)

These conditions determine the domain of the Hamilto-
nian (4.11),which consist of all smooth, integrable on the
quadrant Qs functions satisfying (4.14) and (4.15). Let
us call this domain U. To check the Hermiticity of the
Hamiltonian we evaluate the following expression:
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Prom (4.17) we see that the Hamiltonian (4.11) is Her-
mitian only on subdomain V, which consists of functions

g belonging to U and satisfying the following condition:

scattering processes, in which the two-particle soliton can
be destroyed.

g„, (o, o) = g„,(o, o). (4.18) V. THE CLASSICAL LIMIT
So we see that in this nonintegrable case the Hamilto-

nian becomes non-Hermitian. We can make it Hermitian
only restricting it on the subdomain V. Moreover, one
can show that the Bethe ansatz solutions in this case do
not belong to V and consequently they are not physi-
cally meaningful. Actually, V is not an invariant space
of the physical states since the condition (4.18) does not
commute with the Hamiltonian (4.12). The physical do-
main is determined by the following infinite consequence
of equations:

8 i
~ IIy ]&y—&2—0 (for n = 0, 1, 2, ..., oo).

~'JJ2 j
(4.19)

We cannot now determine the whole physical domain by
solving these equations, but, nevertheless, we are able
to build some physical eigenstates of the system combin-
ing diHerent BA solutions which have the same energy
and total momentum. Indeed, in the three-particle sec-
tor every scattering BA state (not containing solitons)
is parametrized by three real wave numbers ki, k2, and
k3. Fixing two integrals of motion E and K leaves one
parameter &ee. Thus we have an infinite degeneracy of
scattering states with the same energy and momentum.
Let us take two such BA states g and h that do not be-
long to V. Then it can be directly shown that the state

f = g + ah, where a:—&"'(0'Ol &"' (0's&, does belong to
QQ

V and, moreover, satisfies all the conditions (4.19). So
f is a physical state. The state f mixes different sets of
the wave vectors k~ and describes a nontrivial scattering
process, which is the most characteristic feature of non-
integrable systems. For example, let us take for g and
h, respectively, the BA state describing a two-particle
soliton plus a &ee particle and another Bethe state cor-
responding to three free particles. The wave numbers
corresponding to the first state are ki 2

——Sich/2 and ar-
bitrary k3. Here we take the soliton's momentum equal
to zero so that the total momentum K of this state is
equal to k3. Then the second BA state is specified by the
real wave numbers qi, q~, and q3 ——k3 —qi —q2. Equat-
ing the energies, we obtain qi as a function of q2 and k3.
This means that there exists a continuous spectrum of
degenerated states h, which can be used for building the
physical ones. Let us take, for example, q2 ——0. Then

k3 k3 4 + 126' k3 —4c 5 4 + 126' k3
qg ———+

2 2(4+ 12~gks)

(4.2o)

When ks(4 + 12eiks) ) c 5, two real solutions for qi
exist and hence we can combine the corresponding BA
states. As a result, we obtain an infinite number of physi-
cal eigenstates which are degenerated by energy and total
moment»~. All these states describe nontrivial inelastic

In this section we will discuss the classical limit of the
results obtained above. For the integrable cases, two
question can be raised. One is to obtain the classical
soliton solution as a limit of some quantum objects. The
other is to calculate the classical soliton's energy and mo-
mentum. The first problem was thus far solved only for
the unperturbed NS model [17,23,8]; other cases seem to
require extensive calculations. Here we calculate the soli-
ton's parameters only (the second problem) and we will
show that the classical energy, momentum, and existence
conditions obtained from our approach coincide with the
results of the other approaches.

As it has been demonstrated in Ref. [23], a classical
soliton 4, l(2:, t) can be obtained as a limit of a certain
matrix element taken between the quantum multiparticle
states:

4',~( (z, t)

+oo
= 11In

i
5 diJ. (hK, N]e(z, t) ]n(K + y,), N + 1) ~,

(5 1)

where 4'(x, t) is realized as the operator-valued function
obeying the quantum NS equation and the limit process
is defined as follows:

SMO, Nwoo,

Kazoo,

hNMNc)y hKMPc)

(5.2)

The finite quantities N i and P i are the values of the
number of particles and momentum for the classical soli-
ton. Other authors [8] performed this limit process in a
somewhat diHerent form, but the general observation fits
every version: the main contribution to the 4', i gives the
integration over a nearest vicinity of the value K, which
determines the classical value of the momentum P i. So
we can assume that the classical soliton's parameters can
be obtained from studying the quantum states (strings)
when approaching the limit (5.2). To do this, we will di-
rectly analyze the classical (i.e., continuum) limit of the
chain of the string equations (3.15) for the general model
(3.1). We substitute (3.11) into the system (3.15) and
rewrite each equation with all the terms proportional to
h on the right-hand side. Let h -+ 0. Since the left-hand
side of each equation is proportional to k,. —k~, one of
its solutions will always be such that k, -+ k~. In this
limit we call k; —k~ as dk and replace k; + k& with 2k;.
Introducing the continuous variable s = hn instead of
the discrete number n, so that s ranges in the interval
0 C s (N, i = hN, we can represent the continuum limit
of Eqs. (3.15) as follows:

dk —1—= —i(c —2t2k)(1 + 6eyk)
ds
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Generally, one can take other solutions of Eqs. (3.15), for
which k, —k~ is not small. This will produce gaps in
the strings, as will be described below. In terms of the
continuous function k(s), the momentum of the classical
wave Beld can be written as

k(s)ds = P
0

(5.4)

and the energy

N, f

E = (k +2exk )ds.
0

(5.5)

The classical momentum (5.4) must always be real in
virtue of Eq. (3.16).

The system of the boundedness conditions (3.14) also
has a continuum limit which takes the following form:
the inequality

FIG. 1. The "string" for the unperturbed NS and Hirota
equations.

Im k(a)da & 0
0

(5 6)

must be satis6ed for all positive v ( N ~.

A general solution to Eq. (5.3) can be represented in
the implicit form

a(k) =—3xex ( c 1 ) c
k+ + ln F-

22 (2t2 6ex ) 262
+ const.

(5.7)

For the integrable particular cases, the relation (5.7) can
be reversed to express the complex k in terms of real 8.
For the DNS model, we obtain

k(s) =
~

P —
~

E2 csc(Ngle2)
( Nxc1

2e2 )
x exp[ —ie2(N, ~

—2a)] +
262

(5.8)

which exactly coincides with the continuum limit of the
discrete solution (3.21). For the Hirota model, as well as
for the unperturbed NS one,

Eq. (3.22). Finally, the inequality (3.24), bounding the
region of existence of the quantum solitons, in the classi-
cal limit goes over into the one (2.9) bounding the exis-
tence region of the classical DNS solitons. It is also easy
to demonstrate that the soliton of the classical Hirota
equation [i.e. , Eq. (1.1) with e2 ———3cex] is exactly the
limit of the quantum soliton (3.20). The same results
may be obtained when calculating the soliton's energy
and momentuxn (5.5) and (5.4) for the classical "strings"
(5.8) and (5.9) obtained above.

To relate the classical strings to the classical solitons,
we notice the following: in the classical limit, a soliton
with the energy E and momentum P is represented, in
terms of the inverse scattering transform, by a complex
root A (which is a corresponding eigenvalue of the scat-
tering problem). We have shown that, for all integrable
cases (considered in the paper), k(a = N,x), which is the
end point of the string is equal to 2A.

Another problem is to analyze the classical limit of the
nonintegrable cases. As for the integrable models, the
classical strings may be obtained and they have a more
rich structure. For the simplest nonintegrable model
(1.2), the expression k(s) can also be found explicitly:

(5.9)

which can be obtained too as the continuum limit of the
string (3.20). The "continuum strings" (5.8) and (5.9) are
depicted in Figs. 1 and 2. The "classical strings" (5.8)
and (5.9) for the integrable models are always symmetric
relative to the real axis on the k plane (see Figs. 1 and
2) and, as it follows from Eqs. (5.4) and (5.5), the energy
of the corresponding classical solitons is real.

Applying the limit process (5.2) to the quantum DNS
soliton (3.21), we conclude that the result coincides, up
to a Galilean transformation, with the classical soliton
described by Eqs. (2.1)—(2.3). In the same lixnit, the en-

ergy of the quantum soliton (3.22) with c = 0 goes over
into the classical expression (2.6); at c g 0, the classi-
cal energy, obtainable from Eq. (2.6) by xneans of the
Galilean transformation, also coincides with the limit of

Re k

FIG. 2. The string for the DNS equation.
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O. Galbert and Z. Hermon of Tel-Aviv University for
helpful discussions during the course of this work.

APPENDIX

Re k

FIG. 3. Two symmetric strings for the simplest noninte-
grable equation (1.2).

1. 1
k(s) = + ——icsei + t

3 1 6eg
' (5.10)

where C is a complex constant. As it follows from (5.10),
such strings may have gaps in the form k(s —0)
—k(s+0) —s, and they satisfy the requirement that total
momentum be real. The gaps may leave the string sym-
metric (Fig. 3), but in the general case they destroy the
symmetry (Fig. 4). Discontinuous nonsymmetric strings
give rise to complex values of the energy. This is the
same efFect that we saw in the three-particle sector. In
the nonintegrable case the above built "strings" corre-
spond to unphysical states and additional investigation
is needed in order to build the physical ones.

In this section we will show how the quantum nonlin-
ear Schrodinger equation can be obtained directly &om
quantization of the electromagnetic 6eld in the nonlinear
optical 6ber. Usually, the NS equation is derived &om
the classical 6eld equations by employing the multi-scale
method. After this the quantization of the obtained en-
velope field is performed. This quantization is formal
and the quantum meaning of the envelope field remains
unclear. Our approach is based on the paper of Dr»~-
mond and Carter [24], where the stochastic NS equation
was derived from the foundations of a correctly quantized
field theory. Following this approach, we will just show
that the fully quantized NS equation can be obtained in
the same way.

Consider the model describing propagation of a lin-
early polarized wave in the lowest order transverse mode
[24] in a dielectric nonmagnetic fiber. The dispersion-
less Hamiltonian with the quartic nonlinearity inside a
volume V is

"2 "2 3 ~ "4P=: D + —B:d3x—:D:dx,
v .8~~ 8~ 4~4 v

(Al)

where:: means the normal ordering of quantum fields.
The correct quantization of the electrodynamics in non-
linear dielectric media was done in Ref. [25] and the
interacting-field commutation relations were found to be
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[D,(x), As(x')] = iM,.sb(x —x'),

where A is the vector potential in the Coulomb gauge.
This means that the generalized momentum in this model
is the field D but not E, as in the vacuum quantum elec-
trodynamics. So the fields A and D have to be expanded
into the harmonic-oscillator form

1

D(x) = iS' ) ~

—") S„u (r) exp[zlr„z) +H.c., (Aa)

1
( 1 l*

A(x) = hs ) ~ ~

a„u (r) exp(ik„z) + H.c., (A4)
(2(s)rs )

where k = kg + nAk, Ak—:&, and L is the fiber's
length. The operator a„ is a longitudinal-mode oper-
ator for the normalized transverse mode u (r), with a
&equency u . The position vector x is represented as
(r, z). The functions u(r) are normalized as follows:

f U~U~ d X= 1.
v

(A5)

Re k

FIG. 4. The nonsymmetric string for the simplest noninte-
grable equation (1.2).

The dispersion is now taken into account by inserting the
function ur (k ) = ck„/ge(k„) into expansions (A3) and
(A4).
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Substituting Eqs. (A3) and (A4) into Eq. (Al), one
obtains the following Hamiltonian:

& -zH, t & ['iH.t &
a (t) = exp a exp = a„exp(—iuot).

H = 5) u)„ata„—:D: d x

A 't A 2 A f R t A P
Q G~ + 5 g Clrnj f+I 0 +j+f

n 1m' f
x b(ki + k —ks —ky) + (other terms). (A6)

~. = ~(ko + nak) = ~o + nak~'+ (nAk) 2

2

(A7)

The "other terms" mean all the quartic terms with un-
equal numbers of creation and annihilation operators.
Their role and the coeKcients c~ jf will be discussed
later.

Now we do the main step of the derivation. Our main
assumption is that almost all the excitations are dis-
tributed near some wave number kp, which is the share
of excitations with k lying far &om kp is small. This as-
sumption actually means that we consider a carrier wave
with long-wavelength modulations. Then we can expand
the function io„= io(ko + nAk) in powers of nb, k and
restrict ourselves to the first terms of the expansion

(Alo)

Substituting Eq. (A10) into Eq. (A9) one can see that
the first two terms have no time dependence, while the
"other terms" contain rapidly oscillating coeS.cients. Av-
eraging the Hamiltonian (A9) over the time T much
greater than the carrier wave period Tp = —,one ob-
tains a time-independent Hamiltonian without the "other
terms. " This is a very important point. The Hamilto-
nian (A9) does not commute with the number operator
N = P„at a„and, in turn, the number of photons is not.

conserved. Nevertheless, the number of photons averaged
in time is constant, and we will deal with the averaged
picture. Under our main assumption (that the excita-
tions are distributed near the wave vector ko), we can
replace, in the first approximation, the coefficients c~

with the constant c, which is actually equal to cpppp Em-
ploying the expansion (A7), we obtain the final expres-
sion for the Hamiltonian averaged in time:

II

(HI)~ = 5). ~

~ (kn —ko) + (kn —ko)
~

ata„
2 )

+h ) ca&a~ asatb(ki + k~ —k, —kt) (All).
lrnj f

where io'—:chal/dk[g„and io" = d2io/dk2/g„.
The next step is to represent our model in the interac-

tion picture, which, as the free Hamiltonian Hp is taken,
is the following:

Performing the inverse Fourier transform

i'�(z):—h, & ) a„exp[i(k„—ko) z], (A12)

Ho ——5) u)oat a„.

Then the interaction-picture Hamiltonian will be

HI = 5) .(~ —~o)at (t)a„(t)
n

+~' ).«-.~ai (t)a' (t)as(t)a~(t)
lrnj f

x h(ki + k —k~. —ky) + (other terms),

where

(AS)

(A9)

one obtains the unperturbed NS Hamiltonian in the lab-
oratory coordinates in terms of the field operator @(z).

Expanding the coefficients c~~sy = c(ki, k~, ks, ky)
near the point k~ ——k = kj ——kf ——kp, one can obtain,
as the next approximation, the following expression:

ct~~ f = c + c (ki + k~ + ks + kf —4ko), (A13)

where c&i& = '&&'i [s, . Substituting Eq. (A13) into the
Hamiltonian and making the inverse Fourier transform
(A12), we directly obtain the nonlinear perturbing term
considered in the present work. In the same way, employ-
ing the expansion (A7) up to the third power, we obtain
the linear perturbing term with the third derivative.
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