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Generation and propagation of high-order harmonics in a rapidly ionizing medium
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We present the results from simulations of harmonic generation using intense ultrashort laser
pulses, both for single atoms and in an extended gaseous medium. Using a windowing technique on
the single-atom spectrum, we show that the highest-order harmonics are generated simultaneously
with rapid ionization, and that these harmonics have a phase dependence which is consistent with
a quasiclassical tunneling model. By solving the atomic dynamics simultaneously with the propa-
gation equations, we have obtained spectra that directly show the efFects of phase mismatching and
blueshifting produced by an ionizing medium. At experimental pressures, the plasma-induced phase
mismatch is only important for the highest-order harmonics near the plateau cutoK All harmonic
orders, however, are seen to be blueshifted, by an amount consistent with a blueshifting of the
fundamental as it propagates through the ionizing medium.

PACS number(s): 42.65.Ky, 52.40.Db, 32.80.Rm

I. INTRODUCTION

If an intense ultrashort laser pulse is weakly focused
into a rare-gas jet, high-order odd harmonics of the in-

cident radiation can be produced [1—7]. Theoretically,
there are two distinct aspects to this problem: the single-
atom process in which the harmonics are generated, and
the way in which the harmonics propagate through the
medium. A complete theoretical model of harmonic gen-
eration should give equal consideration to both of these
aspects. The most extensive modeling work to date, by
L'Huillier and co-workers, uses a two-dimensional (2D)
slowly-varying-envelope (SVE) treatment of the propaga-
tion and direct numerical solution of the 3D Schrodinger
equation to obtain the atomic dynamics [8]. When the
rate of ionization is low (less than about 1% per cycle)
and the laser pulse is relatively long ())1 ps) such a
method is highly successful at quantitatively reproduc-
ing experimental results.

Developments in short-pulse laser technology, particu-
larly the advent of Ti:sapphire [9,10] and Cr:LiSAF [11]
as amplification media, have moved harmonic generation
experiments into a different regime. With pulses as short
as 100 fs, a SVE approximation is no longer valid. The
dipole moment cannot be calculated initially at a num-

ber of Axed intensities and then used as an intensity-
dependent function in a propagation code, but instead
the atomic response must be calculated for the pulse as a
whole. A self-consistent approach is necessary, in which
the atomic dynamics and propagation are considered si-

multaneously.
In this paper we describe numerical simulations of

harmonic generation and propagation, outside the SVE
regime, using a 1D Schrodinger equation for the atomic
dynamics and plane wave propagation. Such simulations
cannot, of course, address issues related to focusing and

geometric phase matching, so are only physically appro-
priate to situations where the confocal parameter is very
large. The model has been specifically designed for inves-

tigating the effects of phase mismatching and blueshift-
ing due to &ee electrons. These effects arise because
the intense laser pulse partially or completely ionizes the
gaseous medium. The time varying refractive index in the
plasma gives rise to a blueshifting of the fundamental and
harmonics, and dispersion in the resultant plasma may
reduce the coherence and thus the overall generation efIi-

ciency of the harmonics. We wish to find out how serious
these effects are, and whether they affect all harmonic
orders in a similar way.

In the first half of the paper, we address single-atom
spectra, in particular examining the time dependence of
harmonic emission on the time scale of the laser pulse
and also on a time scale within a laser cycle. Following
this, we will describe the incorporation of the model atom
into the equation for plane wave propagation, and show
how the ionizing medium can affect the overall harmonic
spectrum, both in terms of reduced conversion efficiency
and plasma-induced blueshifting of the harmonics.

II. SINGLE-ATOM CALCULATIONS

A. Atomic dynamics

In our model, the atomic dynamics are obtained by
numerically solving the 1D Schrodinger equation in the
Kramers-Henneberger (KH) frame. The dynamical be-
havior of the 1D model atom has been extensively studied
in the past by Eberly, Su, and Javanainen [12], and oth-
ers [13,14]. In atomic units, the 1D Schrodinger equation
can be written
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where the potential is of the form

V(x) = (2)

The parameter o.(t) represents the time-dependent dis-
placement of the KH kame, and has an amplitude given
by ao ——Eo/u, where Eo is the amplitude of the laser
electric field and u is the angular kequency. Note that
we use atomic units throughout this paper, except where
noted.

The scaling parameter P can be adjusted to match the
ionization potential of the model atom to that of any real
atom. In the present case, we choose P = 1.414, which
gives an ionization potential of 15.76 eV, equal to that of
argon. Figure 1 shows the potential for this case, together
with the energies of the bound states. The total number
of bound states depends upon the size of the numerical
grid, but in the present case is typically 15.

As in our previous studies [15],we start with the wave
function in the ground state of the potential. Equation
(1) is solved numerically using a semi-implicit Crank-
Nicolson technique [16], and the single-atom spectrum is
obtained &om a Fourier transform of the dipole acceler-
ation [17],

(t) = (cp(r)
rr

rr(f)) +s(t),
—t9V

recorded over the entire laser pulse.
The size of the grid is determined by the laser intensity

and frequency, and typically must be somewhat greater
than 2ao. The time step and space step are found by trial
and error, and represent compromises between compu-
tational speed and numerical accuracy. For the studies
here, we have generally used a grid of 800 points with
spacing 0.2 a.u. , and 400 time steps per laser cycle. The
laser pulse is 100 cycles long, with a sine-squared field
envelope of the form

q, 8;'+38'q . (5)

Here 8', is the ionization potential and E's = Eo/4(d is
the quiver or ponderomotive energy. For the conditions of
Fig. 2, Eq. (5) predicts that q, 17, 25, and 37, in good
agreement with the actual spectra. It should be noted
that under typical experimental conditions, propagation
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of wavelength 800 nm. There are absorbing regions of
width 200 points at the edges of the grid, with a mask of
cos / shape, as used previously by Krause, Schafer, and
Kulander [18]. The absorbing region must be so large
because during rapid ionization parts of the wave func-
tion will reach the edges of the grid moving with a very
high velocity, and even a small amount of reQection can
significantly alter the resultant spectrum. . Since any part
of the wave function which reaches the edges of the grid
during the calculation disappears, the degree of ioniza-
tion Z can be estimated by calculating the norm of the
wave function ()((r~vP) which remains.

Figure 2 shows some results &om the 1D model for
peak laser intensities of 5 5 x 10 ) 1 2 x 10, and
2.2 x 10 4 W/cmz. Nor, that for these spectra the fun-
damental term in E(t) has been omitted from the dipole
acceleration expression in Eq. (3) for simplicity. The har-
monic spectra show a characteristic plateau region fol-
lowed by a steep drop in conversion efBciency beyond a
cutoK point. Both the nuxnber of harmonics and the in-
tensity of the plateau harmonics increase with laser inten-
sity, until an intensity is reached where the atom ionizes
rapidly in the leading edge of the laser pulse.

The position of the cutofF corresponds closely to that
predicted by a simple quasiclassical tunneling theory de-
veloped by Corkum and others [19,20], which gives the
cutofF harmonic q, as

. , (~t')
E(t) = Eo sinut sin

'r (4) A

0.5—
V

The &equency is 0.05655 a.u. , so these conditions corre-
spond to a 100 fs full width at half maximum laser pulse
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FIG. 1. Potential used in the 1D model argon atom, with a
ground state binding energy of 15.76 eV and 15 bound states
in total.

FIG. 2. Degree of ionization as a function of time (top)
and harmonic spectra (bottom) for a 1D model argon atom
subjected to a 100-cycle, 800-nm laser pulse of peak intensity
5.5 x 10 W/cm (circles), 1.2 x 10 W/cm (triangles), and
2.2 x 10 W/cm (stars). The dotted line in the top Sgure
shows the laser pulse envelope.
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become more prominent as the intensity is raised, which
can be clearly seen in the comparison of Figs. 3 and 4.
The secondary peaks, however, are not coherent with
the driving field and would not phase match successfully
in an extended medium, which probably explains why
experimental spectra are generally Bee of such spurious
peaks.

T
(b) B. Time-dependent spectra
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FIG. 3. (s) Harmonic spectrum for s 1D model argon atom
subjected to a 100-cycle, 800-nm laser pulse of peak intensity
5.5 x 10 W/cm, and (b) detail of full spectrum.

e8'ects due to the focusing geometry act to reduce the
cutofF and Eq. (5) is no longer strictly appropriate [21].

In Fig. 2 we have only shown the positions of the
harmonic peaks, but there is considerable structure be-
neath the peaks, as Figs. 3 and 4 show for intensities of
5.5 x 10ts and 2.2 x 10~4 W/cm2, respectively. The rel-
atively high background intensity is largely due to the
short-pulse duration and rapidly varying envelope. Sim-
ulation conditions which use a significantly longer pulse
[15], or a ramped turn on followed a period of constant
laser intensity [18] typically result in a much cleaner spec-
trum than those shown here. There are also numerous
smaller peaks ofF the exact harmonic positions, which are
probably due to transitions between dynamically Stark-
shifted levels in the strongly driven atom. These peaks
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A crucial issue for phase mismatching and blueshifting
due to &ee electrons is the relative timing of ionization
and harmonic generation. If the bulk of the harmon-
ics are generated before the period of rapid ionization,
then they will propagate through an essentially neutral
medium, but any harmonics generated during the ioniza-
tion process will be subject to dispersion and blueshift-
ing.

The simplest way to investigate this issue is to con-
struct a time-dependent harmonic spectrum. This can
be done in a simple way by multiplying the dipole ac-
celeration by a narrow temporal window function before
taking a Fourier transform, a procedure closely related
to power spectrum estimation [22]. We have used a tri-
angular window of width ten laser cycles, which can be
moved through the pulse to map out the time depen-
dence of the harmonic emission. Figure 5 shows a set
of windowed spectra for the same conditions as Fig. 4.
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FIG. 4. (a) Harmonic spectrum for s 1D model argon atom
subjected to a 100-cycle, 800-nm laser pulse of peak intensity
2.2 x 10 W/cm, and (b) detail of full spectrum.

FIG. 5. Harmonic spectra obtained under the same condi-
tions as Fig. 4, but with a ten-cycle triangular window applied
to the dipole acceleration data. The left-hand figure in each
case shows the position of the window (dotted line) compared
to the time-dependent degree of ionization (solid line).
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a 100-cycle, 800-nm pulse with peak intensity 2.2 x 10
W/cmz. The spectra clearly show that the harmonics at
the plateau cutoH' are produced concurrently with the pe-
riod of rapid ionization, occurring in this case just before
the peak of the laser pulse is reached. The low-order har-
monics appear to be produced slightly earlier in the laser
pulse as well as during the period of rapid ionization.

The duration of emission can be seen more clearly in
Fig. 6, where we show the ionization rate as a function of
time, together with the normalized intensities of the fun-
damental, the 3rd harmonic and the 37th harmonic. The
peak in emission for the 3rd harmonic occurs slightly be-
fore the peak for the 37th, although the rate of ionization
at peak emission is similar in the two cases. The emission
duration for the 3rd harmonic is noticeably longer than
for the 37th, with both being significantly less than the
laser pulse duration itself.

The technique of windowing the dipole acceleration be-
fore performing a Fourier transform can also be used to
investigate the phase dependence of the harmonic emis-
sion. This is of interest because the quasiclassical tunnel-
ing model referred to earlier [19,20] makes specific pre-
dictions about the times during a laser cycle at which
the highest-order harmonics are generated. BrieBy, the
model assumes that an essentially &ee electron is pro-
duced by tunneling through the suppressed potential bar-
rier, and that this electron then evolves classically under
the inBuence of the laser field only. For particular values
of the initial phase at ionization, the electron will tra-
verse a path which brings it back to the origin, where
it can again interact with the nucleus. The maximum

1.0
(D
N

U
E

0.5—

kinetic energy of the electron upon its return, relative to
the ground state energy of the atom, sets an upper limit
on the energy of the photon which can be emitted, and
hence the position of the harmonic cutofF.

After tunneling through the potential barrier, the elec-
tron's motion (assuming linearly-polarized light E
Ep sin ut) is given by

x = zp( —sin ut) + t;t + xp, (6)

v = vv( —cos ut) + vp, (7)

where vv = Ep/u is the quiver velocity and zv = vv/u
is the quiver amplitude. The initial conditions vo and zo
can be calculated by assuming that v = z = 0 at the time
of tunneling. The maximum return velocity, which de-
fines the cutofF energy in Eq. (5), occurs for an electron
tunneling out at art = P 107' or 287', and return-
ing to the vicinity of the nucleus at P 345' or 165'.
This would suggest, if the model accurately describes the
physical situation, that the emission of the highest-order
harmonics should peak at the phases of the laser cycle
corresponding to those return times, in other words, just
before the zero crossings of the electric field.

As we are specifically interested in the harmonic emis-
sion on a time scale less than a laser cycle, it is neces-
sary to use a window on the dipole acceleration of width
r « 7p ——2z'/ur. Using such a narrow window means that
individual harmonic peaks will no longer be resolved in
the spectrum. A window of width 7 = Tp/10 will not
be able to resolve features in the spectrum smaller than
about ten photon energies in size. Figure 7 illustrates
this point, showing the power spectrum obtained for the
conditions of Fig. 4, with a 'Tp/10 window centered at
a time 40 cycles into the laser pulse. All traces of har-
monic peaks have disappeared, although it is still the
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FIG. 6. (a) Ionization rate as a function of time for the

conditions of Fig. 4, and (b) normalized intensities of the fun-
damental (solid line), 3rd harmonic (dashed line), and 37th
harmonic (dotted line). Harmonic intensities have been ob-
tained by scanning a ten-cycle triangular window across the
full dipole acceleration data.

FIG. 7. (a) Degree of ionization as a function of time for
the conditions of Fig. 4, together with a triangular window of
width re/10 applied to the dipole acceleration data, aud (b)
resultant power spectrum.
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case that the spectrum accurately represents the power
radiated into specific frequency ranges. As the resolution
is effectively 10m, it makes sense to divide the windowed
spectrum into bins of width 10m, and integrate across
each bin to obtain an average value.

%'e have used such a technique to compare the phase
dependence of low-order and high-order harmonic emis-
sion for the conditions of Fig. 4. At two different times in
the laser pulse, after 20 and 40 cycles, we have scanned
a Tp/10 window across a single laser cycle to obtain the
phase dependence of the harmonic emission into various
orders. The results are plotted in Fig. 8, where the two
curves in each case correspond to the average intensity in
the frequency ranges (0—10)ur (low-order harmonics) and
(30—40)w (high-order harmonics). In Fig. 8(a), both low-

order and high-order harmonics show the same phase de-
pendence. The emission into all harmonic orders is seen
to peak at P +90' (where the field is a maximum) and
pass through a minimum close to P 0', 180' (where
the field is zero). Moving further into the pulse, from
Fig. 8(a) to Fig. 8(b), there is little change in the be-
havior of the low-order harmonics, but the high-order
harmonics increase significantly in intensity and undergo
a dramatic phase shift, so that at this time the low-order
and high-order harmonics are produced almost exactly
180 out of phase. Emission into the high-order harrnon-
ics now peaks close to P = 0' and 180', as predicted by
the quasiclassical tunneling model. The plateau region
of harmonics in the range (10—30)cu, not shown in Fig.
8, displays a fairly Hat phase dependence, without the

clear structure observed with the low-order or high-order
harmonics.

The quasiclassical model is only expected to apply in
the tunneling regime, where the adiabaticity parameter.
y, defined by

q = (E,/2E's)'~

is less than unity. For the conditions of Fig. 8, the adi-
abaticity parameter takes the values p = 2.2 at t = 20
cycles and p = 0.84 at t = 40 cycles. Thus, we would

only expect the tunneling conditions to be met near the
peak of the laser pulse, which in this case is where the
high-order harmonics are being generated. Through its
dependence on the quiver energy, p scales as ~/E, and
thus for a given electric field strength we would expect
the tunneling behavior to be more pronounced for longer
laser wavelengths.

The phase-dependent emission observed is strong evi-
dence that two different mechanisms are involved in har-
monic generation in strongly-driven atoms. One mecha-
nism, responsible for all low-order harmonics, appears to
be a single-step mechanism which occurs close to the core
and thus peaks when the electric field of the laser is at
a maximum. The other mechanism generates the high-
order harmonics during rapid ionization in the tunneling
regime, and shows a quite different phase dependence,
with emission peaking near the field crossing points. In
the tunneling regime, plateau harmonics can be produced
by combination of the two mechanisms and thus show a
Hat phase dependence.
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III. PROPAGATION EFFECTS

A. Propagation model
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The propagation part of our model is similar to that
used previously to investigate the phase matching of
harmonics produced in the extreme tunneling ionization
limit [23]. The wave equation for the propagation of a
plane wave, linearly polarized field E(z, t) can be written
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FIG. 8. Time dependence of harmonic emission for the con-

ditions of Fig. 4, obtained using a window of width 7o/10,
scanned over one cycle at (a) 20 cycles into the pulse, and (b)
40 cycles into the pulse. In each case the solid line represents
the average intensity in the frequency range (0—10)cu, and the
dotted line represents the average intensity in the frequency
range (30—40)u.

where J is the plasma current. The time derivative of J
is directly proportional to the single atom dipole accej-
eration. ,

(10)

where N(z) is the density profile of the atoms.
Equation (9) can be solved numerically using an ex-

plicit finite-difference technique [16]. We start with the
laser pulse in a vacuum region, and then propagate the
pulse through an interaction region containing a large
number of 1D model atoms. A Fourier transform of the
laser pulse exiting the interaction region yields the har-
monic spectrum. We use a laser pulse, as in the previous
section, of length 100 cycles, and a space step in the prop-
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agation direction of 0.005%, where A is the vacuum laser
wavelength. Computational restrictions limit the plasma
region to just 50 atoms, and as the atoxns are spaced
by one grid point, this means that the total size of the
plasma region is 0.25'. As the laser pulse propagates
through the plasma, the local field E(z, t) at each grid
point is used as the input to a separate 1D Schrodinger
equation.

For phase xnatching considerations, the density-length
product is the relevant parameter, and even though our
interaction region is very short, we can increase the den-
sity in the model to reproduce the density-length prod-
ucts typically found in experixnents. This scaling is valid
as long as the density in the model remains well below
the plasma critical density, at which point the generation
of a re8ected wave renders it invalid. For the present
conditions, a practical upper limit on the density-length
product is 10 Torr over 1 mm. We should point out that
this limitation is purely computational, and it is in prin-
ciple possible to use the model with a much larger plasma
interaction region and hence simulate significantly higher
pressures. Because a sharp-edged plasma is more likely
to generate reBections, the plasma density profile is also
given a smooth sine-squared envelope.

Figure 9 shows a comparison of a single atom spec-
trum [from Fig. 4(a)] and a propagated spectrum, for a
laser intensity of 2.2 x 10i4 W/cm2, and a propagated
density-length product of 5 Torr over 1 mm. The fun-
damental peak in Fig. 9(a) is much stronger than that
in Fig. 4(a), because we have now included the term in

E(&) in the dipole acceleration expression in Eq. (3). The
low-order harmonics in the propagated case are higher
than the single-atom case because the power spectrum is
strictly proportional to A&2]a(id)] [17]. The propagated
spectrum, which is the Fourier transform of the electric
field, gives the true conversion efficiencies from the fun-

damental into the various harmonic orders. The peaks
are considerably cleaner in the propagated case, because
the incoherent off-harmonic peaks have been suppressed
relative to the coherent harmonic peaks. For the present
model, with only 50 atoms, the difference between N
and N is not so marked, but in a real physical system,
the incoherent peaks would virtually disappear from the
spectrum.

B. Phase mismatching

Figure 10 shows the harmonic intensities for three
propagated spectra with density-length products 0.1, 1,
and 5 Torr over 1 mm, all for a laser intensity of 2.2 x 10
W/cm2. It can be seen that the absolute conversion ef-

ficiency into the plateau harmonics is around 10 at
the highest pressures, and that the efficiency of harmonic
generation appears to scale roughly as the square of the
density, as expected fur a coherent process. A better
way to investigate the pressure dependence in detail is to
choose a number of harmonic orders and plot the genera-
tion efficiency against pressure. This is done in Fig. 11 for
the 3rd harmonic, the 13th (near the start of the plateau),
and the 37th (near the cutofF). Dotted lines on this figure
indicate a true N2 dependence. While the 3rd harmonic
appears to be relatively unaffected by phase mismatch-

ing, both the 13th and 37th harxnonics are reduced in
intensity at high pressures, attributable to dispersion in
the ionizing medium.

Plasma dispersion is due to a difference in re&active
indices for the fundamental and harxnonic radiation. A
coherence length L, can be defined as the distance over
which the mismatch is equal to 2~. For a singly ionized
plasma, this is given (in SI units) by

4vrce m, u q
~2 N q2
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where N is the atomic density and q is the harmonic or-
der. For propagation distances much less than L, the
harmonic efficiency should scale as N2, but at L = L„
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FIG. 9. Comparison of (a) the single-atom spectrum and

(b) the propagated spectrum for a 50-atom model argon
plasma and a 100-cycle, 800-nm laser pulse with peak inten-
sity 2.2 x 10 W/cm . The equivalent density-length product
in (b) is 5 Torr over 1 mm.

FIG. 10. Propagated harmonic spectra, showing peaks
only, for a 50-atom model argon plasma and a 100-cycle,
800-nm laser pulse with peak intensity 2.2 x 10 W/cm .
The equivalent density-length products are 0.1 Torr (circles),
1 Torr (triangles), and 5 Torr (stars) over 1 mm.
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FIG. 11. Pressure dependence of selected harmonic inten-
sities, for the same conditions as Fig. 10. The dotted lines
indicate a true N relationship, and the arrows mark the pres-
sures at which the phase mismatch would be 2m for the 13th
and 37th harmonics in a fully ionized plasma.

the eKciency passes through a minimum, and for I && I
the process becomes incoherent and the efficiency satu-
rates.

In a previous study [23] in which harmonics were as-
sumed to be generated by the tunneling ionization pro-
cess itself (with no additional atomic dynamics), we

found that all harmonic orders were generated at the
same time in the pulse, corresponding to the period of
maximum ionization rate. The harmonic efficiency as
a function of pressure showed clear minima, associated
with the phase mismatch equal to multiples of 2x. In
the present case, assuming complete ionization, the pres-
sures required to reach a phase mismatch of 2' for the
3rd, 13th, and 37th harmonics are 28, 6.5, and 2.3 Torr,
respectively. These pressures, indicated by arrows for the
latter two cases in Fig. 11, are those for which the rel-
evant coherence length equals 1 mm. Deviations &om
the N relationship do occur at around these pressures,
although the complex ionization dynamics &om the 1D
atomic model prevent the observation of clear minima
near the critical pressures as in the pure tunneling ion-
ization case. The 3rd harmonic is virtually unafFected,
but this would be expected even if it were generated in
a fully ionized plasma at these pressures. Overall the
effect of the &ee-electron phase mismatch on conversion
efficiencies is fairly small, amounting to no more than
one order of magnitude over the parameter range consid-
ered. However, because the conversion efficiencies for the
higher harmonic orders are starting to saturate, the eKect
would become more severe if the pressure were increased
further.

harmonics have recently been observed by a number of
groups [1,4].

In the simplest case, for an initial &equency ~ propa-
gating through a homogeneous medium of length I, the
plasma-induced frequency shift can be written

(12)

1.0
fUnda rnentaI I

t

0 0'

Here a„is the plasma &equency for the fully ionized
medium (in SI units, ~„=e N, /eom, ), c is the speed
of light, and Z is the degree of ionization. Equation
(12) assumes that the frequency is much greater than
the plasma &equency, or in other words that the density
is far below critical. The inverse scaling with &equency
means that we would expect the fundamental to be more
strongly blueshifted than the high-order harmonics. A
straightforward application of Eq. (12) for a density of 5
Torr, interaction length of 1 mm, laser wavelength of 800
nm and ionization rate of (50 fs) gives bu/ur = 0.3'Fo for
the fundamental, but only 0.02% for the 13th harmonic.
Thus, any blueshifts observed on the harmonics probably
arise from a blueshifted fundamental being up converted,
rather than &om a direct blueshifting of the harmonics
themselves. Given this, all harmonic orders should show
roughly the same blueshift in terms of bur/~.

In this section we will investigate the blueshifting ob-
served in our simulations, for the same set of conditions
as used previously, a 100-fs, 800-nm laser pulse of peak
intensity 2.2 x 10~4 W/cm2, propagating through argon
gas at various pressures. Figure 12 shows the spectrum of
the fundamental, before and after propagation through a
1-mm length of 5-Torr gas. There is a slight broadening
and overall blueshift of about 0.1%, but not as much as
the 0.3/p estimated earlier. This is because the ionization
occurs rapidly over a, relatively small &action of the total
pulse length, and most of the laser pulse, including the
peak intensity, actually moves through a medium with an
almost constant refractive index. The harmonics, how-

ever, are generated predominantly before the pulse peak,
during the time of rapid ionization, so for these we should
expect to see clearer evidence of blueshifting.

Figures 13, 14, and 15 show the pro6les of the 3rd,

C. Plasma-induced blueshifting

Radiation which propagates through a medium with a
time varying refractive index will be subject to &equency
chirping. In harmonic generation at high intensities, the
formation of a plasma during the laser pulse results in
a decrease in the refractive index and hence a blueshift-
ing of the fundamental and harmonics. Blueshifting of
intense laser pulses in gases has been extensively studied
experimentally and theoretically [24—27] and blueshifted
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FIG. 12. Spectrum of the fundamental for a 100-cycle,
800-nm laser pulse with peak intensity 2.2 x 10 W/cm be-
fore (solid line) and after (dotted line) propagation through
a 50-atom argon plasma with a density-length product of 5
Torr over 1 mm.
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FIG. 13. Spectrum of the 3rd harmonic generated by a
100-cycle, 800-nm laser pulse with peak intensity 2.2 x 10
W/cm propagating through a 50-atom argon plasma with a
density-length product of 0.1 Torr (solid line), 2 Torr (dashed
line), and 5 Torr (dotted line) over 1 mm.

FIG. 15. Spectrum of the 37th harmonic generated by a
100-cycle, 800-nm laser pulse with peak intensity 2.2 x 10
W/cm propagating through a 50-atom argon plasma with a
density-length product of 0.1 Torr (solid line), 2 Torr (dashed
line), and 5 Torr (dotted lir.=) over 1 mm.
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13th, and 37th harmonics, for the same pulse conditions
as Fig. 12, after propagation through 1 mm of argon at
pressures of 0.1, 2, and 5 Torr. The lowest of these pres-
sures effectively results in no blueshift, so the solid curve
in each case can be used as a reference line shape. In the
case of Fig. 15, the structure on the 37th harmonic at
0.1 Torr is not due to blueshifting but rather due partly
to additional peaks in the atomic spectrum and partly
to computational noise. The width of the unshifted line
shape is governed mainly by the duration of the emis-
sion. If we assume as a rough estimate that the emission
duration At is related to the frequency width Ace by
b,t = 27r/Au, then the frequency widths observed corre-
spond to approximate emission durations of 60, 50, and
30 fs for the 3rd, 13th, and 37th harmonics, respectively.

At higher pressures the harmonics all appear to be
blueshifted by approximately the same amount in bur/ur,

con6rming our earlier hypothesis about the shifts all aris-
ing from a shift in the fundamental. The shift also ap-
pears to be linear in the pressure, as predicted by Eq.
(12). A noticeable feature is that in all cases the peak
shifts noticeably in frequency, rather than remaining at
the original frequency and merely broadening to the blue
side. This would suggest that the emission into all har-

monies occurs dominantly during the period of rapid ion-
ization. If, on the other hand, emission occurred equally
before ionization and during ionization, we would expect
to see a peak broadened to the blue side but with some
intensity remaining at the original center frequency.

Recent experimental work by Wahlstrom and co-
workers [1] has shown that both blueshifted and blue-
broadened harmonic line shapes can be observed. Har-
monics in the plateau region are seen to be broadened,
whereas those near the cutoff are purely shifted with lit-
tle broadening. They postulate that this difference is due
to the emission duration of the harmonics, with plateau
harmonics being produced both early in the pulse and
during the time of rapid ionization. The results from
our simulations do not support this, however, as even
for the 3rd harmonic we 6nd the emission is strongly
peaked during the rapid ionization period (see Fig. 6)
and we observe an almost purely shifted line shape. We
would suggest that the broadened line shapes observed
by Wahlstrom and co-workers are a product of spatial,
and not temporal, variation. In a focussed pulse the har-
monics close to the cutoff will only be produced at the
focal center. The plateau harmonics will also be gener-
ated at larger radial distances, where the ionization rate
and the blueshift is less, and spatial averaging can lead in
this case to a broadened line shape. The simulation re-
sults presented here, which explicitly assume plane-wave
propagation, unfortunately cannot address the issue of
spatial averaging.

IV. CONCLUSION
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FIG. 14. Spectrum of the 13th harmonic generated by a
100-cycle, 800-nm laser pulse with peak intensity 2.2 x 10
W/cm propagating through a 50-atom argon plasma with a
density-length product of 0.1 Torr (solid line), 2 Torr (dashed
line), and 5 Torr (dotted line) over 1 mm.

We have performed calculations of harmonic genera-
tion in an extended medium by solving the equations
for the atomic dynamics and the propagation simulta-
neously. This is the fnst time, to our knowledge, that
absolute eKciencies and propagated spectra have been
obtained outside the SVE approximation. Our study has
highlighted the fact that in an intense ultrashort laser
pulse most of the harmonic radiation is generated during
the period of rapid ionization, which may not coincide
with the peak of the laser pulse. There appear to be
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two mechanisms for harmonic generation with difFerent
phase characteristics, and we have observed that for high-
order harmonics, generated in the tunneling regime, the
phase dependence is correctly given by a simple quasi-
classical model. The production of a plasma during the
harmonic generation process has two eKects, a reduction
in the conversion efEciency of the high-order harmonics
due to phase mismatching, and a blueshifting of the har-
monics due to a time varying refractive index. All har-
monic orders appear to be blueshifted in a similar way,
suggesting that the blueshift originates with a blueshifted

fundamental. Linewidths are not appreciably broadened
by the blueshifting process, and recent experimental re-
sults showing broadened harmonics are most likely the
result of spatial averaging rather than temporal e8'ects.
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