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We calculated numerically in a relativistic partial-wave formulation the positron energy spectra of
pair-production o(E ) in the field of atoms with atomic number Z =1, 6, 13, and 82 for photons of en-
ergies near threshold, Xk =2.001, 2.01, and 2.10 m,c?, where E , is the positron energy. Our results indi-
cate that in this low-photon-energy region, the atomic-electron screening effect increases as Z increases,
k decreases, and E, decreases. The ratio of screened to point-Coulomb cross sections o(E ) varies
from 0.985 to 1.69 X 10°. When the screening effect is important, it increases the cross section o(E ;).
Our results also indicate that the approximate treatment of screening through energy-shift screening
theory becomes inadequate when the screening effect is very important. The approximate treatment of
screening through the corrected-effective normalization screening theory works fine in this low-photon-
energy region, except for the case with Z =6, k =2.001m,c?, and E ; =1.0001m,c?, where the screening

effect is not a normalization effect.

PACS number(s): 32.80.—t, 32.90.+a, 32.80.Cy

With the continuing improvements in computers it is
becoming feasible to make fairly accurate theoretical cal-
culations of pair-production cross sections by low-energy
photons on atoms. Extensive point-Coulomb results from
near threshold to 5 MeV have been given by @verbg,
Mork, and Olsen (@MO) [1], using a method similar to
that of Jaeger and Hulme [2]. By using the corrected-
effective normalization screening theory (CNST) and the
energy-shift screening theory (EST) for the atomic-
electron screening effect, Tseng and Pratt [3] have con-
verted all the point-Coulomb results of @MO to the
screened results for incident-photon energies in the range
(2.10-10.0)m,c%. These results are in good agreement
with experiments [3,4]. As we know, the atomic-electron
screening effect on pair-production cross sections be-
comes more important as the incident photon energy de-
creases. Can the CNST and EST be used for lower pho-
ton energies? We wish to report results on the cross sec-
tion of pair production by photons of energies k from
2.10m,c? down to 2.001m,c?, obtained with a direct nu-
merical calculations by using an exact relativistic partial-
wave formulation. In this work we describe our basic
process as the single-photon production of electron-
positron pairs from an unpolarized isolated atom. In ad-
dition, we use a simplified model which is adequate for a
wide range of atoms and the process at the kinetic energy
of the created electron (or positron) above the keV range
[5]. The target atom is described by a central potential
[5], such as the Hartree-Fock-Slater potential with the
exchange term omitted [6]. Of course, as the photon en-
ergy decreases, and the kinetic energy of the created elec-
tron (or positron) becomes very low, the calculations
based on this independent-particle model cease to be
quantitative and give only a qualitative guide to features.

We use the same formalism we used for the atomic-
field bremsstrahlung calculation [7]. Following our pre-
vious bremsstrahlung work [7], we write the pair-
production cross section, differential with respect to posi-

1050-2947/94/50(1)/343(6)/$06.00 50

tron energy E | and to positron and electron angles as
do/dE.dQ.,dQ_=Q2m) p_E_p,E |Mg|*. (1)
Here the pair-production matrix element is
My=Q2ra/k)'? [d* $ip_,r,E_)
Xa-ep,(—p,,r,8 e’ kT . )

The photons are specified by momentum k, energy k, and
photon polarization vector € such that

€*-e=1, €k=0. (3)

Here ¢,(p_,r,§_) is the electron wave function asymp-
totically normalized to a unit-amplitude plane wave (or
distorted plane wave in the point-Coulomb case) of four-
momentum (E_,p_) and four polarization (0,§_) in its
rest frame plus an incoming spherical wave; the positron
wave function contains asymptotically spherical incom-
ing waves, as the substitutions E,—>—E ., p;— —p4
ut |p;|—|p4|), and §;—&' =&, —2p , (p+ &) change
outgoing into incoming spherical waves, namely,

i (e n 6 =9 —pr g, @
where 9, is the positron wave function. That is [8],
¢1(p7r1§)

RE3L

¥ap,5,6) !z‘“’?j (@0 PONe ™ Yem(), ()

where
[ 8@
Yem (D=0 e @) | ©
and
Q@)= 3 Cllj;m—s55Y, & )
s=%1/2
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is an eigenstate of J2, J,, and L2. The angular momen-
tum operator is J=L+S8, the quantity C(/1j;m —s,s) is
the Clebsch-Gordan coefficient, and the quantum number
k=F(j+1) as j=It4. The radial wave functions g,
and f satisfy the radial Dirac equations

dg (r)/dr=(py+1—WV)f (r)—kg r)/r ,
df (r)/dr=—(po—1—V)g (r)+kf (r)/r,

(8)

with po=—E , for ¢, and p,=E _ for v,, where V is the
central potential described by the target atom. We use
the spinor representation for Dirac electron and positron
wave functions. In this representation any matrix ele-
ment between four-component states may be reduced to
matrix elements between two-component spinors

x=ci X' 2+d,; px1? 9
with
1 0
XVZ: lo X_l/zz 1 (10)
and
x x=1. (11)

Choosing a coordinate system centered at the atomic
nucleus with the z axis along k, y along k Xp,, and X in
the (k,p.) plane, and inserting Egs. (5) into Eq. (2), we
obtain

My, =16m*(2ma/k)!"?
X 3 (01 ]el(—p i x]

Kl,ml,Kz,mz

;o 08, +8, )
X(_l) le 1 2
X[G_R+(m2)+6+R.‘(m2)] ’ (12)
where
Ri(mZ)=R,:(tzKl(m2)8lem2;1 ,
(13)

2
R (m)= 3 Qf(m) 3 Pi(m)s, .
n=1 !
The index [ runs from |I,—1I,| to (I5+1,) in steps of 2
for n=1, and from |I,—1}| to (I,+1}) in steps of 2 for
n=2. Here

€ =€, Ti€, ; (14)
I'=l+ng, n.=—«/|l; (15)
Qli(m)zmz(—l)““z[(zl;+1)(211+1)]“2
xcj—:xz,mci,m¢l ’
* = m¥1/2 ' 172 (16)
Q3 (m)=—n, (—1) [(21,+1)(217+1)]
XC;fiz,mexl,m-T—l 5

TABLE 1. Comparisons of unpolarized pair-production cross section (E ;)=[Z "*do /dE ; lynpol
for k =2.10m,c% Z=1, 13, and 82; y =(E ; —1)/(k —2)=0.1, 0.3, 0.5, 0.7, 0.9, and 0.95 between re-
sults of @verbg, Mork, and Olsen (0 ),,) for the point-Coulomb potential, our results calculated with
the partial-wave method for the point-Coulomb potential (o) and for Hartree-Fock-Slater potential
with the exchange term omitted (o ygy), the results calculated with the energy-shift screening theory
(ogst), and the results calculated with the corrected-effective normalization screening theory (o cnst)-
Here the cross section o( E , ) are in units of ub/m,c?, and a[n] shall mean a X 10".

VA y 9 om0 Oc OHFN Ourn/0¢ OcnsT/OHEN OgsT/OHFN
1 0.1 0.920 0.9265 0.9279 1.00 1.00 1.00

0.3 1.50 1.517 1.517 1.00 1.00 1.00
0.5 1.69 1.693 1.693 1.00 1.00 1.00
0.7 1.58 1.585 1.584 0.999 1.00 1.00
0.9 1.10 1.102 1.101 0.999 1.00 0.999
0.95 0.850 0.8509 0.8487 0.997 1.00 1.00

13 0.1 0.220 0.2211 0.3184 1.44 1.00 0.997
0.3 1.21 1.222 1.318 1.08 1.00 1.01
0.5 1.95 1.944 2.001 1.03 1.00 1.00
0.7 2.32 2.329 2.353 1.01 1.00 1.00
0.9 2.46 2.462 2.470 1.00 1.00 1.00
0.95 2.49 2.483 2.501 1.01 1.00 0.997

82 0.1 6.554[ —8] 1.108[ —3] 1.69[4] 1.03 8.95
0.3 4.153[—3) 0.1079 26.0 1.01 1.48
0.5 0.115 0.1156 0.7043 6.09 1.00 1.11
0.7 0.650 0.6486 2.115 3.26 0.997 1.03
0.9 1.92 1.909 4.420 2.32 0.996
0.95 2.36 2.356 5.128 2.18 0.996
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TABLE II. Same as Table I, except for k =2.01m,c?and Z=1, 6, and 13.
zZ Yy 9 om0 Oc O HFN ourn/0c O cNsT/ T HEN Ogst/OHFN
1 0.1 0.008 15 0.008 111 0.008 331 1.03 1.00 1.00
0.3 0.0160 0.01603 0.016 12 1.01 1.00 1.00
0.5 0.0193 0.01925 0.01928 1.00 1.00 1.00
0.7 0.0193 0.01929 0.01925 0.998 1.00 1.00
0.9 0.0153 0.01545 0.01531 0.991 1.00 1.00
0.95 0.0133 0.01333 0.01313 0.985 1.00 1.00
6 0.1 0.000 76 0.000758 6 0.002 539 3.35 0.983 1.50
0.3 0.009 80 0.009 821 0.01355 1.38 0.970 1.02
0.5 0.0213 0.02120 0.024 80 1.17 1.00 1.01
0.7 0.0315 0.03145 0.034 56 1.10 0.963 1.01
0.9 0.0404 0.04037 0.043 62 1.08 0.961 0.997
0.95 0.042 4 0.042 55 0.04627 1.09 0.960
13 01 7.166[—6]  6.890[ —4] 96.2 1.03 2.41
0.3 0.0019 0.001911 0.008 460 4.43 1.01 1.20
0.5 0.0105 0.01052 0.024 08 2.29 1.00 1.05
0.7 0.0258 0.025 84 0.044 77 1.73 0.998 1.01
0.9 0.0458 0.045 80 0.068 44 1.49 0.995
0.95 0.0510 0.05129 0.074 87 1.46 0.994
o\t =h2 o, . ) To calculate the pair-production cross section
Py (m)=(=1) Tl im ¥ 3) a7 d0/dE.dQ.dQ_ from Eq. (1), we need |My|? which
PE(m)=(—1 )<12+1’1 —l)/2T(l I' ImEL) can be obtained from Eq. (12). To obtain the unpolarized
2\m 2iphMm T pair-production cross section [do/dE  dQ,dQ_]
we average the do/dE_ dQ.,dQ_ over the initial-
L 1,1 L L1 photon polarizations and summed over the final electron
Tl lm)=Q2I+D 1 o oll=m m ol and positron spins. Integrating the unpolarized pair-
production cross section [do/dE ,dQ,dQ_],,, over
(18)  the positron and electron angles d, and dQ_, we ob-
ct, =cu LismFLAl); (19) tain the unpolarized pair-production positron energy
’ spectrum
e o(E,)=[Z"%d0 /dE ; Junpe
s1=f0°°drj,(kr)gxlfx2, =k 3 {[RE (MPHR, (mTY,
(20) Kpkpym =|my|

s2=fowdrjl(kr)g,(zf,(l .

(21)

TABLE III. Same as Table I, except for k=2.001m,c2, Z=1 and 6, and the cross section o(E , ) are

in units of nb/m,c?.

z y 9 om0 Oc OHFN OHFN/Oc O cnsT/OHFN Ogst/OHFN
1 0.1 0.033 0.03274 0.05133 1.57 1.02 0.999
0.3 0.135 0.1350 0.1494 1.11 1.01 1.01
0.5 0.208 0.208 4 0.2169 1.04 1.00 1.01
0.7 0.253 0.2545 0.2574 1.01 1.01 1.01
0.9 0.272 0.2721 0.2743 1.01 0.997 1.00
0.95 0.276 0.276 6 0.2821 1.02 1.00 0.989
6 0.1 9.937[ —6] 1.048[ —2] 1055.0 17.5 4.40
0.3 2.196[—3] 0.1055 48.0 1.03 1.31
0.5 0.0268 0.026 89 0.3058 114 1.00 0.980
0.7 0.102 0.1032 0.5933 5.75 0.996
0.9 0.244 0.2445 0.9509 3.89 0.989
0.95 0.290 0.2903 1.056 3.64 0.987
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where 6.0 e ; ]
32a i A
)\'O:_Z p_E_p+E+ s (22) r k=2.10 m.cz 1
Z k 50 F 3
and sz,rl(m) are given by Egs. (13). Integrating — — — BORN
the unpolarized pair-production cross section T Exact (Coul)
[do/dE ,dQ,dQ_],,,, over the electron angle dQ_, o 40F Exact (HFN) E
we obtain £ i 1
> F E
g 7=82 ]
o(E;,0,)=[Z%do /dE  dQ, ynp SEEA: .
£ 1 /A
T, +1, o g i
=X X (—1) cosd ¥ B(m), b 20°F ap /1
KKy Ry m=|m,]| g 7
(23) A ANQRE
10F 7 . A 7
where W4 N
Bim)=AT(m)d tm)+ A (m)4 *(m) 00: / g
= — = 0.0 0.2 4 . . .
FATMA M+ A" (md ~(m), (4) ° A
Y
6=8K1—5E1 , (25) FIG. 1. Pair-production differential cross section
o(E,)=[Z *do/dE, Junpot Of the exact relativistic numerical
+ 4 . + calculation in partial waves for the HFN potential (solid line)
Asm)=C, o, 1Y) m—1512P 1R (m), (260 and the point-Coulomb potential (Coul, short-dashed line) and
of the calculation by the Born approximation (Born, long-
_ ot . _ dashed line) for Z=1, 13, and 82 and k=2.10m,c>.
At('")“Cx,,m+1Y11,m+1¢1/2(1’1)Rxm(m) ’ @n

where the bar over 4 T corresponds to &.

The problem of calculating the unpolarized pair-
production cross sections o(E,) and o(E_.,0,) has
been reduced to computing R 3:2"1 (m). We used the simi-

lar numerical method we used for our relativistic brems-
strahlung calculations [7]. The QX(m) and P (m) fac-
tors present no great problem. Electron and positron
wave functions are obtained in partial-wave series by nu-
merically solving the radial Dirac equation. The radial
integrals s, are calculated numerically to the point where
the continuum wave functions of electrons and positrons
can be approximately considered as the modified phase-
shifted free field wave functions and an integration by
parts method can be used. Then the rest of the radial in-
tegrals were calculated by the integration by parts
method analytically.

With the partial-wave method we have obtained
the positron energy spectra of pair production
o(E,)=[Z *do/dE, Junpor for incident photons of en-
ergy k=2.001, 2.01, and 2.10 mecz, for the elements of
atomic number Z=1, 6, 13, and 82. These calculated re-
sults are shown in Tables I-III and Figs. 1-3. Here the
unpolarized pair-production cross sections are calculated
numerically both with the Hartree-Fock-Slater potential
with the exchange term omitted [6] (HFN potential) and
the point-Coulomb potential. In Tables I-III we show
comparisons of unpolarized pair-production cross section
0(E)=[Z%d0 /dE ; |yppo in the field of atomic nu-
cleus between the results of @verbd, Mork, and Olsen for
the point-Coulomb potential o, calculated with the
analytic partial-wave method [1] and our results o cal-

culated with the numerical partial-wave method also for
the point-Coulomb potential. The agreement is very
good. This provides a check of our numerical calcula-
tion. In Figs. 1-3 we also show comparisons of our
o c(E ;) with the results calculated by the Born approxi-
mation [9]; we see that the Born approximation is not

010 ——F——r—— ]
F k=2.01 m,c® ]
0081  _ _ _ BORN A
I Exact (Coul) ]
~ [ Exact (HFN) ]
9 [ ]
E. 0.06 - B
> [ B
3 ; z=13 3.9
o 0.04f 5/:,//’/3
S : o ]
0.02 f B Gl 1]
r = ST~ :

- e 7 L ~
£, N ]
£ Y

0.0o A== 1 1 1 I 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Y

FIG. 2. Same as Fig. 1, except for k=2.01m,c*and Z=1, 6,
and 13.
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0.0012 ——F——— ——F———7—T——
b k=2.001 m,c? 3
F — — — BORN ]
o 0.0008 | -------- Exact (Coul) ';
£ E Exact (HFN) ]
< E .
0 - 3
3 s ]
= : Z=6 ]
“ r 3
©. 0.0004 [ E
1 e
g == ,'/ 3
A 7 ) e 3
F ~ 6 .- ~
s 7 N\
0.0000 P 1 " -r——”/ 1 " 1 n ;
0.0 0.2 0.4 0.6 0.8 1.0

M

FIG. 3. Same as Fig. 1, except for k=2.001m,c? and Z=1
and 6.

good in this low-photon-energy region, as expected [1].

Our results in Tables I-III or Figs. 1-3 show that the
atomic-electron screening effect increases as Z increases,
k decreases, and E_, decreases. The ratio oypn/0O¢
varies from 0.985 to 1.69X10°. When the screening
effect is important [10], it increases the cross section
o(E ). This is because the atomic electrons decrease the
Coulomb repulsion of the positrons (which is responsible
for the asymmetric positron energy distribution) [3].

In Tables I-III we also show comparisons of our re-
sults oypy With the results calculated with the energy-
shift screening theory (o ggr) [3], i.e., there is a simple re-
lation between screening and point-Coulomb pair-
production energy distributions for a given photon ener-
gy k:

10 ™' v T T ’s
o L 7=82 ]
S -2
g 107F
- E 3
s F 3
K sl ]
c 107 F
3 :
i E
o r
i" 10";

-5 L aanl bl Py ey i n m
10 10 2 10~ 1 10 10? 10°

r (units of X,)

FIG. 4. Difference Vs — V. between the screened (HFN) and
the point-Coulomb potential as a function of distance 7, in units
of the Compton electron wavelength A,.

—————— T
100I:AA““““““A"AAAAA‘AAAAAAA““.:

! Z=13 ]
L k=2.01 m,c? ]
r y=0.95 A
F _—— 0.90 J

P 0.70

S 0.50 J

o 10F ceees 030 ]

A~

& r 44 s 0.10 i
L...-.con-.'-.a..,....----...o.....-._
1 1 " 1 1 1 I Y " I 1 I IR W S
0 60 120 180

6, (deg)

FIG. 5. Pair-production screening factors y(E,.,0.) for
Z=13, k =2.01m,c?, and y=0.1,0.3,0.5,0.7,0.9,0.95.

as(E++V0,E_"—V0)=0C(E+,E_) . (28)

Our results indicate that the approximate treatment of
screening through energy-shift screening theory is good
for Z=1 with V,=—3.65X10"°m,c? for k =2.10m,c?
down to 2.001m,c2%. For Z=6 and k =2.01m,c? with
Vo=—7.20X10"%*m,c?, the energy-shift screening
theory is good, except for small y =(E, —1)/(k —2),
where the screening effect is important. For Z=6 and

1000 . 7=6 faaaantY
o a |
L .. k=2.001 m,c? ]
baasst y=0.95 .
F - - = 0.90 1
L e e 0.70 J
..... 0.50
|ooi: s s s e e 0.30 :
— C b
< r A 4 a4 a 0.10 .
= L 4
X
F )
L :
10\__ ................................... :
o T
0 60 120 180
6, (deg)

FIG. 6. Same as Fig. 5, except for Z=6 and k =2.001m,c?.
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k =2.001m,c?, the energy-shift screening theory works
better by choosing ¥y =—4.60X 10 *m,c?, but it is still
poor. In this case, the screening effect is very important.
Similar conclusions are reached for higher Z elements.
As Z increases and k decreases, the EST works better by
a proper choice of V,,. However, since the screening
effect is very important, the EST is not adequate. This
can be understood qualitatively from Fig. 4, where we
show the potential difference Vg— V. between the
screened (HFN) and the point-Coulomb potential. The
difference remains the same from small distances to quite
large distances for low Z elements only.

In Figs. 5 and 6 we show the corresponding screening
factor y(E ,,60 ), the ratio of screened to point-Coulomb
angular cross sections o (E | ,0,). We see that the shapes

of angular distributions are almost independent of screen-
ing. This suggests that the atomic-electron screening is
primarily a normalization effect. In Tables I-III we
show comparisons of our results oypy With the results
calculated with the corrected-effective normalization
screening theory (o cngr). It indicates that the CNST is
good for the cases we considered in this paper, except for
Z=6, k=2.001m,c?, and y=0.1. This can be understood
qualitatively from Fig. 6, where y(E ,0.) varies with
6, irregularly for the case with y=0.1.
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