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Normal-form theory for a laser model with periodic signal and noise injection
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A model for a laser with modulated signal and noise in the sexniclassical approach allows the
characterization of a Hopf bifurcation point and correspondingly of its spectrum. By means of
the normal-form theory we have been able to give explicit normal-forxn equations that describe the
system's dynamic in the vicinity of the bifurcation point. At first order we determine the system's
behavior for the case when the signal modulation is coincident with the Hopf frequency and when it
does not. In both cases, a characterization of the unfolding parameter is possible. We also consider an
injected laser the Hopf frequency of which is a integer multiple of order n of the frequency modulated
signal. In this case a perturbative theory of order n is necessary. We present also an example of noise
for which this system does not present cooperative amplification. Numerical analysis is consistent
with this predictions.

PACS number(s): 42.50.Ar, 42.55.—f, 05.40.+j, 42.60.Mi

I. INTRODUCTION

A widely accepted description of a single-&equency, ho-
mogeneously broadened laser is the semiclassical model
of the Maxwell-Bloch equations for the macroscopic dy-
namical variables. This approach allows good model-
ing in several phenomena such as &equency shifts, phase
locking of lasers, population-difference pulsations, active
and passive mode locking, damped oscillations, ultra-
short laser pulses, optical bistability, and routes to chaos
of lasers, among other efFects [1—9]. In class A lasers
(He-Ne, Ar-ion, Kr-ion, dye lasers) it is possible to adi-
abatically eliminate the polarization and the popula-
tion difference; in such cases, a difFerential equation for
the electric field in the rotating-wave approximation de-
scribes the entire system. In our previous work [10],
we presented a model for a laser with a coherent, con-
stant external injection in this approximation, and it was
proved that it presents a Hopf-type bifurcation charac-
terized by the gain and loss parameters of the laser, and
the detuning, i.e., the normalized difference between the
&ee-running frequency emission of the laser and that of
the source of the coherent signal. Two different types
of behavior were established, i.e., limit cycles and sta-
tionary, fixed-point solutions (phase-locking region). A
Hopf's normal-form equation describes the evolution of
the field, its unfolding paraxneter being the one that char-
acterizes the dynamical state. This is also a function of
the intensity of the injected field into the laser, the de-
tuning, and the gain-to-loss ratio.

We hereby present a model for a single-&equency laser

'Author to whom all correspondence should be addressed.

with external injection of a time-periodic coherent sig-
nal, including fIuctuations of both the intensity and the
&equency detuning between the external signal and the
laser when the system is in the vicinity of the bifurcation
point. In this case, the system presents a Hopf bifurca-
tion (HB) also. We shall study the efFects of this kind
of small-amplitude Huctuation when the working point is
near the bifurcation point (BP). First we will character-
ize the HB to zeroth order in the perturbative expansion
parameter, which we call (, which is a measure of how far
the system is &om the BP. We are interested in obtain-
ing a normal-form equation (NFE) to describe the sys-
tem's dynamics in the critical variables. Near the BP, a
first-order perturbative theory in ( is necessary. This ap-
proach will explicitly determine the unfolding parameter
and the corrections to the Hopf &equency. At first order
it will also be possible to determine the system's behavior
for the case of resonant and nonresonant signal modula-
tion. We understand by resonant, the case in which the
modulation frequency equals the Hopf &equency, and by
nonresonant, when it does not. The resonant mode can
model a case of an injection from an identical laser work-
ing at its own Hopf bifurcation point. We shall also con-
sider an injected laser whose Hopf &equency is a multiple
of order n of the periodically modulated signal. In this
case, a perturbative theory of order n in ( is necessary.
The critical-variables dynamics near the BP is essentially
determined by a NFE [10] with a constant driving term,
and in this way the analysis is equivalent to that given
in Ref. [11] in the vicinity of the HB point, in the sense
that they both use normal-form techniques, the latter ap-
plied to an equivalent combination of the critical modes
used here. To give a more realistic description, we shall
also consider Quctuations in both the amplitude of the
injection and in the detuning if the system is working
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II. DETERMINISTIC MODEL

A periodically injected, class A laser system can be
modeled in the simplest way by the following differential
equation for the complex electric 6eld, which results from
a straightforward generalization of the one given in [10],

E = [i + g(E)] E + Fb + ( (1+a

cosset),

where the overdot denotes d/dt, and where

yg(E) = r. +—

(2.1)

(2.2)

is the net saturated gain, expressed as a function of the
gain p and loss K adimensional parameters. Time is adi-
mensional, expressed in units of Av, i.e. , the &equency
offset between the laser and the external signal. When
the periodic modulation is off (a = 0) the system is forced
with the intensity given by

near the HB point. In particular, we are interested in
low-intensity noise. We shall present a statistical study
in order to evaluate, in some cases, if there are coopera-
tive phenomena between the noise terms and the injected
modulation, so it is necessary to evaluate stationary cor-
relation functions and intensity temporal mean values of
the electric Geld. From these theoretical studies, it is
possible to make an explicit evaluation of the principal
spectral features that result Rom a numerical analysis.
The conclusions of this theory are consistent with the
numerical evaluation.

0 =1 —gb.

u = Ibu+ Nb(u) + ( D(t), (2.7)

where the subindex 6 is placed to indicate that the co-
efficients are to be evaluated at the BP. Explicitly, the
linear part is

i r.Eb2 )—
rEb i —)— (2.8)

The vector that contains the periodic driving term is

with 0 & 0 & 1. If the system is free from oscillations in
the driving field, it has a limit-cycle oscillation behavior
for ( & 0, and a locking regime one if ( ) 0. In the
present work we shall exclude the case 0 = 0, which
describes homoclinic orbits solutions to the laser electric
field.

We shall make use of a perturbative method near the
BP, which puts into evidence the principal characteris-
tics of the system. In the erst place„we set a differential
equation valid near the BP. The aim is thus to determine
a differential equation in normal form, describing the sys-
tem as a whole, and a nonlinear change of variables with
all the system's spectral characteristics.

Performing the perturbative method in the differential
equation (2.1) near Eb (i.e. , with E = Eb+u), it is possi-
ble to obtain a differential equation for the perturbative
variable v g C. The new equation and its complex con-

jugate can be expressed in the canonical base (e, e ) of
C de6ning the vector u = t~ e + 8 e . This election
of C will allow us to diagonalize the linear part of the
following difFerential equation:

F =Fb+(, D(t) = (1+acoswt)(e + e ), (2.O)

I'"b being the constant injected intensity that is capable
of driving the system to the BP. Here ( represents a con-
stant, small-amplitude perturbation around the BP.

In a simplified model [12], a sinusoidal perturbation of
a single frequency ~ is the most suitable way to describe
the modulation effects on the system. We shall consider
small-amplitude oscillations a( compared to the constant
perturbation (. As previous works show [10,11],at fixed
gain and loss the system will reach a HB for ( = 0. Then,
the intensity which drives the system to this point is

F2 = [K'(~o—1)'+ 1] (~o .—1), (2 3)

IEbl' = V~ —1, (2.4a)

where o = p/K is the gain-to-loss parameter. In this
condition it can be shown that the laser electric field has
amplitude and phase given by the expressions

and the nonlinear term can be written in a condensed
form, where repeated indexes indicate the sum, as

N =X~ A~'"~ u- . u-j ja
r)1

(2.10)

Al" = A22'

= A12
1 2

Al = A2

K

K—2 Eb,

K
b

The non-null, third-order coefficients are

with j~ = 1, 2 (for all 1 & I & r) and ui ——u2 ——v. Note
that this expression for the nonlinear part is a multilinear
form in v and v of degree & 2. The nonlinear part, non-
null, second-order coefFicients are

y = —cot-' gb, (2.4b) A'"=A»2 = —Eb

where it is possible to calculate gb, which we have called
net gain at the BP, and it is given by

~'"=~'" = —2 —(1 —~),
g (2.12)

gb = r. (~o. —1) . (2.5)

The system's oscillation frequency around the BP can be
written in terms of gb as

A122

ill$222

K
2 —Eb,

0
——Eb,

0
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L~Xj =Aj X'. (2.is)

which are the only ones we give here for the purpose of
the analysis that follows. As will soon become evident,
these are the coefficients which give an explicit expres-
sion for the nonlinear change of variables and the NFE for
the critical variables. We are now going to determine the
critical modes of the system, and to this end we diago-
nalize the linear operator (2.8) to get the eigenvalues and
the critical eigenvectors. Let (y~, y ) be the eigenvector
base in C which diagonalize I g, i.e.,

u("j = L u("j + N("j(u); (3.3)

please note that we have omitted the subindex b. To first
order (r = 1), for example,

ui& ——) E .(w) . (3.2)
r&1

The evaluation of the vector u["I and the function F",
in powers of (m~), up to the third order, proceeds as
follows: For all r, Eq. (2.7) with ( = 0 is

The corresponding eigenvalues are
u['~ =m gj (s.4)

A12 ——kiO . (2.14)

If 0 g 0, 1, in terms of the canonical base e~, e2, they are
expressed as

F = Aj mj,[1j

are obtained. To orders r ) 1, we can write

(3 5)

X =Xg&j j A; (2.15a)
(

A tu —L
[

u("j = I("j —I' " g~,
r 8 l „„(„j (s.6)

where g& are the coefficients relating to the change of
base, given by

2~', =g2 = KE,',
[r—8+1]

I( j N(~l ) (~.)(~l
Bto8=2 j

Xz ——X', = i(1 —0) .
(2.15b) where u["~ and F" are functions to be determined. Forj

r = 2 we have I(2( = N(2((u(~i) and it can be written as

For the inverse transformation,

(2.16a)

(~ &~.)

This equation, cast into the base (y"), is

(3.7)

the coefficients are N( j(w) = Bq'"' rag„wg„y" (k, & k, ), (s.8)
A —1 2

E1 —62 where, by straightforward algebra, it can be shown that

(2.16b) B„"" =&,'. &,
"., e ~,'.'"+V(k„k,). (3.9)

1 2 e —1 2
E2 —61 —~ X1 ~

with 4 = 20(0 —1). Note that 0 g 0 eliminates the
homoclinic-case solution, while 0 g 1 does it for the
trivial solution Eg ——0.

III. ZEROTH-ORDER PERTURBATIVE THEORY
IN THE PERIODIC TERMS

The electric-field power spectrum will display peaks
whose intensities are related to the coefficients of the
nonlinear variables' change. In this section we shall de-
termine those coefficients, making ( = 0 in Eq. (2.1). We
shall also determine a NFE for the critical variables at
the BP. We thus proceed with the following change of
variables (from here on, crossed indexes imply summa-
tion):

u(w) = ) u("j(w), (s.i)
v)1

u("j(w) = U,'-"""m,

where the supraindex r between square brackets means
that the terms in brackets below are of rth order in (w~)
(j = 1,2) and w = m~ X~ is the new critical vector.
To zeroth order in (, the U~'" ~" coefficients are time
independent.

We define a NFE for the critical modes in the form

F[' =0j (3.10)

in the NFE (3.2), second-order resonances are eliminated
[13]. The coefficients for u(2j in terms of the (m~) [see
Eqs. (3.1) and (3.7)] are

U„'"' =
l );A; —Ag (s.ii)

where r; is the order of u&"j (r; & r) in the m, variable.
Explicitly, the non-null coefficients are

U U22 (1 —0) e*~

2 02 Qo.(~o —1)

x (gl —02[(~o —2) (1 + 0) —20]
+i (1+0) [ (~o —4) —0 + ~o. —2]),

(S.12a)
(1 —0)e *

02 Qo(~o. —1)

x (Ql —02[—~o(l + 0) + 2]
+i (1+0) [—~o 0 + ~a —2]), (s.i2b)

Here, 7 (kq, k2) indicates permutation of kq with k2 in
the preceding tenn. With the condition
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(1 —0) e

6 02 Qo(~o —1)

x {Ql —02[~a(1 —0) —2]

+i (1+0) [~o 0+ vo —2]). (3.12c)

BIc1~2A3 (~~1 ~~2 ~~3 +ili2i3
j3

Uk2kg (gixi2 + P(
. .

))

+'P(ki, k2, ks)) e'„, (3.15)
These are the coefFicients which will enable a calcula-
tion of the spectral contributions at 20 in the cross-
correlation function for the electric field, at order zero in

(. Up to third order, I[ ] = N[ ](u) (with u = u[i]+u[ ]),
and the noiilinear terms (2.10) are

N[s]( ) (pic.is [i] u[i) u[i]
$1 g2 23

+g~.~.
(

[ ] u[ ] + P(»» ))) e~

(»i & »2 & ».), (3 »)

where P(ki, k2, ks) indicates permutations without rep-
etitions of kq, k2, and k3 in the preceding term in the
summation. To solve Eq. (3.7) to third order, we choose
the term of normal form in a minimal form which does
not contain any resonant contributions. We fix it as

(3.16)

Note that here there is no sum on repeated indexes. In
this way, the non-null coefficients for ut ~, in terms of the
set {io,},are

or, in the alternative variables,

N '(w) = B„"'"'"'uiI, ioI. io~. X" (ki & k2 & ks) ~

Us'"'"' —— ) r, A; —Ag gykl k2 k3
k (3.17)

(3.14) These non-null coefficients are

U'222
2 {(1—0 ) Q[(4cr —24~o'+ 45) 0 —o + lier —26]

(1 —0) e '~

+i Jl —A2 [(—2o. + 24' o. —45) 0 + (3o —24~a+ 47) 0 —o + 6v o —8]}, (3.18a)

1 0 —2z~

Ui = U2ii2 ——— ((1 —0 ) 0[(—4o + 24jo —3) 0 —5o + v o + 26]6 0' o(~cr —1)

+i Ql —02 [(—2o + 3) 0 + (—3o. + 18v o. —31) 0 + 5(o —6v o + 8)]), (3.18b)

1 —0 e
U, = U2iii = — ((1 —0 ) [(cr —19v o + 21) 0 —o. + 6~o —8]

+i Ql —02 0 [(8o —21~a + 24) 0 —2o' + 9y o' —l8]). (3.18c)

Such coefficients will enable explicit evaluations at &e-
quency 30, in the cross-correlation function for the elec-
tric field, at zero order in (. Finally, the nonlinear change
of variables up to third order is B," = B'22 = a. + i P, (3.21)

where a and P are real functions of 0 and o, given by

tion is enough to completely describe the system's dy-
namics. The cubic coefficients are

(3.19) a = — [(5v o —2)0 —11v o + 14],
(1 —0)Ql —02

This procedure can be extended to higher orders. For odd
orders, according to Refs. [13] and [14], a minimal form
for the NFE coefficients must be chosen in (3.2). For even
orders the coefficients ought to be zero for the resonances
to be eliminated. As will be shown, a complete descrip-
tion of our model in all the parameter space requires at
least a fifth order in perturbation theory. Once the NFE
coefficients are deterinined fram (3.10) and (3.16), it is
possible for (3.2) to be written at third order, explicitly,
as

(3.22a)

P = [(3o —17' sr+ 5)A
(1 —O)(1 —0 )

—5(o. —6~a + 8)] . (3.22b)

Near the BP, the system must be described introducing
an unfolding parameter p. Therefore, near the BP the
NFE is

(3.20) ~i = (I +») ~i + (~ + ip) l~i I' ~i + " (3.23)

where j = 1,2. Note that mq ——tu2, thus only one equa- In the case of first-order perturbative theory for the
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periodic terms the unfolding parameter has an explicit
expression that will be given in Sec. IV. For p 0, the
system reaches a stable fixed-point solution (if y, & 0)
or a limit-cycle oscillatory solution (if p ) 0 and a &
0). From Eq. (3.22a), the latter is reached in the (0, o)
parameter space if

t'2(O' —7) i
g 5II2 —ll p

(0 & 0 & 1) . (3.24)

If p, ) 0 and n & 0, it is necessary to evaluate the terms
up to the fifth order for the NFE. In such a case, a new
limit-cycle solution will be reached whenever the real part
of the fifth-order coefficient is negative. If it is not, the
calculation should be extended two more orders above.
Figure 1 shows three regions in the space (ic, p), according
to the sign of n. Alternatively, n can be expressed as
a function of p and ic through Eqs. (2.4a), (2.5), and
(2.6). The region designated II corresponds to n ) 0,
and at least the fifth order is necessary to ensure limit-
cycle solutions. Region I corresponds to the case a &
0. In this region, a third-order theory has been shown
to be enough for the cases examined so far. Region I
has, however, been subdivided into subregions I-A and
I-B; the reason for this is a restriction for the validity
of the third-order NFE, as will become clear when the
explicit form of the unfolding parameter is the first-order
perturbation theory in the periodic driving term, which
will be considered in Sec. IV. Note that the point (1, 1)
should be excluded since it contains the trivial solution.
Region III implies losses greater than gains, and will not
be treated here.

The analysis so far has common grounds with the one
of Ref. [11], because they both use normal-form tech-
niques. It is possible to demonstrate that their slow

variation of the complex amplitudes of the periodic solu-
tion and our critical variables are proportional through a
combination of the coeKcients of the change of base Eq.
(2.15a) explicitly defined in Eqs. (2.15b). In these condi-
tions, a redefinition of the coefficients of our NFE (3.23)
is necessary in order to compare with the corresponding
coefBcients of their NFE. The results agree and are con-
sistent in both treatments of the HB, the variation of the
coefBcients of both NFE with the laser parameter being
very much the same up to the third order.

IV. FIRST-ORDER PERTURBATIVE THEORY
IN THE PERIODIC TERMS

u(w, t) = ) u["'"](w, t), (4 1)

which replaces Eq. (3.1). Here the supraindexes k, r in-
side square brackets mean that the terms in brackets be-
low are of order k in jc and of order r in (w~ ). The vectors
u[o' ] = u["] with (u[o] = 0) are known and time indepen-
dent, and u["'"] (k & 1) are time-dependent vectors to
be determined. Let us consider Eq. (2.7) written to first
order in ( and the rth order in (ui~)'s

u[ '"] = Lu["'"] + N["'"](u) + bo„bii, Lc D(t) . (4.2)

In order to characterize the dynamics of the critical
variables in the vicinity of the BP, it is necessary, as was
asserted before, to introduce an unfolding parameter. To
get an explicit expression for it, a perturbative theory of
at least first order in the parameter ( is to be developed.
Therefore, we include the corrections introduced by the
periodic terms to the nonlinear change of variables and
the terms added to the NFE. The nonlinear change is
now

The NFE is

io = ) F[ '"](w, t),
v, A:=0

(4 3)

where the time-independent functions F '" = F" are
2

known and, besides, F. —= 0. The time-dependent func-[o]

tions F[ '"]
(k ) 1) are to be determined. When the

first-order term in ( and of order r in (w~ j on the right
hand side of Eq. (4.1) is considered, we get

0
0

FIG. 1. Parameter space (p, m) according to the sign of
o for p ) 0. In region II (n ) 0) at least the Bfth order is
necessary to ensure limit-cycle solution. Region I (I-A and
I-B) corresponds to the case n & 0. Here, third-order theory
is enough. The dashed curve corresponds to R = 1 and is
parametrized with f In this case, ( .= —0.05. In subregion
I-B there is formal convergence of the perturbative series, if
R & l. In subregion I-A the normal-form theory is not able
to describe the system's dynamical behavior. Region III cor-
responds to case losses greater than gains. This case is not
considered in this vrork.

where

T'—1
K[1,r] ) (

.
)
[1,k]

Omz

[o,~—a+a]

+) (
~

)
[o,k+1]

[x,~) ~ [1,~]

Bt x '"' am 2

(4 4)

(4.5)
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[1,v ) Z[l, v ]

Bur 7. Bt )
(4 6)

where

( D ifr =0
~f "1 K '" otherwise.

(4.7)

Thus, the new equation for determining the periodic
functions F. '")(w, t) and u['")(w, t) is

F( )(t) F( )(t) (4.14a)

the modulation amplitude [see Eq. (2.1)]. Thus, we can
conclude that the spectral contributions in this case are
of kequency 0, +u.

(b) Resonant injected signal: 1/1 resonance. The mod-
ulation frequency is now resonant to the Hopf frequency,
i.e., ~ =—+O. In this case it is not possible to elimi-
nate the erst-order periodic terms in the NFE in a way
consistent with the T-periodic solutions in the nonlinear
change of variables. Explicitly, these solutions are

We begin our analysis with this equation at order r = 0,
rewriting explicitly the change of variable vector as v( )(t) v(~)(t) ~ D + D nt— (4.14b)

u[ ' [(w, t) = f V (t) y~, (4.8)

the NFE term as

F,["(w, t) = g F,("(t),
and the driving term as

D(t) = D, (t) y'.

(4.9)

(4.10)

~

——~, [
vI" =D, —FI'.

7 2
(4.11)

In the following we present our analysis of two cases.
(a) Nonresonant signal injection: The modulation fre-

quency of the external signal is nonresonant with the
Hopf frequency, i.e., u g +A. To avoid periodic terms to
first order in the NFE, we set

(4.12a)

Equation (4.11) admits solutions for all j and k = 0, +1
given by

For typographical reasons, we have introduced the
supraindex (1) for perturbative order 1 in ( and order
zero in (ur7. ). The equation that determines these two
functions is

u'-" (w t) = ( V'""(t) ~~ X'

and the NFE term as

F,[' ')(w, t) = (, F,('"(t) ~, .

(4.15)

!4.16)

Since Z[' ) = N[ ' )(u) (where now u = u[o ~~ + u[~ 0[)
we put

which are the only possible solutions allowed for a T-
periodic NFE. Other nonperiodic solutions without a
normal-form term would drive the system to a non-
stationary regime. From Eq. (4.14b) it is concluded that
no new contributions appear in the electric-field spec-
trum in regions where the system is in a limit-cycle
regime. Instead, there will be just an enhancement of
the peaks corresponding to the already existing &equen-
cies 0, +O. This analysis is valid up to the perturbative
order just considered.

We proceed now with Eq. (4.6) but letting r = 1. The
interest now lies in adding a multiplicative nonresonant
term in the NFE at the Bp, with a constant unfolding
parameter, in such a way that it allows for limit-cycle or
stationary fixed-point solutions. It is therefore necessary
that the NFE, with the periodic driving term near the
BP considered, should be phase invariant, expressing the
periodic term in the change of variables as

U(1} j I(: iI(:~te- ik~ —A.
I(.

where

D, „=— dt D, (t) e *" '
T o

(4.12b) N[")(w, t) = ( N~ ) (t) err, y',
with

W,
""= V,'" [B"'+P(h 7')].

(4.17)

(4.18)

(with T = 27r/w and k C Z), the Fourier expansion coef-
ficients being

D, (t) = ) D, „.'"-'.
k

The resulting equation for U and I" (. to be deter-(1)h (1)h

mined is

0—+ y.„—w, ) v,('" = m,
(""—F,I'", (4.»)

Explicitly, the coefKicients Dj I, are

Djp =E. +E'.

a
Dj,~l = —Dj,o,

(4.13)

where N . (t) admits a Fourier series expansion with

coef6cient N .
&

. As before, two cases need to be consid-(1)h
27

ered. The solution of Eq. (4.19) for both cases (and all
k, j) is

Dl p = D2 p, U& = U2 and a being proportional to(1) (1) ~(l}h ~(l)h gj,o (4.20a)
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~(1)h
U(1)~ e

%+1
~

~

0 ifh= j+ 1 (1)X
(Ai, —A~) N o otherwise.

(4.20b)

displayed in the (m, p) parameter space. The separatrix
(dotted in the figure) collapses to the straight line 0 = 1
to the left and to the curve o. = 0 to the right when
(-+0 . For(&0(@&0,m&0) andforalla, thesys-
tem is in the locking region, with electric-field relaxation
times approximately equal to p

The 1/1 resonance case (b) admits this solution by letting
u = O. The expansion (ioz}, up to first order, contains
spectral contributions at the frequencies 0, +u. Note
that in the phase-locking or in the limit-cycle regimes,
the spectral contributions of the previous order are en-
hanced. However, this perturbative order is the one that
allows for an unfolding parameter to be set to the lowest
order, as well as the first correction term in the Hopf ke-
quency. Starting from the NFE equation (3.20), taking
into account the expressions, Eqs. (4.14a) and (4.18), of
the perturbative analysis to first order in f, we obtain
the NFE near the BP. It is clear that these contributions
are T periodic; hence a periodic normal-form equation
(PNFE) is obtained.

The PNFE that describes the system near the BP is

V. NTH-ORDER PERTURBATIVE THEORY
IN THE RESONANT PERIODIC TERMS

In this section, we shall develop the perturbative the-
ory that gives the effects of resonant periodic excitations
with frequencies ur = +O/n (n C N —(0, 1}). The
relevant contributions to the PNFE appear at nth or-
der in ( and zero order in (io~}. For orders less than
n, the spectral contributions are of frequencies kkO/ n
(0 & k & n —1), and the PNFE near the BP is essen-
tially the one given by Eq. (4.21). When terms of order
n in $ and order zero in (io~} are considered, it is pos-
sible to set the corresponding PNFE. The equation that
determines the periodic functions E "' and ut"' ~ is

ioi ——[y, + i(O+ m)j ioi

+(~+i&) 1~ii'~i+&Di, i e ~ n (421) l

——Ll u(" )=N(" ) —F("')
&Bt )

(5.1)

(1)1p+im =( Ni o (4.22)

The unfolding parameter p and the correction to the fre-
quency m to first order in ( are related to the new con-
tribution, Eq. (4.18), by

u(" )(w, t) = (" U,.
"

(t) X',
the PNFE term as

(5.2)

where N(" o) = N(u(i o)) is known if n P 1. The change
in variables can be written as

with

(1)1 (1)2 11 12~1,0 ~2,0 +1 0 +1 + +2,0 +1
and

Z,!"')(w,t) = ("Z,(")(t),

As functions of (O, cr) they are expressed as

—3( v'1 —O'
P= s1n p

O /0(~0 —1)

3( (1 —O2) (~0 —2)
sing .

2O' /0(~a —1)

(4.23a)

(4.23b)

N("')(w, t) = P N,'."'(t) ~', (5.4)

which admits a Fourier expansion with coeKcients N.
&

.
el t

Here the terms with supraindex (n) mean terms of or-
der n in ( and zero order in (io~}. Equation (5.1) in
components is

From Eqs. (2.4b) and (2.6), the field phase at the BP is
given by p = —cot gl —O2.

The case o = 4 (m = 0) divides two well defined re-
gions according to the frequency sign [10]. Here we will

only consider the case 0 & 4. For ( & 0 (p, & 0, m & 0)
and n ( 0, the stationary solution of the PNFE is a limit
cycle of radius R = g—y, /a, and renormalized Hopf fre-
quency O„= O+ m+ PR . Since io~ ~ R, the expansion
of the electric Geld in the normal modes will be conver-
gent if R & 1 (i.e., p, & —n). Note that p/( and. n are
both functions of 0 and 0 only in the first-order theory.
In the parameter space (O, a') it is possible to determine
a parametrized curve with $ for R = 1. This curve sep-
arates two subregions (I-A and I-B in Figs. 1). In subre-
gion I-8 B( 1, then, there is formal convergence of the
perturbative series. In subregion I-A, the normal form
theory is not capable of describing the system's dynam-
ical behavior because B & 1 and the convergence of the
perturbative series is lost. In Fig. 1, both subregions are

U( ) ~( ) y( )

&~t )
(5 5)

and your solutions, for u = +O/n (n g 0, 1), are

~(n) ~(n) ~(n)
1 2 1,n

n —1 ~(n)

i(-„" —1)O

(5.6a)

(5.6b)

The solutions (5.6a) are the only ones that allow a
T-period NFE. Other nonperiodic solutions, without
normal-form terms, will drive the system to a nonstation-
ary regime. From Eq. (5.6b) it is concluded that there
is an enhancement of the peaks at &equencies jkO/ n
(0 & k & n —1). In particular, for the limit-cycle re-
gion, the 0 peak is enhanced, while in the phase-locking
regime, this is a contribution to the spectrum.

The general PNFE for a 1/n resonance (for n g 0) is
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~i = [ +'(fl+~)] ~i+ (~+'P) I~il'~i
+P M(n) iQt g

' n

where

(5.7)

jected signal and the multiplicative noise (M in the de-
tuning.

In the white-noise limit, the correlation functions are

(6.2)
M(„) Ni"„ if n g 1

Dgg ifn= l. (5.s)

This PNFE allows for a description of the electric-field
dynamics if the system has either a resonant or a non-
resonant injection. Note that in the case of resonant
injection (ur = 0/n) its dynamics are yet to be described
by the periodic driving terms, though the constant driv-
ing terms are not apparent in the PNFE as they are in
the original difFerential equation (2.1).

Note that the PNFE (5.7) in the resonant (u = —)
case is not invariant for a global-phase change. In fact,
a symmetry breaking occurs, which can be overcome by
performing the known perturbative process. In this way,
a nonlinear change of variables is obtained, and therefore
a NFE. In the rotating-wave approximation, it is possible
to make in Eq. (5.7) the following change of variables:

u = Isu+ Ng(u) + ( D(t) + Z(u, t) .

The noise term is

Z(u, t) = (P, (t) + P,"(t) ut, ) e',
where

Pi ——P2 ——(~ + i Es (M,

being the non-null elements of P". (t)

(6.3)

(6.4)

(6.5)

for 1 = A, M; 17~ = A, Te~/Ev and 17M = eM/Dv,
e~ and eM being the Buctuations in the intensity and in
both &equency lasers, respectively. The parameter 6, is
the free spectral range of the injected laser cavity and T
the transmission coefBcient of the coupling mirror.

Near the BP (E = Es+ v), the SDE (6.1) is

i(At+y„)mq ——ze
y„=arg(P M~")) .

(5.9) P,' = P2 —t 4r .

Equation (6.5) can be rewritten as

(6 6)

The equation for the critical variables (up to third order)
1S P1 —P2 —pR+& pI ~ (6.7)

z = (p+ im) z+ (ti+ iP) ~z~' z+ G„, (5.10)

where G„= ~(" M~") ~. This is a NFE with a constant
driving term, and thus its analysis is similar to the one of
previous works [10] for the case of a laser with constant
injection. Through the usual procedure, i.e., by lineariz-
ing around stationary solutions zo and then diagonalizing
the linear part, it is possible to Gnd the critical eigenval-
ues. Hence, the critical modes will be determined. Call-
ing {tv') the critical variables, the corresponding NFE
near the BP is then

where the correlation functions of the real functions p~
and pI are given by

(p~(t) pR(0)) = (17~ + 17M ]Es~ sin p) b'(t),

(»(t)»(0)) = & l@sl' co"~ ~(t)
(pit(t) pI(0)) = (pit(0) pr(t))

= ——~Es~ 'DM sin(2p) b(t) .2

2

(6.Sa)

(6.8b)

(6.8c)

Noise terms, expressed in the critical base (g') to the
first order in the ftvi)'s, are

~i = (~'+ if'') ~i+ (~'+ i&') 1~iI' ~i+ &(~'i)

(5.11)

which can be obtained repeating the above described pro-
cedure.

Z(w, t) = [Q;(t) + Q,"(t) ivy, ] y',
with

Q, =P, e',

(6.9)

(6.io)

VI. STOCHASTIC MODEL

In this section, stochastic temporal Quctuations in the
relevant physical parameters will be included. Hence, we
shall consider Buctuations both in the amplitude of the
injected signal and in the detuning between the laser and
the external source for the injected signal. The tempo-
ral mean values of these parameters are, however, well
defined. The stochastic differential equation (SDE) is

E = (i + g (E)] E + Fg + ( (1 + a cos (et) + (~ + i(M Z,
(6.1)

where the (~ and (M are time-dependent random func-
tions, statistically independent, both with zero mean val-
ues and nonzero correlation functions. The additive noise

(~ accounts for fluctuations in the intensity of the in-

qh j Pk h (6.ii)
Now the general SNFE is

tvi ——[p+ i(O+ m)] tvi + (a+ iP) ltvi

+G„e'~b o + Qi(t) + Qi(t) tvi + Qi(t) tv2 .

(6.12)

It is noticeable that this equation is non-T periodic due
to the noise terms; in fact, Qi and Qi ur2 break the
global-phase invariance. In Eq. (6.12) we shall consider
the additive noise terms only, because the multiplicative
noise terms are of higher order in the (tv~). The term
considered contains information on the amplitude as well
as on the detuning Quctuations. Furthermore, without
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(pR(t) &R(0)) = (&~+ 'D~+ DM lEsl') ~(&)

From Eq. (6.10)

(6.is)
0.5

Qi =Q2 =~SR&Pa g (6.14)

it is obtained as v = E'y+E'

isi e' 's", q. 6 )( .12

t'ai
——[p+ i(O+ rn io)1 .+( +'P) I

i io,
l

ra, +p(t),
.15)(6

v pR(t), and its correlatre ation functioon is

(p(t) (o)) =&~(t)

with the nnoise intens'tiy

& = l~l' (&~ + DM lEsl' .

(6.i6)

(6.17)

C(")(t —t') = io,"— ) =(~,"(t) ~ (&')) (6.18)

A well established results t [15, 16] states ths that the onl
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C(»)( )
C(») 'r)

'i»Apt 2~ exp ~' ——lil4

(1+e—
7 (6.22)

tensity becomes

(I(t)) = lE, l'+2K' 1—(1 —0) exp
l

1 p
l

. (6.23)
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It is evident that any maximum occurs for any P value.
A direct calculation shows that the amplification factor,
defined in Ref. [17] as the ratio between the output power
to the power injected at that &equency, increases mono-
tonically with the noise intensity 7 .

VII. NUMERICAL SIMULATION

The numerical integration of Eq. (6.1) was done by
standard methods [18]. The Stratonovich prescription
was used due to the presence of multiplicative noise
terms. The transients were carefully avoided in each
of the 200 simultaneous realizations that simulate the
stochastic process, and those realizations were used to
evaluate the Fourier coefFicients for each integration step.
The power spectral density was obtained through the use
of the Wiener-Khintchine theorem.

In Figs. 4(a) and (b) some results for the resonant
~ = 0 case are shown. In Fig. 4(a), the system is in
the limit-cycle regime at peaks of 0 frequency, which
come from two sources, the Hopf frequency of the system
and the external signal ones. The former have a char-
acteristic width that depends on the limit-cycle radius
and on the noise intensity; they become apparent in the
zeroth-order perturbative analysis above. The latter con-
tributions enhance the already existing ones. Comparing
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It is thus possible to evaluate the signal-to-noise ratio
(SNR) from Eq. (6.22) at 7 = 0. In this case, for the
nth-order contribution, the ratio is
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this situation with the constant-drive one, the spectral
peaks in the former are magnified in intensity and better
defined in frequency because a narrowing has taken place.
In Fig. 4(b), the results of the locking regime are shown.
In this case, only the central peak is enhanced, though
peaks appear at nO frequencies, as shown in Sec. IV.
This phenomenon is what can be called periodic phase
locking.

In the nonresonant case, a characteristic spectral fea-
ture is the generation of tones, i.e. , combination of the
exciting frequency and the Hopf &equency. This can be
accounted for by the theory; in fact, a perturbative anal-
ysis at higher orders in (ul~) and ( allows the general
description of the tones. Making an nth-order perturba-
tion in the (ui~ ) and an mth one in ( (operation indicated
as before by the symbol [n, m]), we can see that the cross-
correlation functions of the ui" (j = 1, 2) processes give

contributions at frequencies (—l)~+ (nA + kryo), where
—m & k & m. Note that the [0,m] terms are pure oscilla-
tions. In all of these cases, the theory gives a satisfactory
answer for the contribution at 0, because the calculations
were made up to first order in (.

In Fig. ,i, a nonresonant case is displayed„and in its
spectrum the system is in the limit-cycle regime. Now
the peaks that are related to the Hopf frequency (they
are multiples of fl), and those coming from the external
signal (k~), are clearly displayed. It is also apparent that
peaks at combination tones are present, according to the
previous analysis. In the locking regime, the situation is
similar to the case shown in Fig. 4(b), except that now
the peaks are at rnultiples of the driving frequency.

The values for the oscillation frequency of the system
in the limit-cycle regime in the regions where the theory
is valid, obtained through the numerical simulation, are
coincident with the analytically evaluated Q„(see Sec.
IV), the relative error being less than I/p. The simulation
is robust, since it allows for results even at regions well

FIG. 4. Power spectral density vs adimensional ~ for the
resonant case, i.e., 0 = ~. The parameters are 0 = 1.5,
17~ = 17M = 10 in both cases. In part (a) the system is in
the limit-cycle regime, ( & 0. In part (b) the system is in the
locking regime, ( ) 0. Note the peaks at the frequency nfl
This can be called periodic phase locking.

FIG. 5. Power spectral density vs adimensional cu for the
nonresonant case, i.e. , 0 g cu. The parameters are lr = 1.5,
Dz ——'DM ——l0 . The system is in the limit-cycle regime,
( & 0. Note that the peaks are at the Hopf frequency, at the
modulation frequency of the injection, and at the combination
tones ( —I)'+'(nfl + k~).
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out of the limits of validity of the theory, its results being
in qualitative agreement with its predictions.

VIII. CONCLUSIONS

We have investigated a model for a periodically mod-
ulated, injected signal laser in the presence of noise. By
means of the normal-form theory, we have been able to
completely characterize its dynamical behavior, giving
an explicit PNFE for both cases of resonant and nonres-
onant injection, which allows for elimination of the Hopf
resonances up to all perturbations orders, and for finally
finding an autonomous NFE. A characterization of the
unfolding parameter, which allows the system to get to
the BP, was also given as well as the system's Hopf &e-
quency 0„.

We have presented an analysis of the system with Buc-
tuations in the intensity of the driving field and the de-
tuning. By means of a nonlinear transformation of vari-
ables near the BP, we were able to pick the resonances
off the original SDE {6.1). In the very low-intensity noise
limit, the resonant contributions are principally due to
deterministic causes. If the random functions represent

colored-noise processes, in a previous paper [10] it was
shown that there is a frequency shift and a broadening
of the resonant peaks. From the SNFE, it is possible to
evaluate the statistical properties of the system, i.e., cor-
relation functions, moments, transition probabilities, etc.
We have given explicit expressions for the electric-field
correlation function, power spectral density, and thence
intensity and peak intensity. It was also shown that no
cooperative phenomena between the driving field and the
noise exist in the analyzed case, in the limit-cycle regime,
as the SNR does not have any maxim+~ for the noise in-
tensity. This is probably due to the fact that the deter-
ministic dynamics for the critical variables are globally
phase invariant and the white noise does not structurally
break it. We are currently investigating this behavior in
the phase-locking regime.

ACKNOWLEDGEMENT

Work supported by Grant No. PID 3-155200-88
granted by Consejo Nacional de Investigaciones Cientifi-
cas y Tecnicas de la Republica Argentina.

[1] A. E. Siegman, Laser (University Science Books, Mill
Valley, CA, 1986), and references therein.

[2] J. R. Tredicce, T. F. Arecchi, G. L. Lippi, and G. P.
Puccioni, J. Opt. Soc. Am. 2, 173 (1985).

[3) J. R. Tredicce and N. B. Abraham, in Proceedings of
the International School on Laser and quantum Optics,
edited by L. M. Narducci, E. J. fuel, and J. R. Tredicce,
CIF Series Vol. 13 (World Scientific, Singapore, 1990).

[4] H. F. Ranea-Sandoval, M. C. Von Reichenbach, R. Ro-
driguez, and F. A. Schaposnik, Opt. Commun. 49, 39
(1986).

5 Hu Gang and Lu Zhi-heng, Phys. Rev. A 44, 8027 (1991).
6] Y. Gu, D. K. Bandy, J. M. Yuan, and L. M. Narducci,

Phys. Rev. A 81, 354 (1985).
[7] F. T. Arecchi, G. L. Lippi, G. P. Puccioni, and J. R.

Tredicce, Opt. Commun. 51, 308 (1984).
[8] P. A. Braze and Th. Erneux, Phys. Rev. A 41, 6470

(1990).
[9] Hu Gang and Yang Guo-jian, Phys. Rev. A 40, 834

(1989).
[10] R. C. Buceta, M. S. Torre, and H. F. Ranea-Sandoval,

Phys. Rev. A 48, 3336 (1993).
[11) H. Zeghlache and V. Zehnle, Phys. Rev. A 46, 6015

(1992); 4B, 6028 (1992).
[12] H. Haken, Light (North-Holland, New York, 1985), Vol.

2.
[13) P. Coullet, C. Elphick, and E. Tirapegui, Phys. Lett.

111A, 277, (1985).
[14] J. Guckenheimer and P. Holmes, in Nonlinear Oscilla

tions, Dynamical Systems, and Bifurcations of Vector
I'ields, edited by F. John, J. E. Marsden, and L. Sirovich,
Applied Mathematical Sciences Vol. 42 (Springer-Verlag,
Berlin, 1983).

[15) R. C. Buceta and E. Tirapegui, in Instabilities and
Nonequilibrium Structures III, edited by E. Tirapegui
and W. Zeller (Kluwer, Dordrecht, 1991).

[16] R. L. Stratonovich, in Topics in the Theory of Random
Noise, edited by J. T. Schuartz, Mathematics and its
Applications (Gordon and Breach, New York, 1967).

[17 P. Jung and P. Hanggi, Phys. Rev. A 44, 8032 (1991).
[18 M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton,

Phys. Rev. A 26, 1589 (1982).


