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Dense configuration of solitons in resonant four-wave mixing
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A set of integrable four-wave mixing models arising in a medium with a resonant transition is
presented. A suitable modification of the inverse scattering transform is constructed and used to
find a common one-phase periodic solution of the evolution equations. The Whitham equations
describing the dynamics of slowly changing parameters are found. Their solution is used for a
description of the evolution of light pulses with sharp leading edges. The possible application of the
results for the analysis of the evolution of dense packets of solitons is discussed.

PACS number(s): 42.65.Hw, 42.65.Dr, 42.65.Re

I. INTRODUCTION

The description of long intense pulses in nonlinear me-
dia is one of the interesting and important problems of
theoretical physics. Such nonlinear optical phenomena as
Raxnan scattering (RS), two-photon propagation (TPP),
near resonance four-wave mixing (FWM), and the degen-
erate case of FWM —phase-wave conjugation have been
studied in a large number of publications (see, for ex-
ample, [1]). The above mentioned nonlinear phenom-
ena, if they take place in a nondissipative, nondispersive
medium having its own &equency approximately equal to
the sum or difference of carrying &equencies of one or two
pairs of interacting wave packets, are described by math-
ematically close models [2—5] . A very important prop-
erty of these models arising under a set of assumptions is
the integrability by means of the inverse scattering trans-
form (IST) [6]. The IST has been effectively used for the
analysis of solitonic and self-similar decay-type regimes of
stimulated RS, TPP, and FWM. Note that Raman soli-
tons have been discussed previously by several authors,
who found the simplest special solutions, for example [7].
The ¹ oliton family of the stimulated RS model was
found by Meinel [8]. Solitary waves are also known for
some special FWM models [9]. The simplest periodic
solutions of evolution equations with periodic boundary
conditions are found for some special cases of the RS and
FWM models [10].

The utility of exact mathematical methods results, to a
large extent, &om the practical importance of these iso-
lated, localized nonlinear pulses and precise yet simple
description of these pulses. However, physical situations
arise which involve a high density of solitons, for exam-
ple, finite length nonlinear oscillators such as Josephson
ones or propagations of shocks in a conservative lattice
[11,12] and plasma, see [6], Chap. 4. Numerical simu-
lations demonstrate that the sharp leading &ont of the
shock wave is smoothed by a high frequency nonlinear
wave train which may be interpreted as a dense config-
uration of many solitons, see Refs. [11—13]. It is also
demonstrated that a long intense pulse having a sharp
leading edge splits asymptotically into a train of solitons
or breathers. This is a common feature of different in-

tegrable models, both dispersive and nondispersive. It
is natural to suggest the existence of the same phenom-
ena in the interaction of power wave packets described by
means of an integrable version of the nondispersive FWM
models. We shall call corresponding intense pulses with
a sharp leading front propagating in nondispersive media
nondispersive shock waves (NSW). Note that the effec-
tive lengths of nonlinear interaction in experimental ob-
servation of the nonlinear stage of four-wave interactions
are not usually enough to observe the complete decay of
NSW into a set of isolated solitons (breathers). There-
fore analysis of the intermediate stage, the dynamics of
which qualitatively differs &om that of isolated pulses,
is required. Owing to overlapping of solitons in a dense
packet their behavior in a dense packet strictly differs
&om that in isolation. So, the approaches used in the
papers cited above [2—9] and related theories cannot be
applied for analysis of NSW dynamics.

Investigation of nonlinear dynamics of densely packed
solitons is usually intractable analytically, because they
involve a large number degrees of &eedom of solitons.
However, the problem can be solved approximately, fol-
lowing the ideas of Whithaxn [14]. The first stage consists
in construction of the periodic solutions of the system of
evolution equations under periodic boundary conditions.
Then, it is assumed that this periodic solution possesses
slowly (in comparison with the period of oscillations or
solitonic length and duration) changing parameters. Av-

eraging of some integrals over the period of fast oscilla-
tions yields a set of equations in partial derivatives for
these parameters. Solution of this system allows one to
study the slow modulation of the solitonic train. Such so-
called Whitham equations have been used for description
of shocks in the dispersive media [6,15]. Unfortunately,
this approach leads, in common cases, to tremendous
calculations for each new model and solution. In the
works of Date, Forest, McLaughlin, Novikov, Flaschka,
Krichever, and co-workers [6,16—19] the exact methods of
solution of evolution equations under periodic boundary
conditions have been developed and used for construction
of a common quasiperiodic solution of integrable models.
These authors studied Korteveg —de Vries [16,17], sine-
Gordon [18], and nonlinear Schrodinger equations [19],
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II. BASIC EQUATIONS

Let four light packets propagate in the medium along
the z axis,

2

E(z, t) = ) (P, exp[i(k,.z —O, t)]
j=1
+S, exp[i(l, z —~zt)]) + c.c. (2.1)

Here P~, S~ are the envelopes, O~, ~~ are the carrying fre-
quencies, and kz, l~ are the carrying vectors of packets,
respectively. We shall consider the special cases of the
FWM models, which lead to integrable systems of evo-
lution equations —the resonant interaction of field (2.1)
with the molecular transitions. Note that equivalent sys-
tems appear in other physical situations as well.

So, consider the interaction of two pairs of counter-
propagating waves with the following resonant condi-
tions:

and demonstrated that the exact methods allow one to
find the Whitham equations directly in a diagonal form.

We shall follow an approach of Date, Forest, McLaugh-
lin and co-workers, Refs. [16—18], which is more conve-
nient for our purposes and transparent than that of the
authors of Refs. [6,19] . The approach of these authors
will be suitably modified for integrable FWM models. A
set of new common periodic solutions will be found here.
Whitham equations will be constructed as well. Their
solution will be used for analysis of dynamics of dense
configuration of solitons near the leading edge of NSW.
Note that these results are obtained first not only for
FWM phenomena, but for stimulated RS, TPP, phase-
conjugation, and close nonlinear models also.

The second section is devoted to description of the
physical models under consideration. In the next sec-
tion the exact method is suitably modified and used for
construction of periodic solutions. The Whitham equa-
tions are derived in the fourth section. The behavior of
solitons forming near the leading edge of steplike pulses
is analyzed in Sec. V . Discussion of results and their
possible application are presented in the last part of this
paper.

Pl P2 Pl P2 Pl
P2

b

FIG. 1. The schemes of FWM in the two-level medium.
The horizontal lines denote the energy levels. The thick line
corresponds to the envelope P;, carrying frequency 0;, car-
rying wave vector k;, group velocity +V; (upper sign corre-
sponds to propagation of light from left to the right and vice
versa, as it is shown by arrows) aud thin line corresponds to
respective quantities 8;, w, , l;, +U;. The index i = 1 (i = 2)
denotes right (left) pair.

(B, + Vj Bz)P& ——i[a&&P& IS~ I' + aq&P2S2 Sq exp(id z)],
(B, + V& Bz)Ps ——i[PqqPs~S2~

+Pq2PqS~ S2 exp( —iAz)],
(Bg —Ug Bz)sy = z[a22S] ~P]

~

+a2qSIP2 Pq exp( —i6z)],
(B, —Uz Bz)S2 ——z[p22S2~P2~ + p21S1P&'P2exp(zbz)],

(2.4)

where 6 = k2 —l2 —k1 + l1, 4 is a wave detuning,
v1 2, U1 2 are group velocities,

2+02n N 2+~2n N

tion associated with the variation of q . e;~ is a scat-
tering tensor. Consider only the isotropic case, i.e. , tc;~

is proportional to b';~. I' is a phenomenological relax-
ation constant and M is the ion mass. The assumption
is that the time scale of nonlinear processes and detuning
v are such that one may neglect the relaxation and adi-
abatically eliminate q from Eq. (2.3). Substituting this
expression for q in the Maxwell equations one obtains an
equation which in rotating wave and slow envelope ap-
proximations is transformed to the system of equations
presented below. For a scheme of interaction (a) in Fig. 1
we have the following equations for the field envelopes:

Og + ctP~ = (do + v) (2.2)

B, q + I'Bzq + ufo = ~; E;E M (2.3)

The macroscopic polarization, which is proportional to
~;~E~q, includes only a nonlinear component of polariza-

where detuning v && ~o, ~~, O~, j = 1,2, see Fig. 1.
Following Giordmine and Kaiser [20], the coupled wave
equations, describing the scattering of light from phonons
during the FWM, mill be derived. Let us consider a lat-
tice of fixed noninteracting ions, suKciently diluted as
to require no local corrections. The interaction of light
with the single phonon mode will be described i.n the
harmonic-oscillator approximation with external force.
The equation is

2vr02n N
ag2 —— ' ~(Qg)'~(02), (2.5)

2+~2n N'' ' (n, ) (n, ),

where No is the atomic density, and no is the constant
difFerence between energy populations of levels. One
gets analogous expressions for constants P;z after replace-
ments in formulas (2.5):

~1 ~ ~2 1++2 k1++ k2 l1++ l2 ~

We assume that e;~ = b;z~ and e is real. Analogous sys-
tems of evolution equations can be obtained for schemes

(b) and (c) in Fig. 1. Thus for (b) the equations are
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(0 + V, '0, )Pl ——l[nllPllSll + nlzP2S2Sl exp(iAz)],
(0, + U, 'cd) S2 = l [p22Sz IPzl + p2lSlPl P2 exp(iAz)],

(2.6)
(0, —U, 'Bl)sl ——i[n22sjlPll + n2ls2P2'Pl exp(i+z)];
(0, —V2 o&)P2 ——i [pl lP2

I
Sz

I

+pl2Pl S;S2 exp( —iAz)],

For scheme (a) in Fig. 1 we have also

V=Vj2 ——Ug2, b=~=1,

sl ——Sl, pl ——Pl, s2 —pS2(pll/nil)

p2 +P2(p22/n22)

where 6 = k2 —l2 —kl + ll For. (c) the equations are

(8, + vl B~)Pl ——l[nllPllsll + nl2P2s2sl exp(iAz)],
(&. + U2 '~~) S2 l[p22S2IP21

+pzlSl P2 Pl exp( —iAZ)],
(2.7)

(8, —Ul Bg)sl ——i[n22sl IPl I
+ n2ls2P2 Pl exp(ibz)],

(0, —V2 '8 )P2 ——i[PllP2]S2I

+pl2Pl Sl S2 exp( —iAz)],

where 6 = k2+ t2 —kq + lq. It is enough to restrict
the consideration to these cases only. This is due to the
fact that only they are mathematically nonequivalent.
Other integrable models of the FWM differ &om those
considered above by the choice of resonance conditions
(2.2) and signs of group velocities of waves. All of them
may be transformed to one of the three models presented
above after simple redesignation of the field envelopes
and variables. Note that some combinations of resonance
conditions and signs of velocities lead to nonintegrable
variants of the FWM. See, for more details, Sec. V of
this paper.

The exact method application to the system under con-
sideration is based on the existence of the so-called Lax
representation of this system. This imposes the restric-
tion on the group velocities, i.e. , that the fields prop-
agating in the same direction are equal to each other.
This means that refractive index n(u) does not depend
upon the frequency, more exactly n(ural) = n(u2)
n(Ol) = n(02) (the medium is nondispersive). It is
easy to demonstrate using resonance conditions (2.2)
and schemes presented in Fig. 1 that for a nondispersive
medium 6 = 0.

All these integrable systems of equations can be writ-
ten as the following set of equations characterized by the
integer parameters b = +1, ~ = +1:
BTR+ —z[(lR+F3 + 8RsF+ exp(ib. z)],
OTR3 ———0~I'3

= i/2[R+F exp( —iAz) —R F+ exp(iAz)], (2.8)
BxF+ ——i [(2F+Rs + eFs R+ exp( —ib z)],

where

=I'+, R =R+, 0„=0 +V 0~,

++ 1+u a
2GtC 2GtL

rl

I, (q) dq, X = », I,(g) dg,

Il(~) = u/a I»l'+ a/ul»l'

I (() = «I» I'+ 1/(«)I»l'

F. = (a/ul»l' —u/a I»l')/

R. = (« I»I' —1/(«) I» ll')/I2,

F+ ——2sls2/Il exp(i[X(u —a ) + T(1 —u a )]/(2au)),

R+ ——2plpz/I2 exp(i[X(u —a ) + T(1 —u a )]/(2au)).

For scheme (h) in Fig. 1, T, Vl 2, and Ul 2 are the same
asabove, b=~= —1,

s' = S' &' = +P'(n~~/A~)' '
& W & i &

= 1 2

1+a' (1+a')u
2au ' 2a

x= p» f s, (g)~,

Il(~) = 1/alpll' —al»l' I2(() = al»l' —1/al»l'

Fs = -u(al»l'+1/al»l')/Il,

Rs = —(1/al»l'+ al»l')/(uI2)

F+ ——2uplsz(Il) exp[i(X + T)(1 —a )/(2a)],

0&
—0. —V '0&, R+ —2»sl(I&u) exp[i(X + T)(1 —a )/(2a)l.

~(~l)
Pl 1P22 +(fl2)

For scheme (c) in Fig. 1, T, X, s;, »l, , V;, Ul 2 are the
same as above, b = —e = 1,
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a —1 a —12 2

, t.'2 = )2a 2au

Iq(g) = 1/also] —alp21

one-phase solution, see Refs. [6,19], the generalization to
more common cases is straightforward.

As was first shown in Ref. [5] system (2.8) can be pre-
sented in the form of the compatibility condition of two
systems of linear equations (Lax representation):

(() = 1/al»l'+ al»l' ( —i(b'A —t,'g)Fs (A + &p)F+

( —e(A+g )F i(bA —t,'g)Fs )
(3.1)

F. = -(alp21' + 1/als~l')/(uI~)

s = u(als2l 1/al»l )/I2

F+ ——2p2sq/(uIq) exp[—i(X + T)(1+a )/(2a)],

R+ —2upqsz/(I2) exp[—i(X + T)(1+a )/(2a)].

Note that for the special case of initial conditions, such
that IqFs(T, O) = const [for example, for constant initial
envelopes Pq 2 in case (a)], nonzero detuning 6 may be
avoided by using simple gauge transform

X'

R~ -+ R~ exp ki(p Rs(Y, T) dY
p )

lx
Fy ~ Fy exp +it,"p Rs(Y, T) dY I,

p

1 f a(A(g —e)Rs (A+ p)R+be l
A ( —h'(A+ P)R i(A(2 —e)Rs )

where A is a spectral parameter [6]. 4 is a two-component
function. y = a+i(he —a ) ~, p = a —i(he —a2) ~, a =
—b(t,'q + (2)/2. For special limiting cases ((q ——(2, 8 = 1)
this Lax pair is formally equivalent to that obtained by
Kaup [2] for RS (e = 1) and TPP (e = —1).

We introduce, following an approach of Forest and
McLaughlin [12], quadratic eigenfunctions

f — &/2(4102 + 0241)) g 4'101~ h 4'242'

where Pq, 2 and gj 2 denote different solutions of linear
systems (3.1), (3.2). These functions are easily shown to
satisfy the system

B„f= —i[(A+ p)F+h —e(A + p)F g],
8 f = —i/A[(A+ p)R+h —e(A+&)R g],

B„g = —2i[(hA —t,'g)Fsg —(A+ (p)F~ f],
which results in renormalization of coupling constants
characterized by the nonlinear &equency modulation:

(1,2 + (1,2 + (p) (p +[allI1F3(T& )]

B~g = 2i/A[(A(2 —e)Rsg + (A + (p) R+f],
B„h = 2i[(bA —(g)Fsh —e(A +g )F f],
B~h = —2i/A[(A(2 —e)Rsh+ e(A+ &p)R f]

(3.4)

The special case of the model described above, (q 2 ——

b = e = 1, corresponds to the phase-conjugate or degen-
erate four-wave mixing model, Ref. [1]. For u = 1, 6 =
0, b = 1, e = kl system (2.8) describes the stimulated.
RS (upper sign of e) and TPP (lower sign of e). The im-
portant special case of the model above is that of counter-
propagation of two waves having two orthogonally polar-
ized components, so that envelopes P1 2 denote polariza-
tion components of one wave and S1 2 correspond to that
of another wave. In such a model required integrability
conditions imposed on the group velocities and wave de-
tuning (b, = 0) are fulfilled automatically. Note that for
all considered schemes of interaction (pseudo)spins F, R
satisfied the following normalization conditions:

As it immediately follows from (3.4) the function

P(A) = f +gh (3.5)

P(A) = {A —Ag) = ) P~A~,
j=O

(3.6)

is independent of both variables, i.e., B„P(A) = 0,
8 P(A) = 0. The form of periodic solution is determined
by dependence of P on A, which in turn is determined
by the symmetry properties of a nonlinear system. The
simplest (one-phase) nontrivial periodic solution corre-
sponds to the following form of polynomial P:

hlR+I'+ R2s —1,
~IF+I'+ F.' =1

(2.9)
(2.10)

where A~ denotes the jth degree of complex parameter.
Az are some spectral data. It is natural to suppose, that
functions f, g, h satisfying system (3.4) may be presented
in polynomial form. It may be shown that functions f, g,
and h should have the form

III- CONSTRUCTION OF PERIODIC SOLUTION
OF THE EVOLUTION EQUATIONS

In this section we shall present a modification of the
approach of the authors of Refs. [16—18], which is more
convenient for our aims than alternatives in the litera-
ture. Although we restrict present consideration to the

f = ).f~A" g = {A+a)(gp+g~A)

h = (A+ P)(hp+ hgA). (3.7)

Substituting these expansions in system (3.4) we found
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I+hg ——~I' gg, R+hp ——~R gp,

Fsgi ——bF+ f2, Fshi ——beF f2,
Rsgp = bR+fp, Rshp ——beR fp

(3.8)

gi = E+, gp = be JP()R+,

hi ——eF, hp = b~P()R

f2 ——bFs, fp —ey P()Rs,

(3.9)

where P4 is chosen equal to 1 without restriction of re-
sults.

Introduce the function

p(A, *,&) = ~&oR+/F+, (3.10)

which is a zero of g(A), as it easily follows from (3.9), i.e. ,

g = (A+ p)(A —p)F+.

From (3.5)—(3.7) we have for the zero and fourth degrees
of A

2FsA =1+A' —J(1 —«Ipl ) —P'
Comparing (3.15) and (3.16) one can find that to avoid

possible contradictions the following equations should be
satisfied:

A = Pp —beP2 + 2abe(2a —Ps) + 1, (3.17)

bePi —Ps ——2a[beP2 + 2abe(2n —Ps) —2]. (3.18)

We have fi ——2nbFs, as well. The first constraint (3.17)
may be considered as a definition of constant A. Thus,
only one constraint (3.18) remains. A periodic solution
may be obtained directly from the relations presented
above. However, it is still rather complex for further
analysis and physical applications. Therefore let us con-
sider the special cases of a polynomial P:

P"(p) = (p'+ 2ap+ be)(p+ (i)(p+ &2) A = o

P '
(p) = [(p, + n)' —A', ][(p+ n)' —A', ],

A' = (a' —A' —be),2

Substituting this expression of g in system (3.4) and using
the fact that f2(A = p) = P(p), we obtain P (p) = (p + 2A, p+ 1), A = —4AiA2be,

By p = 2i[P(p)]'~',

B p = -2ibe[P(p)/Pp]'~2.

(3.11)

(3.12)

From (3.11), (3.12) it follows that p, depends on the single
variable 8,

B,p = i[P(p)]'~', 8 = 2
I

x —be g

Pp j

B„g(A = p) = 2i(p+ y)F+P'~2(p)

and close equality for 8 y. We have from these equalities
where (i 2 are arbitrary complex and Ai 2 are pure real
or pure imaginary, or complex conjugate constants. All

roots of polynomial P~~~ satisfy the above constraints.
It means that, in common, only two roots are indepen-
dent. To solve Eq. (3.13) using handbooks (for example,

[21]) it is convenient to use the Table presented in the
Appendix, where the relations between the form of poly-
nomial P~ ~ and that of the polynomial depending on
only real parameter p, and real roots is shown.

Functions Fs, Rs, IR+I, IF+I are easily expressed in
the terms of A, Pp, p, (e) by means of (3.14), (2.9), (2.10).
For example, for I"3 we have

This solution corresponds to the simplest (one-phase) pe-
riodic solution of the model. From (3.8), (3.13) it follows
that both I'"3 and B3 depend on a single variable 6I and

A + [Po + be(A2 —Po —1) I
pl' +

I
pl']"

1 —belp, l'
(3.19)

Fs ——~PpRs + A, (3.14)
An inversion of integral

where A is a real constant. The condition of existence
of the finite polynomial decomposition (3.7) imposes,
in common, some constraints on a set of spectral data
AI„k = 1 —4. These constraints can be found &om the
above equalities (3.5)—(3.7). From expansion of polyno-
mial P in degrees of A follows algebraic relations

2 fp fi —bern+ 2n Jlpl = Pi,

2fof. + f,'+ b.J + Jlpl' —2a~ = P„

2f2fi —m+ 2aJ = Ps,

where 1 = elF+I, m = J(y, + p+). Algebraic system
(3.15) yields some constraints on relations between func-
tions. An analogous relation follows &om Eqs. (3.10)
and (3.14) and (2.9), (2.10),

5 Po —bel plFs ——+
( 1 —belpl2 )

(3.21)

Consider the special case (a) of P~ ~'~ l, see Appendix.
Let p, = —n + i', Ai ———A2

——p, As = —A4
——P, here

function q and constants n, P, p are real. An integral
(3.20) for pp

———a yields

p = —a+iPsn(~g P/~)

From (3.19) we have

[P(p)l "dp = i(g —go)
po

may be expressed in terms of Jacobian functions by
means of Table I presented in the Appendix and a hand-
book. For A = 0 (case P~il) (3.19) reduces to
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A 6 [(2az —Pzcn2) (2az —pzdn ) + 4nz(az + Pzsn2)]~/2

1 —be(o.z + P2sn2)
(3.22)

where sn = sn(pe, Pjp), cn = cn(pe, Pjp), dn
dn(pe, P/p) are the Jacobian functions with modulus

P/p, Ref. [20]. For the special case of FWM (consid-
ered, for example, in Ref. [10]) o. = 0, expression (3.22)
reduces to

A 6 pPcndn
I —bePzsnz

The form of polynomial P corresponding to case (a) of
P& ~'& ~ in Table I leads to the simple solution

cn cn
E3 ——kP —,R3 ——+—,

dn dn

changing parameters obey equations which may be found

by averaging of some integrals over the period of fast pul-
sations T. As a result one is able to reduce the problem
of analysis of the complex system with many degrees of
freedom to a few evolution equations.

As is mentioned above, an exact method of solution of
evolution equations under periodic boundary conditions
is very effective for deriving the modulation Whitham
equations, because it allows one to obtain them in a di-
agonal form directly. The first step of such a procedure is
analogous to that of generating infinite sequences of the
conservation laws. Using the Lax representation (3.1),
(3.2) of the model considered we get the following gener-
ating formulas:

(1 P2) 1/2
F+ = + exp(ie, ),

dn

(1 —Pz) ~/3 sn
R+ ——6 exp(ie, ),dn

a. )

"+~P,~) =b.a„( "+~R ~),

h + " ( Ah +/

(4.1)

(4.2)

8g 3(8) = 8g,z(0) 6 (g,31n[(1+Psn)/dn],

P = Po ( 1, A = 0, sn = sn(8, P),

Both Eqs. (4.1) and (4.2) yield the same result, there-
fore we shall consider only (4.1). Following Flaschka,
Forest, and McLaughlin [17], we introduce a new nor-
malization for functions f, g, h: fz + hg = 1 . Using
(3.11) and (3.12) we have &om (4.1)

cn = cn(8, P), dn = dn(8, P).

For the more common case of polynomial P&~~'&+~, such
thatp=aX —a, X=X(8), p=(p —a, p=n —(p) (gz ——

a + iraq 2, where g, p, p, g~ 2 are real and p ) y & gq we
obtain

/'P(A)'/3) beP(A)'/3 f1 1

& A-~ r

The period of oscillations T is determined by the fol-
lowing integral:

p(rh —p) + p(p —'

rh) sn (O, K)
g, —p+ (p —gg) snz(O, K)

where O = 2(e —eo)[(p —gz)(gx —P)]'/')

(3.23)
1/2 d

= 2K(k) [(Ag —A3) (A3 —A4)] (4.4)

(p —~.)(~~ —p)

(p —ni)(n2 —P)'

IV. WHITHAM EQUATIONS

The exact solutions obtained in a preceding section de-
scribe nonlinear waves repeating themselves after some
period T. Description of smoothed shock waves or any
modulated wave train may be performed in quasiclassical
approximation. In this approximation it is assumed that
length and duration of a train or region of oscillations is
much more than that of each soliton or other nonlinear
spikes 6lling the region of oscillations. We suggest that
characteristic parameters of periodic solution (in our case
they are the roots of polynomial P: A;, i = 1 —4) are
slow functions of variables x, y, i.e., their scales change
much more than that of single pulsation. These slowly

[ P(p)l "'"&. —
T A —p

(4.5)

Setting successively A = A„, n = 1 —4 we obtain &om
(4.4) and (4.5)

1
lim = —28'„(ln T).

A —+A„A —p
(4.6)

where K(k) is a complete elliptic integral of the first kind
with modulus k: k = [(Az —Az) (A3 A4)]/[(A] A3) (Az-
A4)], As are the roots of polynomial P such that Aq )
Az ) A3 ) A4. Integration in (4.4) is performed along
the curve whose circle cuts between Aq and A2 or Aq and
A2. Averaging over the period of fast oscillations T i:
performed by using the following relations:
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The limits A —+ A„yield the singularities in the diEeren-
tials

on one variable x/y, follows from representation of thes-'.

equatlons lIl a form

+ —OyA„= 0,
1

(4.7)

where

As is shown in Ref. [17] the conditions of vanishing of cor-
responding coefficients in (4.6) are fulfilled if the spectral
parameters obey the Whitham equations, see, for details,
Ref. [17]. These equations for our case are

(l', —x/y)O„A, = O.

From (4.8} and (5.3) we have

1 4(g —p+ s/2)sK(k)
g (p —q)E(K} —eK(k)

= —»
I

—
l

+ o(&)
4e t'Q )

( e)
where Q = 4(p —g)(p —p)(p —p) . In the logarithmic
approximations solution of Eq. (5.4) has a form

(4.8)
E = gg[4ln(Q/g)] (5.5)

The length L of a soliton formed near the leading edge
of a train is

(
1 (A2 —A4) E(k) —(Ai —A4) K(k)

A, —p (Ai —A2)(Ai —A4)K(k)

I VOT 4VDln 1n
4Q Q

g)
&[(p - ~){~- p)l " (5.6)

(
1 (Ai —As)E(k) —(A2 —As)K(k)

A2 —y, (A2 —Ai)(A2 —As)K(k)

1 (A2 —A4) E(k) —(A2 —As) K(k)
A3 —p (A2 —As)(As —A4)K(k)

(
1 (Ai —As)E(k) —(Ai —A4)K(k)

A4 —p (A, —A4)(A3 A4)K(k)

V. SOLUTION OF WHITHAM EQUATIONS

In this section the Whitham equations are studied for
the case of solution (3.23) and steplike initial pulses,
i.e. , F+ ~ nonzero const for y —+ —oo and F+ ~ 0
for y ~ +oo. The evolution of such pulses corresponds
to forming a set of densely packed oscillations near the
leading sharp edge. Numerical simulations performed for
various models demonstrate that the form shapes of these
nonlinear pulses tend to solitonic ones (see the next sec-
tion of this paper). The solitonic limit of solution (3.23)
corresponds to gi —+ g2, k m 1. Let qi 2

——q+ s/2, then

k' = 1 - s(p - P)[(p - n)(n - p)]-' + O(s').

Prom (4.8) one has

&o/ Vi, 2 = 1 + 2s ln(s) + O(s).

(5 1)

(5 2)

The similarity solution of Eq. (4.7), where A; depends

where Vo = 8E~Pp = bt(Ai, A2, As, A4)'~ . E(k) is a
complete elliptic integral of the second kind with the
same modulus k as above. Note that only three A„are
independent in a common case and only two of them
in simpli6ed cases considered above. Therefore one or
two equations should be excluded from the above sys-
tem, then the concretized cases will be considered.

Expressions (5.2)—(5.6) show that characteristic param-
eters of the solitons and distances between them loga-
rithmically increase with y. This affirmation is valid for
all types of periodic solutions discussed in Sec. III. A
back edge of the train is determined by the form of the
pulse injected into the nonlinear medium. For a step-
like pulse the back edge consists of quasiharmonic oscil-
lations, which are associated with limit k m 0.

In another limit of the same solution (3.23) gi
p, k ~ 0 the leading front of the pulse transforms
into quasiharmonic oscillations and a solitonic packet is
formed near the back edge of the pulse. This limit may
be related with propagation of a "turned around" shock
wave.

VI. DISCUSSION

Exactly solvable models occupy a special place in theo-
retical physics. Quite universal in application, they con-
stitute the foundation for progress in theoretical physics.
The exactly solvable models are applied to nonlinear op-
tics, plasma physics, hydrodynamics, etc. Moreover, the
inverse transform is a single modern analytical tool by
means of which the complex evolution equations can be
investigated in detail. The integrability of the system
of evolution equations plays a crucial role in the present
study. Using an exact method one may eff'ectively con-
struct common periodic solutions and Whitham equa-
tions. The integrability of the model is based on a set
of idealizations. The model is a one-dimensional, nondis-
persive, and nondissipative version of FWM. However,
these properties are not enough, in common, for applica-
tion of the inverse scattering transform. For example, the
scheme of the FWM depicted in Fig. 2 leads to a system
of equations which does not admit a I.ax representation.
Close models of FWM are used for analysis of propaga-
tion of solitary waves in optical 6bers, plasma, and so
on, see [1]. A common feature of these models of PWM,
which prevents application of inverse scattering trans-
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Here Ii 2 are constants, a = (pxxxx22)/(p22xxxx).
e, Pq 2, Sq 2, ... are the same as in the above schemes.
For a function depending on one variable 0 we have

P2 F3 ——VpR3 + A. (6.3)

FIG. 2. The scheme of FWM leading to the nonintegrable
evolution equations. The designations are the same as in Fig.
1.

Using (6.3) one can transform system (6.2) in system of
(2.8) with new constants (x ~ CxVO, (2 ~ C2Ve and
new functions:

(R~, F~) -+ (R~, Fy) exp[+i(T/Vo —X)A].

(8, + V Bi)Px ——inxx(PxlSxl + ~P2S2Si),
(8, + V 8,)Si ——icx22(SxlPil +1/~S2P2Pi),

(8, —V 'Bi)P2 ——xPxx(P2IS2I + I/~PxSxS2),
(8, —V Bi)92 ——xp22(S2IP2I + zSxPx'P2).

(6 1)

There Vj ——Uq
———V2 ———U2 ——V. Constants and

functions have the same meaning as above. We transform
systexn (6.2) into the following form:

Bz R+ = xRs((2R++ F+),
Bz Rs —— 8&Fs ——i/2—(R F+ —R+F ),
BxF+ ——xFs((xF+ + R+),

(6.2)

where

F =F+, R- =-R+, (x =
I
~+ —

I )

aIx ( 11
2I2 E K)

IQ ( 1i
(2 =

I
~+ —

I2aIx ( r) '

T = 4PiiIi(z —Vt), X = 4axxI2(z + V&),

S,l'+ ~»IPxl /(mix))

I2 ——1/~l S, I' + ~p22 IP2I'/p„,

F& = 1/(4o) (~» IPil'/(~~») —~l Sil')

Rs ——a/4(mp22IP2I /pii —1/+IS2I ),

F+ ——ga22Px' Sx/(2ai/o. xi Ix)
x exp[.(~ —1/~) (Ixx/I, —I,T/Ix)],

R+ o'/p22P2 S2/(2/pllI2)
x exp[i(r —1/r) (IiX/I2 —I2T/Ii)].

form, is the existence of self-interaction te~ms. In terms
of Sec. II of the present paper they are F3F~, R3R+.
But the periodic solutions of the integrable FWM model
presented above can be used for nonintegrable schemes of
FWM, if the solutions depend on a single automodel vari-
able 8 (one-phase solution). Consider, for example, the
scheme of interaction depicted in Fig. 2. The evolution
equations in this case are

Thus one-phase solutions obtained above after simple re-
designations may be used for the nonintegrable case of
the FWM scheme.

The resonance conditions (2.2) allow one not only to
neglect the self-interaction terms, but lead to enhance-
ment of nonlinear conversion of fields [21]. These self-
interaction terms naturally arise in many models of four-
wave interaction. Implementation of the resonant atoms
in the sample may lead to a situation where these terms
can be neglected. The nonintegrable scheme of FWM
considered in this section may be realized, for example,
in fibers, see, for example, Ref. [10]. The periodic solu-

tions obtained above can be used for description of prop-
agations of dense packets of solitons in fibers for weak
dispersion as well.

Direct experimental investigation of NSW dynamics
in FWM is unknown, although required parameters are
not beyond the achievements of modern technique. The
parameters may be the following. For 4S ~ 5S tran-
sition of KI vapor and carrying frequencies Oq ——3.5 x
10~5 s

—
O = 1.8x10 s u = 1.8x10 s and res-

onance conditions Ox + (d1 4)py O2 (d2 (dp one has

~(Ox) - 2.2 x 10 2s cm2, ~(O2) —1.2 x 10 22 cm2 [22].
If vapor pressure is 10Torr, then o;~~ = 2.0 x 10 cgs
electrostatic units (CGSE). For intensities of the fields
about 10 W/cm2 the length of solitons is about 1—1.5
cm. Note that for this scheme u 5.45. In the case
of hydrogen, let us consider the scheme of FWM, where
O;+~; =~p, i =1,2. LetO& ——3.0x10' s ', O2 ——

4.Qx1Q s cu = 2.0x10 s vip 4.5x10
CGSE. Hence e(Ox)~ = ~(O2)2 —0.68 x 10 socm4.
For the length of solitons of 0.5 cm the pump intensi-
ties should be about 10s—10xs W/cxn2. In this scheme
u = 1, i.e. , (x = (2.

Some experimental data of Ref. [23] devoted to inves-
tigations of Raman scattering may be interpreted in the
framework of NSW dynamics. Indeed, it has been found
that injection of a long intense pump pulse with a sharp
leading edge leads to a highly oscillatory structure of
Stokes pulse. For a slow sloping leading edge of pump
field the Stokes pulse has a more smoothed structure.
The nonlinear oscillations had the form shape typical for
solitons. The distances between solitons, when they were
in a dense packet, increased much slower than when they
were in isolation. Such behavior is verified in numerical
simulations as well. These facts are in qualitative agree-
ment with the theory presented above.

The practical importance of analytical investigation of
modulated wave trains is corroborated by consideration
of experimental conditions of observing such phenomena
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TABLE I. The relations between the polynomial P~ ~ and P~ ' * ~, i = l, 2.

(2)

(A)

(a) er' ) be,
Imtg, 2

——0.
(b)o (be,

t', =o+iA, ,

ImA, =0,
Re(p+ o) = 0.

(a) ImA, = 0,
Imp = 0.

(b) Re(p + a) = 0,
Re(A, ) = 0.

A, )b~,
Ag QA2,

ImA,. = 0.

(B)

(, = ('+irl,
Im( = 1m' = 0.

ReA, = 0.

A, ( b~

(C)
(a) n2 ) be,
t', = $+ irl,

Im( = Imp = 0.
(b)A (be,
Im(, =—0.

ImA, = 0.

A~ &be,
A', & b~.

as stimulated RS, TPP, and FWM. These phenomena
are often studied experimentally by using nonlinear cells
placed in cavities (see, for example, [24]). If changing
of the field amplitude after one pass of the cavity is slow
and the length of the region of oscillations is about that of
cavity, then quasiperiodic behavior of pulses should dom-
inate. The periodic solutions and solutions of Whitham
equations may be used for analysis (after suitable mod-
ification of theory) of transient decay-type regimes of
FWM, which are associated with a continuous spectrum
of the spectral problem, see Refs. [5,6]. As is demon-
strated in [25], an asymptotic infinite sequence of solitons
may arise out of a continuous spectrum. The periodic so-
lutions with time dependent parameters may be used for
a theoretical description of more common cases than are
considered in Ref. [25].

The diagonal form of Eqs. (4.7) has important physical
consequences. Generally, the speeds V, are distinct and
complex. In this situation they replace the single group
velocity in the theory of propagating waves. If these char-
acteristic speeds are complex (for complex roots (i 2 of
polynomial P(i)), then the modulation equations (4.7)
resemble elliptic equations and the wave train is modu-
lationally unstable.

The theory of integrable waves together with numerical
simulations has shown that the large time behavior of a
wave is &equently dominated by solitary waves. Spatially
coherent structure can persist even in temporally chaotic
states [13]. The solitons or solitonic trains are natural
candidates for these coherent structures. The exact ap-

proach used here is very convenient for constructions of
perturbation theory, which can be used for analysis of
dense solitonic train evolution in near-integrable models.
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APPENDIX

For practical purposes, to solve Eq. (3.13) using hand-
books (for example, Ref. [20]), it is convenient to classify
the polynomials by using the following forms of polyno-
mial depending on only real p and real roots yA, .

P'"'(t ) = (t —Xs),

&' '(v) = [(I + xi)'+ x2][(~+x.)'+ x']

&' '(C ) = (u+ X&)[(V+Xs)'+ X4]
~ 5 ~ h

j=l

The relationship between these forms of polynomial
P| & and P&+'+ ~ is presented in Table I.
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