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Spatial distortions of laser pulses in coherent on-resonance propagation: Large-scale self-focusing
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When cylindrical symmetry is assumed, a numerical study of coherent on-resonance self-focusing of
laser pulses in atomic media reveals a well-defined dependence on the interaction s parameters for the
focusing distance and the maximal on-axis energy density reached at the focus. We interpreted this
focusing to be the result of a diaphragm e8'ect at the edge of the pulse. This can be readily explained by
considering the transverse dependence of local self-induced transparency phenomena first described by
McCall and Hahn [Phys. Rev. Lett. 18, 908 (1967); Phys. Rev. 183, 457 (1969)]. From this interpreta-
tion and the well-known Maxwell-Bloch equations, we derived a theoretical quantitative model for
coherent on-resonance large-scale self-focusing, that is to say, focusing of the beam as a whole. Our
main results include the above-mentioned exact parametric dependence for the focusing distance, as well

as predictions about the ratios of on-axis energy densities and pulse transverse sizes between the input
and focus planes. All of these predictions appear to corroborate the results of an experiment on a ' Tm
vapor.

PACS number(s): 42.50.Md, 42.25.Bs, 42.65.Jx, 32.80.—t

I. INTRODUCTION

Since 1965, transverse phenomena have been em-
phasized in works dealing with self-focusing or defocus-
ing of optical pulses, but these works usually have been
concerned with the effects of nonresonant nonlinearities
in the quasi-steady-state limit, as in common transparent
media [1—3]. Self-lensing due to an intensity-dependent
index of refraction explains the main part of these phe-
nomena. A review paper by Akhmanov, Sokhurov, and
Khokhlov [4] contains a bibliography of work in this
area, which has been completed by the more recent con-
tributions of Harter and Boyd [5] and Braun, Faucheux,
and Libchaber [6] (see also [7]). Wong and Shen investi-
gated theoretically and experimentally the transient limit
of these effects, when the pulse duration ~ is shorter
than or comparable to the relaxation time ~ of the refrac-
tive index [8,9].

In the steady-state case of an on-resonance cw laser in-
teracting with an atomic medium, a relatively smooth
self-focusing (compared with the nonresonant nonlinear
case) may also occur. A complete investigation of this
phenomenon has been made by Boshier and Sandie [10],
Tai et al. [11],and LeBerre et al. [12]. It is viewed as a
consequence of Fresnel diffraction induced by absorption
on the wings of the laser-beam transverse profile.

Since the publication of the pioneering work of McCall
and Hahn [13], on-resonance propagation of optical
pulses in absorbers in the coherent regime, that is to say,

when ~ is shorter than all the relaxation times of the
medium, has been the subject of numerous studies
[14—17]. Nonlinear transmission and temporal reshaping
effects such as pulse breakup, pulse delays, and peak
amplification have been observed and successfully com-
pared with theoretical predictions [18]. In thick ab-
sorbers, however, transverse effects such as self-focusing
can dominate pulse reshaping, and the complete set of
Maxwell-Bloch equations —including radial variations
and time-dependent phase —is required for any analytical
description. Because of the complexity of this system,
there has been up to now no theoretical quantitative
model for coherent on-resonance large-scale self-focusing
(LSSF), but only numerical simulations that assume cy-
lindrical symmetry and qualitative interpretations.
Wright and Newstein [19] attributed this self-focusing to
a transverse energy flow they found to be proportional to
the local-field intensity and phase profile radial curvature.
Gibbs et al. [20] pointed out that self-focusing is predict-
ed numerically for F=A, /4mr a ranging between 10
and 10 (in which A. is the optical wavelength, r the in-

put pulse transverse characteristic radius, and a the
"low-intensity" gain of the medium, so that F is the in-
verse of a Fresnel number), for distances I. such that
al- &5. Focusing is attributed to a diffraction-induced
inward flow of energy from the outer rings which, due to
the self-induced-transparency (SIT) reshaping efFects, un-

dergo larger delays than the more intense inner ones.
This argument was repeated later in the numerous nu-
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merical studies made by Mattar [21,22].
In the present paper, we give the main results of a sys-

tematic numerical study of the focusing effect (Sec. II),
the interpretation of which led us to a quantitative
theoretical model (Sec. III). Both numerical and theoreti-
cal descriptions are compared with the results of an ex-
periment involving nanosecond dye laser pulses interact-
ing with a degenerate inhomogeneously broadened two-
level system provided by a fundamental transition in a

Tm vapor (Sec. VI). The influence of Zeeman degen-
eracy and detuning from resonance is discussed in Sec. V.
Finally, Sec. VI is a summary of the main results.

II. COMPUTER SOLUTIONS

A. Field and material system equations

In our study, the electric field is assumed to be linearly
polarized transverse to the direction of propagation, z,
and of the form

8=Re[E (r,z, t)exp[i (kz —cot) ]],

is the Rabi circular frequency. In atomic vapors, transi-
tions are generally Doppler-broadened and we have tak-
en, respectively, g(b, co) and hco~, ~ as the corresponding
normalized spectral distribution of the absorbers and its
full width at half maximum. Taking this broadening into
account leads to putting P =Np( U i V—) in which ( U, V)
is the full atomic response, calculated by integration of
(u, v) over g (hco). When Q is real (and since w must not
depend on the sign of b,co), one can easily deduce from
the above Bloch equations that u and v are, respectively,
odd and even functions of hco [24]. Consequently [g (bco)
being an even function], U =0 when the laser is on reso-
nance. In this limit only absorption and stimulated emis-
sion are important.

E and P are assumed to vary slowly with respect to z
and t for distances and durations comparable to the opti-
cal wavelength and period. The simplest form of the par-
axial wave equation [25] in cylindrical coordinates [23] is
obtained in a frame traveling at the velocity of light in
vacuum, and in a dimensionless form, as follows:

in which

(2)
with

Be
P

iFb, e =(—V +i U)(p, g, r),

is the wave-vector modulus, e is the optical circular fre-
quency, c is the vacuum speed of light, r is the transverse
radial coordinate, and E is the electric-field complex en-
velope. We have chosen to neglect the contribution to
the atomic response of possible nonresonant bu8'er gas
transitions. The remaining resonant part of the atomic
response is taken to be of the following form:

P=Re[P (r,z, t)exp[i (kz —cot) ]], (3)

in which P is its complex envelope and can be written as
follows [23]:

P =Np(u iv), — (4)

Bv =b lou +Re(Q)w,
Bt

BM

Bt
= —[vRe(Q)+@Im(Q)],

in which

is the detuning between the laser and atomic resonance
circular frequencies and

in which N is the atomic concentration and p is the pro-
jection of the mean dipole-moment operator on the field
polarization direction. (u, v) are real functions, solutions
of the well known Bloch equations that describe the sta-
tistical time evolution of both the atomic polarization
and population inversion m:

BQ
bcov +Im(Q)w, —

Bt

V+i U(p, ri, r) = (v +iu)(p, g, r, 5)=1
2m

Xexp —41n2
5
D

d5, (9)

5=4N7&, D =ENdop (10)

is the expression of the Laplacian transverse in dimen-
sionless radial coordinate (1/p)(B/Bp)[p(B/Bp)]. As can
be seen, the full dimensionless problem (8)+(9) depends
only on two parameters, F and D. F characterizes the
respective predominance of either temporal reshaping or
of transverse distortions due to de'raction. When F is
comparable to or larger than 1, the preponderant
phenomenon is a global divergence of the whole beam
and no self-focusing can be expected. In what follows, we
limit ourselves to the case in which the pulse spectral
width is smaller than the inhomogeneous broadening,
that is to say, D & 1. It corresponds to the very common
situation of a smooth pulse whose length is of the order
of a few ns or more, propagating in an atomic vapor. It is
implied that all the incident pulse photons can interact
with resonant absorbers.

in which F=(A, /4nrra), a=(2&@,N /sAo, A')g( 0) is the
longitudinal low-intensity gain, g (0)= [2(ln2)' /
btoe, ~n'~ ] [consequently g(0) is proportional to A,], and
in which we define the dimensionless quantities corre-
sponding to the time, longitudinal and radial coordinates,
Rabi frequency, frequency detuning, and hcoz, p as, re-
spectively,

pE'r tlat, Yi=—az, p=r/r, e= 'r
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8. Numerical parametric study of self-focusing 200

A typical self-focusing numerical result is given in Fig.
1, with the on-axis energy density H (J/cm ) a function of
propagation distance. We characterize this result by the
ratio of on-axis energy densities between the input and
focus planes, H,„/Ho, and the distance between these
planes, Lf„.The decreasing part of the curve beyond
L&„(dashed line) may be interpreted as a consequence of
a combined effect of absorption and defocusing, depend-
ing on the interaction's parameters. We do not discuss
this point further in this work.

The most striking numerical result is that Lf„is strict-
ly proportional to the transverse size of the input pulse,
as shown in Fig. 2. From this significant result, a simple
dimensional analysis of Eq. (8) (see Appendix A) leads to
the following prediction:

150 )

~ ioo—
z

So--
ry

0.0S

r (cm)
r

foe v' aA,

r 3/2a3/4
max rp

g3/4
(12)

C. Temporal reshaping and self-focusing;
dependence on initial optical area

A significant concept in the field of coherent resonant
interaction is the optical area, defined by

8=f "Q(r)dr . (13)

H0

L
foc

FIG. 1. Characterization of self-focusing by the longitudinal
evolution of the on-axis energy density.

which was fully confirmed numerically. Since a does not
depend on k, the above result indicates directly the full
dependence of Lf„onA, . We also found numerically that
L fo increases slightly with the dimensionless initial Rabi
frequency, something which we shall explain in Sec.
III C. Moreover, it doesn't depend significantly on D.

Concerning H,„/Ho, we found its parametric depen-
dence to match nicely as follows:

FIG. 2. Proportionality of I &„to the transverse size of the
input pulse. Other numerical data: a=0.41 rad cm ';A. =0.64
pm; D=25 rad; both transverse and temporal pro61es of the in-

put 2.6m pulse are Gaussian.

The previous results were obtained for an input pulse
whose energy corresponds to nearly 2m optical area. In
the plane-wave SIT approximation, such a pulse is ex-
pected to undergo temporal reshaping. As predicted by
the area theorem [Ref. 13(b), Eq. (3)],

de a= ——sin8(z),
dz 2

(14)

it evolves progressively into a 2~-sech stable profile on a
distance proportional to 1/a. Shore investigated the
dependence of this effect on the initial temporal profile,
giving numerical formulas for the distance required by 2m

pulses of various initial shapes to reach a stable 2m-sech
form [26]. In what follows, we shall posit L„,as the
characteristic length of temporal reshaping (L„,is pro-
portional to I/a). For an initial area ranging between
(2k —1)m and (2k+1)m, in which k is an integer and
k ~ 1, the pulse is expected to reach a stable form of k
successive 2m-sech pulses, on a distance of the order of
L„,. Although not yet theoretically demonstrated in the
general case [27], this behavior can be observed numeri-
cally and experimentally [13,18]. Temporal reshaping of
experimental pulses must be described more completely
by including the transverse dimension. Let us consider
the example of an initial pulse whose on-axis area ranges
between 5m. and 6m. , and whose energy transverse profile
is monotonically decreasing. The qualitative evolution of
its spatiotemporal-intensity profile is described in Fig. 3
and can be obtained in the following manner. Part 1 of
the initial pulse (a), corresponding to initial optical areas
smaller than m, is completely absorbed. Part 2, corre-
sponding to optical areas ranging between m and 3~,
reach a stable form corresponding to a single 2m pulse.
Part 3, corresponding to optical areas ranging between
3m and 5m, reach a stable form of two successive 2~
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FIG. 3. Qualitative description of the temporal reshaping
phenomenon and its dependence on the radial coordinate. The
case of an input pulse whose on-axis optical area ranges between
Sm and 7e. (a) Spatiotemporal profile of the input pulse. (b)
Spatiotemporal profile of the "reshaped" pulse. (c) Section AB
of (b) showing the temporal evolution of the on-axis intensity of
the reshaped pulse.

pulses. Part 4, corresponding to optical areas larger than
5~, reach a stable form of three successive 2m pulses.
Since local delays are proportional to the inverse of the
local initial Rabi frequency, the initial pulse (a) evolves
progressively in a succession (b) of three crescent-shaped
pulses [28], whose on-axis individual areas are 2n (as pre-
viously explained). The temporal evolution of the on-axis
intensity corresponding to section AB in (b) is represent-
ed in (c): one can recognize the typical result of one-
dimensional temporal reshaping. It is noteworthy that
each individual pulse in (b) has its own transverse charac-
teristic radius, corresponding to a particular value of F.
Accordingly, we can see from the prediction (11) that
each pulse is expected to undergo self-focusing at its own
distance (or is not expected to focus if its characteristic
radius is too small, that is to say, if the corresponding
value of F is too large). This behavior is shown in Fig. 4,
where the longitudinal evolution of the on-axis energy
density of an input 5.5m pulse is represented. We can
barely distinguish a Srst maximum, just before 40 cm,
corresponding to the smooth focusing of the third 2~
pulse of Fig. 3(b): its characteristic radius is small and,
moreover, it does not really undergo self-focusing. Then
two successive foci appear that correspond, respectively,
to the focusing of the second and first pulses of Fig. 3(b).
The description we have just made is valid on1y if self-
focusing does not prevent SIT phenomena from occur-
ring. A simple and obvious condition for SIT predictions
to remain valid in spite of self-focusing is that
+res ++Lkg This was fuNlled in the case of Fig. 4. As-

40

z (cm)

80 120

FIG. 4. Longitudinal evolution of the on-axis energy density
of a 5.5m pulse. The case in which L, &Lf . Successive foci
are well separated. Numerical data: F=2 X 10 rad
a=0.26radcm ', D=24rad.
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FIG. 5. Longitudinal evolution of the on-axis energy density
of a 5.5m. pulse. The case in which I, =Lf . Successive foci
are not as well separated as in the case of Fig. 4. Numerical
data: F=3.4X10 farad ', a=0.26radcm ', D=24rad.

suming only a smaller value of the characteristic radius
of the input pulse than in the case presented in Fig. 4, the
other parameters unchanged (so that L,~ is of the same
order as L&~), we obtain the result presented in Fig. 5.
SIT predictions are greatly affected by self-focusing, and
pulse breakup followed by successive self-focusing of the
individual pulses is not predicted in such cases. We see
that individual foci are not as well separated as they are
in the case of Fig. 4. This point was con5rmed experi-
mentally (see Sec. IV). Let us finally remark that the
predominance of either temporal reshaping or self-
focusing effect is characterized by L„,/Lf„, which is
only ~Z.
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D. Diaphr~~ effect on the wings of the pulse

Figure 6 shows the evolution of the energy density
transverse profile of an input on-axis 2.5m pulse, as prop-
agation distances increase. With I =3.4X 10, it corre-
sponds to the case in which L&„&)L„,. Both of the in-

put transverse and temporal profiles are Gaussian. An
absorption singularity on the pulse wing can clearly be
distinguished. This sort of diaphragm effect is initiated
from a transverse position which corresponds to a local
input area of nW. e. shall indicate this position as r (re-
spectively, p in its dimensionless form) in the following
part of this paper. Moreover, one can observe that trans-
verse perturbations appear and propagate radially in an
inward direction. In this case, focusing is predicted at
200 cm. Such behavior can be systematically observed in
numerical simulations. However, for increasing values of
I, global divergence of the beam begins to compete with
absorption on the wings, this progressively leading to
smoothing in the same way both the diaphragm and self-
focusing efFects, as is shown in Fig. 7, where
F=3.4X10 . A full explanation of the diaphragm
effect requires the area theorem and some more precise
results from Bloch equations. Let us note that an analo-

gy between the absorption on the wings of the pulse and a
diaphragm effect had already been suggested by Slusher
and Gibbs [18]. We show in the following section that
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FIG. 7. Evolution of the transverse profile of the energy.

The case in which L„,=L& . (a) z=0; (b) z=5 cm; (c) z=10
cm; (d) z=15 cm; (e}z=20 cm. Numerical data: F=3.4X10 '
rad ', a=0.26 rad cm ', D=24 rad, input 2.4m pulse.

(c)

0.4

0.4

r (cm)

0.6

r (cm)
0.6

this effect leads to self-focusing by generating transverse
perturbations that can propagate toward the axis. A
quantitative model for LSSF can be derived from this
simple interpretation.

III. THEORY

6
cd 4

2
0

0 0.2

r (cm)

0.6

A.. Progressive diaphragm effect and area theorem

When there is no inhomogeneous broadening, the
atomic response to an incident resonant electric field is
given by the following solution of the Bloch equations
[24]:

16
12
8

X 4
0

0 0.2

(e)

0.4

r (cm)
0.6

U (t) = —sin8(t),

u (t) =0,
in which

(15a)

(15b)

FIG. 6. Evolution of the transverse profile of the energy.
The case in rvhich L„,&&L&„.(a) z=0; (b) z=40 cm; (a) z= 120
cm; (d) z= 150 cm; (e) z= 170 cm. Numerical data:
E=3.4X10 rad ', a=0.26 radcm ', D=24 rad, input 2.4m.

pulse.

8(t)= I Q(u)du

is the partial optical area. The medium reaction is then
oscillating. Stimulated emission processes iu )0), corre-
sponding to a gain for the electric field [see Sec. II, Eq.
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(8)], follow after absorption (v & 0), in cycles whose dura-
tion is exactly, for a field of constant amplitude, the Rabi
period. The number of these cycles is directly propor-
tional to the input-pulse optical area. We compare, in
Fig. . 8, the respective atomic responses to inputs 2m. (full
line) and n (dashed line) Gaussian pulses. the 2n. pulse
undergoes absorption during the first half (that is, before
time to) but the absorbed photons are completely radiated
back to it during the second half, so that it can propagate
without significant loss. As for the n. pulse, we see that it
is only absorbed (as with any pulse whose input area is
smaller than n}. This simplified description leads to a
good qualitative interpretation of the correspondence be-
tween input area and transmission rate in the coherent
regime [13,18]. Keeping this correspondence in mind, it
is easy to understand that a 2n. on-axis input pulse with a
monotonically decreasing transverse energy profile can be
expected to undergo a progressive diaphragm effect on its
wings. More precisely, we know that this effect is initiat-
ed at the transverse position in which the local input area
is n, as was shown numerically (see Fig. 6}. We also
know from the results presented in Fig. 8 that this effect
occurs essentially during the second temporal part of the
pulse (in other words, at the "tail" of the pulse, a con-
clusion that is in accord with that of Mattar [21]}. The
dependence of diaphragm characteristics on the propaga-
tion distance can be extrapolated from a graphic repre-
sentation of the area theorem (represented in Fig. 9),
which we have taken from Ref. [13(b)]. One can see that
the longitudinal evolution of an area slightly below m is
very close to the graphic representation of the first half of
a sinusoidal function whose wavelength would be Sn./a.
This leads to the main point of our LSSF model: on the
one hand, we consider that the longitudinal evolution of
the medium-induced "diaphragm" can be described by a
sinusoidal behavior. We express this with a wave packet

0.9 s.

-i 0
'- z(—")

2

FIG. 9. Pulse area plots of SIT area theorem. Branch solu-
tions to Eq. (14) are plotted [after Ref. 13(b}].

B. Analytical model

Our LSSF model is based on a perturbational theory.
As stated in the previous paragraph, we assume that a
correct description of the longitudinal and transverse
characteristics of the perturbation source is, for a given
longitudinal mode X,

whose central wavelength A, i is Sn/a On .the other hand,
we maintain that the resulting transverse perturbations of
the electric field (qualitatively, as in the Fresnel
diffraction regime) exhibit the same longitudinal behavior
and lead to self-focusing.

This interpretation agrees substantially, in its theory,
with the works of Lit and Tremblay on laser-beam
multiple-aperture focusing [29], which had predicted
much stronger effects than in the simple Fresnel case of a
single material diaphragm in which the maximum on-axis
value ofH,„/Kv is 4.

( V+iU) (px, g) =exp( —iXq)B(p) . (17)

08--

X is the dimensionless expression for the modulus of the
longitudinal wave number associated with the longitudi-
nal wavelength A, 1, that is to say,

0.6--

04--

27T

cxA,
))

(18)

Z 02--

a-0.2--

-04--

ME (a.u. )

Note that the central mode value of X is —,', since the cen-
tral mode value of A,

1
is gala We put B.(p) as the radial

profile of the perturbation source, which is modelized by
a material diaphragm of diameter 2p:B (p )=0 ('or
0&p&p and B(p)=—1 for p)p . Then, the perturba-
tion of the electric field can be expected to be of the fol-
lowing form:

-06-- ex(p, q) =exp( iXri)f(p), — (19)

-0.8--

ABSORPTION

- PULSE

PULSE

FIG. 8. Compared atomic responses to input 2m and n.

pulses. Pulses are Gaussian, simultaneous, and of equal dura-
tions. Inhomogeneous broadening is not taken into account.

in which f (p) is the unknown transverse profile. Let us
note that we have chosen to neglect the time dependence
of the perturbation effect. We saw in the previous para-
graph that this effect was concentrated at the tail of the
pulse, and we assume that it does not depend on the time
when it occurs. Replacing Eqs. (17) and (19) in Eq. (8),
we obtain
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&g(p)+ f—(p) =—&(p) . (20)
rp

log(e/m )

log~2
One can recognize here the well known Helmholtz equa-
tion, which describes electromagnetic source radiations.
We give in Appendix B a full theoretical treatment of
Eqs. (17), (19), and (20), essentially based on the Green-
function theory. Analytical calculations lead to the fol-
lowing solution for ex (and complex conjugate):

exp[i (Kp —Xi) ) ]ex(p, rl)=
&&4 i&4, Zx(P)F X

in which
1/2

XK=
F

(21)

(22)

is the perturbation dimensionless transverse wave num-
ber. Zx (p) is an integral function that is given in Appen-
dix B and exhibits no oscillating behavior.

The meaning of the relation (21) is obvious: electric-
field transverse perturbations can propagate radially, in
either an inward or an outward direction. This propaga-
tion regime is dispersive, since transverse and longitudi-
nal wave numbers E and X depend on each other, accord-
ing to Eq. (22).

C. Theoretical predictions

The dimensional form of the central mode transverse
wavelength A, r=2n. r~/K is obtained directly from Eq.
(22), in which X is replaced by its central mode value —,',
giving

' 1/2
4m A.T-

CK

(23)

Energy associated with a wave packet centered on the
above main wavelength can be expected to propagate ra-
dially at the group velocity V =ar (d X/dK). We obtain
(dX/dK) =2&XF directly from Eq. (22), leading to the
final form of Vs (with X=—,'),

' 1/2

(24)

Considering a transverse wave packet propagating at the
velocity Vg, whose source is located at r, and assuming
that I.f is the distance needed to reach the axis r =0, we
obtain directly

r„I ...=2&~
&aA,

(25)

Since r is proportional to r, we can see that Eq. (25) is

in perfect agreement with the numerical prediction of
Sec. II B [(see Eq. (11)].

For a Gaussian beam of on-axis optical area
6 (8&@&2), the exact relation between r„and r~ is

given by

We can see that r and, accordingly, I.f„,increase with
input-pulse on-axis area, in agreement with numerical re-
sults (since dimensionless Rabi frequency Qr and optical
area are equivalent).

The complexity of Zx(p) makes it impossible to carry
out a general analytic calculation of H,

„

from Eq. (21).
However, since Hm, „/Ho= (ex+co ) /eo can be expected
to be proportional to ex/eo to first order (we put eo as

the input reference dimensionless electric field), Eq. (21)
leads to the following prediction:

0 r '/2+3/4
max rp A

g3/4
(27)

which corresponds well to the approximate numerical
predictions that were made [see Sec. II, Eq. (12)]. More-
over, the parametric dependence of the focused-beam
transverse size rf„canbe estimated from the prediction
(27) by assuming that the full beam transmission rate is
proportional to (aLf„) '. This can be written

r+max r foe

Orp r a'"
P

(28)

This gives clearly

"foc ~5/8

5/4 5/8
P

(29)

In the following section we demonstrate that this result
corresponds closely to the experimental data.

IV. EXPERIMENTAL RESULTS

A. Atomic absorber and optical pulses

We used an atomic vapor of ' Tm (nuclear spin I =
—,').

In a 1-m-long oven, we obtained atomic concentrations
from 0.45X10' to 8X10' at/cm, for temperatures
ranging between 730'C and 850'C. ' Tm was excited
from the J=—', ground level to the J=—', state at 16 746. 8

cm '
( A, =5971.26 A) with a mean electric dipole mo-

ment of 0.18 D. For the above-mentioned temperatures,
Doppler line breadth is about 850 MHz and the spectral
shift between the two main hyperfine components of the
transition (F=3 F=3 and F=4 F=4) is about
1.45 GHz. The atomic level diagram and a numerical
simulation of the spectral profile are shown in Fig. 10.
We can note that the two hyperfine components are well

separated. Because of this, we could center the laser fre-

quency on either the F=3 or F =4 transition and there-

by limit Zeeman degeneracy effects. Our optical
pulses —of which the duration at half the maximum in-

tensity was nearly 4 ns —originated from a single-mode
cw dye Ar+ pumped laser, amplified by a frequency dou-
bled single mode YAG: Nd source (YAG denotes yt-
trium aluminum garnet). Typical values of the input
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F=3
F=4

EXCITED LEVEL
J=7/2

~roc 1
5/2

P p

(31)

F=4F==3 ------------------------- GROUND LEVEL
J = 7/2

0.6—

As far as H~„/Ho is concerned, the prediction (30) will

systematically lead to an overestimation of experimental
measurements. This overestimation can be readily ex-
plained by taking into account what we call the "residual
absorption" induced by Zeeman degeneracy, of which a
detailed discussion is given in Sec. VA (although it has
been omitted in the theoretical part of this work for the
sake of simplicity). The chief point is that, independently
of any transverse effect, Zeeman degeneracy may hinder
ideal SIT (propagation with practically no absorption).
In such a case, transverse perturbations are not as
"efficient" as in nondegenerate media, since they have un-
dergone absorption. It follows that predictions about
H „/Ho must be tempered proportionally to the optical
thickness of the medium (that is to say, by aL&„).Thus,
we obtain new predictions extended to degenerate situa-
tions,

+max
(32)

&3 -2

ACQ(GHz)

and

Pgot.

3/2
P p

(33)

FIG. 10. Atomic level diagram and numerical simulation of
0

the normalized spectral pro61e of the A, =5971.26-A fundamen-
tal transition of ' Tm.

peak power ranged between 1 k% and 1 M%'. Spatial
filtering produced a fairly good Gaussian profile. The
beam waist was located at the oven entrance and r~ was
given six different values from nearly 0.25 to 1.7 mm by
modifying the characteristics of a telescope. A lens im-
aged the output beam in front of either an IMACON 500
streak camera or a CCD video camera. As is shown in
Sec. V B, the strongest LSSF effects do not systematically
occur in strictly resonant interactions. The control of the
detuning between laser and atomic resonance frequencies
was carried out by making low-intensity absorption mea-
surements in a second ' Tm oven.

X

(b)

B. Comparison with theoretical predictions

Our aim was to confirm qualitatively the predicted
dependencies of I.r„,rr, and H,„/Ho on r and N (but
not on A., since it could not be changed experimentally).
I.

& having been defined as fixed and equal to the oven
length (1 m), r~ and N had to vary while r~/~N (that is
to say, I-r„)had to be constant. It is interesting to ex-
press theoretical predictions (21) and (29) by taking this
condition into account. This produces, respectively,

(30)

and

(c)

FIG. 11. Dependence of LSSF phenomena on the beam's
transverse size. Video camera outputs. (a) Input pulse whose r~
is 0.03 cm. (1) Output focused pulse corresponding to (a),
X=2.0X10' at/cm . (c) Input pulse whose r~ is 0.07 cm. (d)
Output focused pulse corresponding to (c), %=7.0X 10'
at/cm . On-axis optical areas of the input pulses were nearly
5m; and the maximum focusing (corresponding to the above
atomic concentrations) was obtained when the laser frequency
was tuned to the F=3 hyper6ne component of the atomic line.
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LSSF had been observed for r ranging between 0.3 and
0.9 mm. For the sake of example, input and focused out-
put beams are compared in Fig. 11, for r =0.3 and 0.7
mm. Corresponding atomic concentrations are, respec-
tively, X=2X10' and 7X10' at/cm, corresponding
closely to theoretical predictions about I.„,. It is
noteworthy that r&„/r~ can be predicted from (33) to be
about 3.5 times smaller in the case (c) (d) than in the
case (a) ~(b), which obviously tallies closely with experi-
mental data.

Measured values of H,„/Ho were nearly 1.4 and 3.8,
respectively, for (a)= (b) and (c)~(d), (that is, 2.7 times
larger in the second case than in the first, even though
(32) would have predicted 2.3 times). In Fig. 11, the in-

put on-axis value of the optical area was, in each case,
about 5m. Streak camera outputs corresponding respec-
tively to Figs. 11(c) and 11(d) are presented in Figs. 12(a)
and 12(b). One can note that temporal reshaping leading
to the formation of successive 2m pulses does not occur,
confirming our predictions (see Sec. IIC). Such reshap-
ing was observed for r larger than 0.9 mm, but in these
cases LSSF was progressively replaced by small-scale
self-focusing. This means that energy transverse profiles
degenerate into a hot-spots pattern and that streak carn-
era images exhibit filamentary structures.

As far as parametric dependences are concerned,
theoretical predictions eventually proved to be correct in

the case of LSSF, but these dependences seemed to be
different in the case of small-scale self-focusing than they
are in LSSF. As for numerical predictions in cylindrical
symmetry, we saw that they failed to hold true for small
values of I': LSSF was predicted and small-scale self-
focusing was observed.

V. COMPLEMENTARY DISCUSSIONS

A. Zeeman degeneracy e8ects

Slusher and Gibbs [18] could experimentally investi-
gate SIT in ideal nondegenerate media by placing a rubi-
dium cell in a magnetic field. Numerous authors were
also interested in the effects of Zeeman degeneracy on
SIT phenomena. Rhodes and Szoke [14], followed later
by Zembrod and Gruhl [15] and Gibbs, McCall, and
Salamo [16] studied these effects in SF&, and showed that
SIT may occur even in a highly degenerate medium.
Salamo, Gibbs, and Churchill [30] and Krieger, Gaida,
and Toschek [17] investigated SIT in less degenerate
atomic media (respectively, in Na and Ne). They showed
that the main characteristic features of SIT (such as tem-
poral reshaping and dependence of energy transition rate
on input area), although they existed, may be significantly
altered by degeneracy. Global absorption of the beam is
greater in degenerate than in nondegenerate media, and
although this does not necessarily involve qualitative
changes in self-focusing theoretical predictions, quantita-
tive changes can be expected, as was shown in Sec. IV B.
A simple interpretation of these effects follows logically
from a few short numerical results that we shall demon-
strate. Let us recall the expression of the atomic polar-
ization absorptive component U (t) [Eq. (15a)],

U (t) = —g p;sin8, (t), (34)

TIME 2ns

FIG. 12. Characteristic evolution of the intensity spatiotem-
poral pro61e in a case of LSSF. Streak camera outputs. (a) and

(b) were obtained, respectively, for the input and output on-

resonance pulses corresponding to illustrations (c) and (d) of
Fig. 12.

in which 8, (t) is the part. ial optical area associated with
the ith dipole moment of statistical weight p;. One can
see that the simple periodic oscillating polarization
behavior in an ideal (that is, nondegenerate) medium
could be replaced by a superposition of oscillating
behaviors. Global population transfers may become im-
possible [31]. One can easily understand that the usual
picture of a 2m pulse (in which 2m is the optical area asso-
ciated with a unique characteristic dipole moment, which
is obviously meaningless in a degenerate medium), propa-
gating without attenuation by driving the atomic system
first from the ground state to the excited state and then
back to the ground state, might be quite inaccurate. In a
degenerate medium, the same input pulse generally un-

dergoes what we call residual absorption. Indeed, a
significant part of the atomic population is left in the ex-
cited state after its crossing, whatever the propagation
distance is, that is, in spite of temporal reshaping. The
expected differences between the temporal reshaping
effects occurring respectively in an ideal and in a degen-
erate medium are illustrated qualitatively by the results
given in Fig. 13.

The degenerate transition is I =3 F =3 in linear po-
larization, and the "ideal" transition dipole moment is
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FIG. 13. Temporal evolution of the excited atomic popula-
tion at z =0 and z =20 cm: comparison between ideal nonde-

generate and degenerate F=3 F=3 (linear polarization)
cases. (a) Ideal case, z =0. (b) Degenerate case, z =0. (c) Ideal
case, z =20 cm. (d) Degenerate case, z =20 cm. In the degen-
erate case, one can see that a significant part of the atomic pop-
ulation remains in the excited state after the pulse crossing at
z =20 cm, that is, in spite of temporal reshaping (L„,(&20 cm).
The pulse undergoes residual absorption.

FIG. 14. Compared longitudinal evolutions of the on-axis en-

ergy densities in both the ideal and degenerate cases. Influence
of the residual absorption on LSSF. (a) Ideal case. (b) Degen-
erate I' =3 case. (Note different vertical scales. )

Only the absolute value of Lr, H /Ho, and rf„lr~de-

pends on the particular degeneracy.

B. Dispersive efFects

taken to be equal to the quadratic mean value of the de-
generate transition dipole moments. The time evolution
of the excited population is compared at the input plane
and at z =20 cm, in both ideal and degenerate cases, for
an input 2.6n. pulse. At z =0, nearly 13% of the atomic
ideal population (a) and 7% of the degenerate one (c) are
left in the excited state. At z =20 cm, excited popula-
tions are 1% (b) and 7% (d). This means that residual ab-
sorption remains in the degenerate medium, in spite of
temporal reshaping. Considerable qualitative changes are
induced in the self-focusing main features, as is shown in
Fig. 14, in which the corresponding on-axis energy-
density longitudinal evolutions are compared. H,

„

is
much smaller in the degenerate case (b) than it is in the
ideal one (a). When one remembers that the concept of
optical area is involved in the theoretical prediction of
Lfo [see its dependence on r in Eq. (25)], the small
change between (b) and (a) can readily be understood. As
for the parametric dependence that we obtained theoreti-
cally, numerical simulations showed that they remain val-
id even when Zeeman degeneracy is taken into account.

The in-quadrature component U of the macroscopic
polarization describes "dispersive" effects that may be re-

-0.6 —'

FIG. 15. A plot of the amplitudes of the "in-phase" v (a) and
"in-quadrature" u (b) components of the atomic polarization.
The case of an incident rectangular pulse.
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sponsible for self-focusing or self-defocusing. We have
not dealt with these effects up to now, since they do not
occur at the exact resonance ( U =0, as was shown in Sec.
II). Self-focusing on the "red" side of the atomic reso-
nance was first investigated by Grichkowsky and
Armstrong [32] in the adiabatic-approximation regime
[33], that is, when the detuning from resonance is much
larger than the Rabi frequency (no absorption is expected
in these conditions). The adiabatic formalism is
equivalent to first order to that of nonlinear susceptibili-
ties. An intensity-dependent index of refraction is
enough to explain the self-lensing mechanism that led to

0
U (Et', t) = — sinQ„t, (35)

focusing phenomena. We have been interested in study-
ing the effects that occur at smaller detunings and, in par-
ticular, the detunings that are of the order of magnitude
of the Rabi frequency. Solutions of the Bloch equations
[see Sec. II, Eq. (5)] can be derived analytically for an in-

put rectangular pulse [24] (whatever the detuning is), pro-
ducing

Aa) +Q cosQ„t
w(hto, t)=— 0„

in which Q„is the generalized Rabi frequency defined by
Q„=+0+b,to The p.rofiles of the amplitudes of u and
v are given in Fig. 15. One recognizes the characteristic
spectral dependence of the real and imaginary parts of
atomic linear susceptibility in the stationary regime [34].
It is this that can explain lens efFects. The solutions (35)
show that although lens effects are superimposed on tran-
sient behaviors, they are expected to occur even in the
"small-detuning" regime. This was checked experimen-
tally on both sides of the atomic resonance. Self-
defocusing occurs on the red side, whereas self-focusing,
as is shown in Fig. 16, occurs on the blue side. Illustra-
tion (a) represents the input or nonresonant beam. Illus-
tration (b) demonstrates a strong focusing and was ob-
tained for a "blue" detuning of the order of Qo. On exact
resonance, the pulse was strongly absorbed, as is shown

by illustration (c). This experiment confirmed the possi-
bility of lens effects leading to self-focusing or defocusing
in the case of detunings smaller than those of the adiabat-
ic regime (that is, in absorbant media).

VI. SUMMARY

(c)

FIG. 16. Lenslike effect in coherent resonant self-focusing.
Video camera outputs. (a) Input pulse. (b) Focusing when de-

tuning is nearly equal to the Rabi frequency, on the blue side of
the atomic line. (c) When the laser frequency was tuned on-
resonance, focusing disappeared and the pulse underwent only
absorption.

We now have a quantitative theoretical model for
coherent on-resonance LSSF. Theoretical predictions
concermng the parametric dependences of the focusing
distance L&„,and the ratios of the on-axis energy densi-
ties and pulse transverse sizes between the focus and the
input plane, respectively, Hm~/Hp and rf(), /rp have
been shown to correspond closely to numerical simula-
tions and experimental results. The parametric depen-
dence of L«, on the input pulse peak power is quite
different from that which can be obtained in the usual
nonlinear case [2]. The relative predominance of either
the LSSF or SIT phenomenon is characterized by the pa-
rameter ~F We have s.een that when the LSSF dom-
inates, some basic characteristics of plane-wave SIT such
as pulse breakup and large delays can be significantly al-
tered. We limited our study to cases in which the pulse
spectral width was either smaller than or of the same
scale as the Doppler-broadened line width (D & I). In
such cases the effective linear absorption of the pulses can
be much larger in degenerate media than it is in nonde-
generate ideal media. As a result, the relative importance
of LSSF phenomena (due to the strong absorption super-
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imposed) can be reduced considerably. We have seen
that dispersive effects, which do not play a major role in
coherent on-resonance phenomena, appear to be prepon-
derant for detunings of the order of magnitude of the ini-
tial pulse peak Rabi frequency. Numerical simulations
assuming cylindrical symmetry, which predict I,SSF even
for small values of F, obviously do not correspond to ex-
perimental results because small-scale self-focusing is ob-
served in such cases.

APPENDIX A

Since we saw that Lf is proportional to rz, we can as-
sume that

allgNl (Al)

It follows from Eq. (8) of Sec. II that if we consider a
variation of a, A, , and r in which F=A. /(4rrar ) is con-
stant, the dimensionless focusing distance

Vf~=~f~ (A2)

is also constant. Let us assume that a and A, are, respec-
tively, multiplied by x and y, and that F is constant. It
implies that r is multiplied by a factor ~y /V x. It fol-
lows from Eq. (A2) that I.t is divided by x, and from
Eq. (Al) that it is multiplied by ~y/~x(x "y ), which
finally requires that

n=m= ——'.
2 (A3)

APPENDIX B

The solution of Eq. (20) can be derived from the
Green-functions theory and the elementary Helmholtz
equation defined by

hp(p}+Ebs(p) =5, (B1)

in which K satisfies Eq. (22) and where 5 is the Dirac
function. 5 can be viewed as a perturbation source locat-
ed at r =0. The general solution s(p) of Eq. (Bl) is a
linear complex combination of the first-order Hankel
function Ho ' and its complex conjugate [35]. Ho

' can be
written as follows:

H'(K )= M(K )'= ~EP
p

in which M(Ep) is defined by
' 1/2

2M(Ep)=

(B2)

' —1/2
exp( i—sr/4)

y
~ it1+

I (1/2) o Kp

x t '"exp( —t)dt,

(B3)

in order to recall that Ho(' is known [36] to behave
asymptotically like exp{iEP)l&EP. I is the well known
gamma function.

Because of the linearity of Eq. (20) with respect to the
perturbation source (1/F)B(p), one can consider that
B (p) is a superposition of local Dirac perturbations. Put-
ting G {p,x) as the solution of Eq. (Bl) corresponding to a
Dirac perturbation located at x (G is usually called the
Green function of the problem), we obtain the general
solution of Eq. (20),

f (p) =—f G(p, x)B(x)dx, (B4)

exp(iEp)fi {p) ~ ZK(p)

in which

(B5)

Z ( )=.I exp( iKx)M—[K(x )]B( )d . (B6)
x p

Replacing Eq. (B5) in Eq. (19), one obtains directly the
solution (21) for the electric-field perturbation.

in which D„is the perturbation source domain [B(x) is
equal to zero outside of D„].One can derive a simpler
analytic form for f (p). Indeed, we know that
G(p, x)=G(p —x,O) since the Laplacian operator 5 is
translation invariant. Now G (p —x,O) is exactly
s(p —x), since it corresponds to the response to a Dirac
perturbation located at r =0. Therefore, G(p, x) is a
linear combination of Ho('[E(p —x)] and its complex
conjugate [see Eqs. (B2) and (B3)]. Then it follows from
Eq. (B4} that f (p) is a linear combination of f, (p) (and
its complex conjugate) defined by
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