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Spatiotemporal coherence properties of entangled light beams generated
by parametric down-conversion
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We investigate the amplitude and intensity spatiotemporal coherence and the photon coincidence
rates of far-field down-converted light resulting from the interaction of a pump wave of finite spectral
width with a nonlinear crystal of finite spatial width. We examine the interplay between energy and

phase mismatches and their effects on the intrabeam and interbeam spatial and temporal coherence of
the down-converted beams. We show that the down-converted light is spatially incoherent in the second
order, and that the signal-idler fourth-order coherence extends over finite entanglement angles. We also
study the effect of the apertures through which the down-converted light is collected, when they are cen-
tered at phase-matched or misaligned directions.

PACS number(s): 42.50.Ar, 42.50.Dv, 42.65.Ky

I. EV xRODUCnON II. QUANTUM STATE
OF DOWN-CONVERTED LIGHT

The process of spontaneous parametric down-
conversion results in the splitting of pump photons into
highly correlated photon pairs constituting an entangled
"twin" state [1—6]. Conservation of energy imparts
correlation to each spectral component of the signal wave
and a corresponding component of the idler wave. Simi-
larly, conservation of momentum (or phase matching) im-
parts correlation between pairs of directions of propaga-
tion (or spatial Fourier components) of the signal and
idler beams. As a result, the two beams have unique tem-
poral and spatial correlation properties. These correla-
tions have been demonstrated in previous studies [7—9],
associated nonclassical fourth-order interference effects
have been observed [10—17], and experiments in which
Bell's inequality is violated have been investigated
[17,18]. Applications of the twin states to the generation
of photon-number squeezed (sub-Poisson) light [19,20]
and to quantum cryptography [21,22] are being vigorous-
ly pursued.

In this paper we determine the amplitude and intensity
spatiotemporal correlation functions and the photon-
coincidence rates of far-field down-converted light result-
ing from the interaction of a pump wave of finite spectral
width with a nonlinear crystal of finite width. The finite
spectral width of the pump offers some flexibility since
there is more than one possibility for satisfying conserva-
tion of energy, and the finite width of the crystal permits
some mismatch in the longitudinal components of the
photon momentum. We examine the interplay between
energy and phase mismatch and their effects on the spa-
tial and temporal coherence of the down-converted light
[23]. We also study the efi'ect of transmitting and collect-
ing the down-converted light through apertures centered
at phase-matched or slightly misaligned directions.
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FIG. 1. Geometry of parametric down-conversion arrange-
ment.

Consider parametric down-conversion in a slab of ma-
terial that exhibits a second-order nonlinear effect. The
slab has infinite extent in the x andy directions and width
l in the z direction, as depicted in Fig. 1. The pump field,
treated classically, is taken to be a plane wave traveling in
the z direction and described by

a(z, t)= f dto A(to )e ~ s +c.c., (1)
0

where the amplitude A (co ) is assumed to be a real func-
tion centered around a frequency co .

The quadratic interaction Hamiltonian for type-I (ooe)
parametric down-conversion, with the classical pump
field assumed undepleted, is given by [6]
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Ht(t)= f dco~ f fdk, dk;y, /co„co;;cop)A(co )e
0

X dxdy dze ~ ' ' d& 8k+He. .

where & & and it& are the creation operators of the modes k, and k,- of the signal and idler, respectively,
S t

icoz [n, (co )] (fi co, co; )"
2~ c n. (co, )n, (co, )

is the erat'ective susceptibility, c is the speed of light in free space, e is the extraordinary polarization direction of the
pump, and o(k, ) and o(k, ) are the ordinary polarization directions of the signal and idler fields. These signal and idler
polarization directions are not used to label 8 I, and & & because they are set by the propagation vectors k, and k, in

S t

the type-I phase matching assumed here. The wave vectors k, k„and k,. for the pump, signal, and idler have magni-
tudes (co~/c)n, (co~ ), (co, lc)n, (co, ), and (co;/c )n, (co; ), respectively, where n, (co~ ) is the extraordinary refractive index
at the fixed pump propagation direction z, and n, ( co) is the ordinary refractive index. Integration over x, y, and z
reduces Eq. (2) to

Ht(t)= f dco„f fdk, dk;y, s(co„co;;co )5(k„,+k„;)5(k,+k, )

Xl sine (k„+k,, —k ) A(co~)e ' ' ' c}„ct„+H.c. ,
2m S

where sine(x) —=sin(nx )/nx. This Hamiltonian is the same as that used by Hong and Mandel [6], except here we have
taken the crystal to be infinite in the x and y directions and the pump to be of finite spectral width.

Assuming that the down-converted field is initially in the vacuum state to first-order approximation in the evolution
operator, the state then becomes a superposition of the vacuum state and the state

~twin&= f dco~ f f dk, dk;y, s(co„co,;co~)5(k„,+k, ;)5(k~, +k~;)

XI sine (k, , +k, ;
—k„)5(co, +co,. —co~)~(co~)lk, &, Ik; &, .

I

The first-order approximation is satisfactory when the pump field strength and the crystal width are suSciently small so
that parametric amplification is negligible. Although the presence of the vacuum state in this superposition can have
physically observable effects [24], it does not play any role in the effects considered in this paper and shall be ignored.

The frequency 5 function in Eq. (5), which ensures conservation of energy, is used to remove the integration over
pump frequencies, whereupon the state simplifies to

~twin& =f f dk, dk;ddt(co„co;;co,+co;)5(k„,+k„;)5(k,+k, )

Xl sine Ik, , +k, ;
—k~(co, +co;)I A(co, +co;)~k, &, ~k;&, .

I

2m

The 5 function in Eq. (6) represents conservation of trans-
verse momentum, and implies that, for each individual
down-conversion event, the directions of the pump, sig-
nal, and idler photons are coplanar [2]. The sine function
represents conservation of momentum in the longitudinal
z direction, which is not precise because of the finite
width I of the crystal.

To simplify Eq. (6), we need to use the remaining two 5
functions to reduce the number of integrations. This is
done by expanding the arguments of the functions inside
the integral in Eq. (6) to first order in the signal and idler
frequencies and directions.

Assume that the signal and idler beams are observed
through two rectangular apertures of the same small size
4y in the y direction and of angular openings 68, and
AO; in the x-z plane, respectively. Thus, the 5 function
representing conservation of momentum in the y direc-

tion will be satisfied for all pairs of signal and idler points
in the signal and idler apertures. I.et 8, be the angle of
the central direction of the signal aperture, as shown in
Fig. 1. This signal direction fixes a conjugate idler direc-
tion with angle 8, For this pair of directions, there is a
pair of signal and idler wave vectors
k, = ( n, co, lc )(x sin8, +z cos8, ) and k; = (n; co, /c )(x sin8;
+z cos8; ) that are frequency and phase matched to the
central pump wave vector k =(n co /c)z. Here, n, and
n; are the ordinary refractive indices at the frequencies
m, and co;, respectively, and n is the extraordinary re-
fractive index at the pump frequency co =co, +co;. In
general, for a given signal direction there is more than
one configuration that achieves phase and energy match-
ing [2]. However, it is possible to specify only one
configuration by the use of filters and apertures.
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Now that we have selected central frequencies and cen-
tral wave vectors pointing toward the centers of the
selected apertures, the next step is to examine other fre-
quencies and directions. We expand k„,+k„;to first or-
der in co, —co„co;—co;, 8, —8„and8; —8; and use the 5
functions in Eq. (6) to solve for one of the four variables
in terms of the remaining three. Solving for the idler fre-
quency, we obtain

we get

6N—:co +co; cop

=(I+a, )(co, co—, )+b)(8, —8, )+c,(8;—8;} .

Similarly, expanding k„+k, ; —kp we obtain

hk, —=k„+k,, —k

(8)

a);(co„8„8;}=co;+al(a), a), }—+b, (8, —8, )

+c,(8;—8; }, where

=a2(a), a)—, )+b2(8, —8, )+c2(8, —8, ), (9a)

where

N, sin8,aI=—
N;sin8'

n, co,cos8,bl=—
N;sin8;

(7b)

(7c)
and

N, cos8, —N N;cos8; —NS S P + l I P
2 c c

n, co,sin8, N;cos8; —
Np

c c

n;co;sin8, N; cos8, N~—

(9b)

(9c}

(9d)

c 1

0
1lg CO)

cot8, , (7d)

and Np, N„and N; are the pump, signal, and idler group
refraction indexes evaluated at the central frequencies.
Using Eq. (7a) and expanding co, +co, to first order in the
frequencies and angles of the signal and the idler fields,

I

Finally, substituting for hco and hk, from Eqs. (8) and
(9a), and assuming that the effective susceptibility and the
Jacobian, which are needed in the change of difFerentials
from d k to d 8 d y de, are slowly varying functions com-
pared to the pump amplitude and the phase-matching
sine functions, Eq. (6) simplifies to

~twin)=N f dco, fd8, f d8;A(co +(I+a, )(co, co, )+b—, (8, —8, }+c,(8;—8;))
0

Xsinc Ia2(a), co, )+b2(8—, 8, )+c2(8; —8;—) I ~8„co,), ~8;,a);(co„8„8;) );, (10)
l

2'
where N is a normalization constant. In Eq. (10}, we have replaced the ket

~ k, ), ~ k; ), with the ket
~8„co,), ~8;,co;(co„8„8;) );, where co;(co„8„8,) is given by Eq. (7a) to indicate that the independent degrees of freedom
in this expansion are the angles 8, and 8; and the signal frequency co, . It is clear from Eq. (10) that the twin state can-
not be factored into a product of signal and idler states and that the three quantities, 8„8;,and co„arelinked together
through the pump spectral distribution function A (co} and the sine function representing approximate longitudinal
phase matching.

In Eq. (10), the signal and idler directions and the signal frequency are taken as independent variables. This emphasis
of propagation directions over frequencies will prove useful when calculating the coincidence rates of photons passing
through a pair of apertures. However, in other situations it will be more useful to emphasize frequencies over propaga-
tion directions. Solving for the idler direction instead of the idler frequency in Eqs. (7a} and (9a), the twin state has the
equivalent form

~twin) =N f de, f de; fd8, sine Ia(co, co, )+b(co; —aP—)+c(8,—8, )I

XA(co +(co, co, )+(c—o; aP;))iso„—8, ), ia);, 8;(co„co;,8, )), ,

where a, b, and c can be obtained from Eqs. (7a) and (9a).
The signal and idler wave-vector pairs for which the

weighting function under the integral in Eqs. (10) or (11)
is maximum are determined by setting hco =0 and
hk, =0. In the limit of infinite crystal width l and a
monochromatic pump [whereupon the function A(co)
and the sine function in Eqs. (10) or (11)are replaced by 5

functions), these wave vectors become the only interact-
ing pairs. In this case, for a given signal direction 8„it
will generally be possible to solve uniquely for 8;, co„and
co; using hco=0, hk, =0, and Eq. (7a), which represents
the linear approximation of the intersection of the match-
ing surface and the x-z plane around the angle 8, , to ob-
tain
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~twin}=N Jd8, ~8„co,(8, ) },~8;(8, ), co;(8, )); . (12)

It follows that at a given signal or idler direction the field
is monochromatic and that a given single direction is
matched with only one idler direction. In contrast, when
the pump has a finite spectral width and the crystal is
finite in width, the field in a given signal or idler direction
is spectrally broadened and a given signal direction is
matched with a cone of idler directions of order 68'-, as
illustrated in Fig. 2.

It is useful to compare our expression for the twin state
with the phenomenological expression used by Campos,
Saleh, and Teich [25],

'tw&n) —I I g(co, co; )~co ) ~co; };dco dco;, (13)

where (g(co„co;)~ is a joint Gaussian function. This ex-
pression can be obtained from Eq. (11) by making few
reasonable assumptions and approximations. First, we
assume exact phase matching by replacing the sine func-
tion in Eq. (11)with a 5 function, and thereby obtain

~twin}=N I f dco, dco; A(co +(co, —co, )+(co;—co;))~co„8,(co„co;)),~co;, 8;(co„co,. )}, ,

where, in this case, both 0, and 8; are determined unique-

ly for each frequency pair. This expression takes the
same form as the state described by Eq. (13) if

g(co„co;) ~ exp
(co& ciPz )+ (co; co; )

266)p

g(co„co;) =NA (cop+ (co, —co, )+ (co; —co; )), (15)

A(co )=(2nhco )
'~ exp

Eq. (15) becomes

p 2
COp COp

25cop
(16)

and the angles in the kets in Eq. (14) are ignored, which is
appropriate as long as these directions lie within the col-
lection apertures and the observables of interest do not
resolve directions within these collection apertures.

For a pump field with a normalized Gaussian ampli-
tude distribution,

The amplitude g(co„co;) given by this last equation is con-
stant for the family of straight lines
(co, —co, )+(co;+co; ) =const. At frequencies for which co,
or co; deviate significantly from their central values, the
linear expansions of b,co and hk, fail but apertures (or
possible filters) will in general limit the deviation to the
appropriate range.

To incorporate these elements we modify Eq. (17) to

(CO& CO& )+ (CO; CO; )

g(co„co,) = Aoexp
25cop

X t, (co, )t, (co; ),

Signal spectral density

S, (co,)

Signal-idler cross-spectral density

S~ ~ (a)„co,.) = S~ ~ (N, )BfI,. —o),.(N„8„tII)]

Pump spectral density
X

FIG. 2. Illustration of the signal spectral density and signal-idler cross-spectral density. Contributions to the signal spectral densi-

ty Sq (co, ) from the matched idler angle 0' and from another idler angle 0; within the idler entanglement angle 50; are shown. The
S

signal-idler cross-spectral density S6, 6) (co„~;)between the pair of signal and idler directions 0, and 0; is given by the product of
S t

S~ ~ (co, ) and 5(co; —[co;+a,(co, co, )+b, (8, —80)+—c, (8;—8;)]).
S
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(19a)

where t, (co, } and t;(co;) are the normalized transmit-
tances of the signal and idler channels, respectively, and
Ap is a normalization constant. Assuming

(cog co~ )
t, (co, )=(2m.hco, ) '~ exp

26co )

t;(co;)=(2mhco, )
'~ exp

the amplitude g(co„co;}becomes

(co; co( )
(19b)

26co )

g(co„co;)=(2~cr ) '~ (1—g )

(cog cog ) + (co( co~() 2'g(cog cog )(co( ctP()
Xexp

4(1—vP)cr
(20a)

where

Ecof
7l=

hco (+hco~

and

b,cori+ b,co~
CJ = lh co )

P
2hco2+ hcoz

(20b)

(20c)

P',+(H, ,r, t)= f dco, e ' Se
„

(22b)

which are defined such that the operator P' f + has the
dimensions of photon density [27] and where the frequen-
cy dependency of the field operators is absorbed in the
susceptibility [6]. The creation and annihilation opera-
tors obey the commutation relations

The actual frequency width hco, is determined by the
apertures and filters that are employed; it is assumed here
to be the same for both the signal and idler channels.
Thus the contours of constant g(co„co;) are now ellipses
instead of straight lines and the jointly Gaussian state
used by Campos, Saleh, and Teich is reproduced. A fully
correlated state with g= —1 is obtained in the limit as
h,co, /b, co ~~, in which case o -+b,co&/~2.

IH. COHERENCE FUNCmrONS
AND COINCIDENCE RATES

[&e „,ct t, , ]=5(8,—8,')5(co, —co,'), (23a)

[&e,& t~, ]=5(8;—8';)5(co; —co';), (23b)

and all other commutators are zero.
The results obtained so far have been for a single pump

wave packet. We now consider a superposition of a se-
quence of such wave packets arriving at statistically in-
dependent random times {t I constituting a stationary
(homogeneous) Poisson point process [28]. Thus

In this section, expressions for the second-order (ampli-
tude) and fourth-order (intensity) coherence functions for
the signal and idler fields of the dawn-converted light are
determined. In the far-field approximation, only modes
with propagation vectors in the observation direction
contribute to the field at a given observation point, so
that the positive-frequency part of the electric-field
operator is given by [26]

' 1/2

P+(r t)= ' —" f "d '"e'"(""-'}a
g2p V 0

(21)

,+(H„rt)='f dco, e '
&e

„

(22a)

and

where k =(co/c )r, r is the position vector from the source
to the observation point, and V is the normalization
volume. It is more convenient to work with the signal-
and idler-field operators

E (z, t)=pa(z, t t )+c—.c., (24a)

where

ct(z, t)= f dco A(co)e'(
0

(24b)

The resulting second- and fourth-order coherence func-
tions obtained by averaging over the random times [t„]
are also applicable to a cw laser pump of a finite spectral
width modeled as a sequence of such wave packets as
long as the parametric down-conversion is spontaneous
[1,29—31] so that there is no constant phase relation be-
tween different photon pair emissions. To simplify the
derivation of the second- and fourth-order coherence
functions, we further assume that the rate of twin-photon
emissions p is sufficiently low so that the resulting down-
converted wave packets rarely overlap.

The down-converted light is then described by a ran-
dom sequence of twin states [ ~twin;t„)], where [t„]is a
randomly deleted version of the pump sequence [t ],
which is also a Poisson point process [28]. The result
analogous to Eq. (10}is then
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~twin t„)=N f de, fd0, f d0 expi [[co +(I+a, )(co, c—o, )+b&(8, —0, )+c,(8, —0, )].t„I

X A(to +(1+a, )(co, co—, )+b, (0, —0, )+c, (8, —0, )}

Xsinc {az(co, to—, )+bz(8, —8, )+cz(0, —0,. ) j

X
i 0„to,), i 8;,co;(co„0„0;) ); .

This description of the down-converted light as a random sequence of twin states is similar to the model employed by
Teich, Saleh, and Perina [28]. Here we incorporate the random emission times in the states instead of the field opera-
tors. Also, as a result of the assumption that the wave packets do not overlap, the derivation is much simpler because
of the lack of interpacket interference.

A. Second-order coherence functions

l. Signal idle-r mutual coherence function

The second-order (or amplitude) coherence function of the down-converted field at a point of the signal beam and at
another of the idler beam is given by

G,';"(8„8;;r) =g ( twin; t„~f, (8„t )f,+ (8;,t +~)
~
twin; t„)

n

=p f dt„(twin;t„~0, (0„'t)P,+(0,', t+~)~twin;t„), (26)

where the bar indicates averaging over the random times I t„j.Contributions from pairs of different wave packets have
been neglected since these packets rarely overlap. This expected value vanishes because of the single-photon nature of
the constituent beams in the twin state, so that

G,',"(0„0,;~)=0 . (27)

This means that it is not possible to see second-order interference effects by superimposing the signal and idler beams.
This is not the case with the fourth-order coherence function [17],as will be shortly seen.

2. Signal coherence function

The second-order coherence function at pairs of points within the signal Seld is

G,',"(8„8,';~) =lJ,fdt„(twi nt„~0, (0„t') P,+(8,', t+ v') ~twi nt„)

=p fdt„N fde,'dP,'dP,' f dto, dP, dP; f dtodto'e ' '"~' "e' '" '

l [Cd + AGJ jf„o . I &
l [CO +ACO]t„o

Xe ' " A(co +hto')sine b,k,' e ' " A(co +b, ~)soi cnbk,
2m 2m

X,. (P,', to;(to,', P,', P,')~, (P,', to,'~ti e, ,ae „~P„to,),~P;, to;(to„P„P;));, (28)

where b,to and hk, are functions of (co„8„$;) and bto' and hk,' are functions of (co,', P,', P'; ), as provided in Eqs. (8) and

(9a). Noting that the integrand in Eq. (28) is proportional to

&(P, —0, )&(P,
' —0,')&(P; P,

'
)&( , c—o~o)&(t—o,

' to')&(to;(to,', P,', P—,' ) to; (to„P„P;)),—
and using the linear expansion of the idler frequencies given in Eq. (7a}, we get

G,',"(0„8,';~)=p fdt„N f dP; f dtodto'5(a, (to to')+b, (8, ——8,'. ))A(to +bto') A(to +bto)I, . I
X sine hk,' sine hk, e ""

2~ 2m

Xexpi [ [(1+a,)(to to')+b, (8—, —8,')]t„je
Integrating over the remaining 5 function in Eq. (29), we get

G,',"(0„0,'; r ) =p fdt„N'f d P, f d to A ( to,'+ b to' }A ( to,'+ b to)

(29)

'[bl [~s—~s)~ I «"~' —'+'n & —l~~

2 2
(30)
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where hto and the hk, are functions of (t0„8„$;) as in Eq. (28), but 5 co' and b k,' are now functions of (c0„8„8,', P, ) as
determined by Eqs. (8) and (9a) and the 5 function in Eq. (29). Finally, integrating over t„to get the time average gives

r

6,',"(8„8',;~)=lJN 5(8, 8—', )f dto, e ' fd8,.sine Ia2(to, co—, )+bz(8, —8, )+c2(8, —8; )J
0 7r

X A (to~+(1+a&)(to, co—, )+bt(8, —8, )+c&(8;—8;)) . (31)

From Eq. (31), we see that the signal light fluctuations in different directions are completely uncorrelated, so that the
signal light is spatially incoherent.

3. Signal pourer spectral density

The signal light in the direction 8„neglecting the small contribution from the lower limit of the frequency integral in
Eq. {31),has a power spectral density given by the Fourier transform of Eq. (31), i.e.,

Ss {to,)=pN fd8;sine Ia2(co, t0, )+—b2(8, —8, )+c2(8;—8;)J
S

XA (c0 +(1+a, )(co, to, )+—b, (8, —8, )+c,(8;—8, )) . (32)

The result is a superposition of terms corresponding to
difFerent idler directions with weights determined by the
phase mismatch and the pump power spectrum (see Fig.
2).

In the limit where the spectral width of the pump is
much broader than the sine function in Eq. (32), the sine
function can be approximated by a 5 function, and Eq.
(32) simplifies to

(a), —m)(8„8;) j
2

Se (t0, )=pN fd8, exp
2CT l

ro, —co2(8„8;)
Xsine

C7p
(35a)

Ss (t0, )=lsN A to + 1+a, —

b2Cl
(8, —8 ) . (33)

C2

In the opposite limit, where the pump spectral distri-
bution is much narrower than the sine function, the
pump can be taken to be monochromatic, and Eq. (32)
simpMes to

~s a)s
Ss (to, )=)MN sine (34a)

Here

c)b2 —c2b)
cta2 c2 1+at (34b)

represents the shift in the central frequency of the signal
as a function of the observation direction, and

Eco
lc)a, —c2(1+a t )Il

(34c)

is a measure of the signal bandwidth in a axed direction
(which is independent of the observation direction in the
linear approximation of the matching relations used
here).

For the Gaussian pump power spectrum given by Eq.
(16), the signal power spectrum in Eq. (32) is

E
c8

-0.002 -0.001

Normalized signal frequency

0.001
N —N 0

S S

M,

0.002

FIG. 3. Signal power spectral density Sz (co, ) for different
S

observation directions. Data approximating the experiment of
Larchuk et al. [16] are used. A deuterated potassium dihydro-
gen phosphate (KD P) crystal of width l = 15 mm, oriented for
type-I (ooe) phase matching at 90' incidence to the crystal's op-
tic axis is pumped by a beam centered at co~=4.6316X10"
rad/s. Nondegenerate signal and idler fields centered at
co, =2.2600X10" rad/s and co;=2.3716X10' rad/s are ob-
served. The refractive indexes [32] are n = 1.476 75 (extraordi-
nary), n, = 1.497 58 (ordinary), and n; = 1.498 47 (ordinary).
The central signal and idler angles determined from the phase-
matching equations are (),=9.911' and tf; = —9.434'. The
group refractive indexes were estimated from the dispersion for-
mulas in Ref. [32] to be %~=1.51786, N, =1.51739, and
N; = 1.518 31. To have energy mismatch [width of the Gaussian
function in Eq. (35a)] and phase mismatch [width of the sine
function in Eq. (35a)] of the same order, a pump frequency
width km~ =6m. X 10" rad/s was used. From these data we cal-
culated dc', =1.172X 10' rad/s.
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where

b) Cj~~(8„8;)=~,— (8 —8 ) —- (8 —Oo)1+ s s 1+ L L

/

c2 scop +c
g

1
I

hem, =
i co+ —co + f

=
i c,az —c,(1+a, )i

(38)

(35b)

to~(8„8;)=to,— (8, —8, ) — (8, —8;),
az

' '
az

Ace
CT)—

(35c)

(35d)

and

= 2~02=
a2l

(35e}

b2(1+a& }—b&a2
8;.= (8, —8, )+8;,

c,a2 —c2 +a, (36)

The idler direction 8'. that matches a given signal direc-
tion 8, is given by

where co+ and ~ + are solutions t,o
co,(8„8;)kAto /(1+a, )=co2(8„8;)+2~/a21.

As an example, the signal power spectrum in Eq. (35a)
is calculated for a particular nondegenerate down-
conversion experiment and the results are shown in Fig.
3. The shift in the power spectrum peak depends on the
dispersion property [32] of the crystal, but the signal
spectral width depends on both the crystal parameters
and the pump spectral distribution width. In this exam-
ple, the pump spectral width was chosen such that c2hco
and c& (2n /l ) are of the same order.

The bandwidth in Eq. (38} reduces to that in Eq. (34c)
in the limiting case of h~ =0. In the other limiting case
of exact phase matching, using Eq. (33) and the Gaussian
pump assumption, the signal power spectrum is given by

Ss (co, )=2rrpE e (39a)

and is obtained from the equation co&(8„8;) =to2(8„8;).
The signal power spectrum in the given direction 8, is

maximum at the signal frequency

where to, is given by Eq. (37) and

ic, ib,co,
ACOS—

l(1+a ) )c2 —c )a21
(39b)

p b2&i —b

ca —c(1+a )
(37) is the limit of Eq. (38) for 1~ oo.

8. Fourth-order coherence functions

which corresponds to the signal wave vector that is phase
and energy matched to the corresponding wave vector in
the conjugate idler direction 8;. This last equation gives,
to 6rst order in the signal direction, the shift in the cen-
tral frequency of the signal power spectrum as a function
of the observation direction. This shift is the same as for
the monochromatic pump given by Eq. (34b}, which is ex-
pected since both shifts depend only on the dispersion
properties of the crystal. The spectral bandwidth for a
given signal direction is

Now consider the fourth-order (intensity} coherence
functions at pairs of directions within one beam and
across the two beams.

L. Signal coherence function

The fourth-order (intensity) coherence function of the
signal beam, normalized to the coincidence rate, for a
time delay v sufficiently small so that the time t and t+~
lie within one pump wave packet, is given by

6,', '(8„8,';r)=it, f td„t|wi nt„~f,(O„t)P,(8,', t+r)P',+(8,', t+r)P',+(O„t)~twin;t„). (4O)

This expected value vanishes since the state of the down-converted light is such that only one photon exists in the signal
wave packet. For r sufficiently long, however, as a result of contributions from the overlapping wave packets the inten-
sity correlation approaches the product I,(8, )I,(8,'), which represents the random coincidence rate between photons of
the various wave packets. Similar results are applicable for the idler wave.

2. SignaL-idler coherence function

The intensity correlation function for the signal and idler beams, at time delays v sufficiently small so that the times t
and t +~ lie within one pump wave packet, is given by

G,'; '(8„8;;r)=pfdt„(twi tn„~P, (O„t)P', (O, ,t+r)P',+ ('8;, t+r)P, (O. „t)~t i w't„n) . (41)

This function represents the coincidence rates of the signal and idler photons. For ~ sufficiently long, the intensity
correlation approaches the product I,(8, )I;(8; ), which represents the rate of random coincidences between photons
from the various wave packets. This rate will be much smaller than the rate given by Eq. (41) for small r, and will be ig-
nored.

Using Eq. (25) for the twin state, and Eqs. (22a} and (22b} for the positive-frequency parts of the signal and idler fields
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and their Hermitian conjugates for the negative parts of the fields, Eq. (41) becomes

G,',"(8„8,;~)=I fdr„N f de,'dp,'dp;'f dc@,dp, dp; fdcodco'f dc@"da)'"

X ~(co +&co')&(co +bco)sine hk,' sine bk, e ' " "e

Xe
&(co/c)(r —ct) —i(co'/c)(r —ct) r(ap" /c)(r. —ct —c~) —&(co"'/c)(r. —ct —c )s e s le e

C7

X, &y. . .( „y„y,)~, &y,', ,'~I, .„.u, „-.c)., -8., „~y„,&, ~y. . .( „y„y,)&, . (42)

Since the integrand in Eq. (42} is proportional to the 5 function,

(y,' —8; )5( c0( c0,',y,', y,')—co'")5(y,' —8, )5(c0,
' co—')5(IP, —8, )5(y; —8; )5(a), co—)5(rd;(co„ly„y;)—co"),

Eq. (42) simplifies to

G(2)(8 8 q l d ~,2 ~ ~, i(1+a|)(co,—m,')t„ i(m, —ra,')[(r, /c) t] ca—((~ —cu')[(r. /c) t ~]—

X A(coq+bco')A( cqo+hco)sine hk,' sine hk,2~ ' 2~

where he@ and /N, are functions of (co„8„8;}, and bco' and b,k,' are functions of (c0,', 8„8;) as given by Eqs. (8) and
9a.

Performing the time averaging, we obtain

G„(8„8;;r)=pN d cosi nc Ia2(co, —co, )+b2(8, —8, )+c2(8,.—8; ) I

I J

X 2 ~(c00+(1+ai )(co, co, )+b, (—8, 8, )+c—, (8; —8; )),

e'+ye',

g =e',
ge',

S

(b)

Jl
III W'

4 ILL II ~llljl~ Jlll.

p.pp&

:= I J S I &, ".
, ;, ;:". I . I R I l S

4$ISLIII. 5NIM I~IANlmas samii

e =e'.
I i

Normalized signal frequency
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FIG. 4. (a) Sq 8 (co, ), theS'

signal-idler cross-spectral densi-

ty without the idler-frequency 5
function, as a function of m, and
8; for different values of H„as-
suming the same parameters as
in Fig. 3. From these parame-
ters, we calculated 58;=0.0105'
and 68'=0.0098'. (b) Cross sec-
tions of S+ (co, ) as a function

S l

of signal frequency for several
different values of the idler
direction.
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which turns out to be independent of z. This is a result of the assumption of perfect transverse momentum conserva-
tion, which implies a one-to-one relation between signal- and idler-frequency components given by Eq. (7). This relation
makes Eq. (43) dependent on t„ta—nd r, and both time dependences drop, after averaging over the random time t„,in
Eq. (44).

3. Cross-spectral density

The coincidence rate in Eq. (44), as seen by broadband detectors, can be written in the form

G,', '(8„.8, ;r)=pN I dco, I dco, Ss o (co„co;),

where

Ss s (co„co,)=S. e s (co, )5(co, coo—+a, (co, coo)—+b, (8, —8, )+c,(8; —0;)),

and

Ss s (co, )=pN sine Ia2(co, co, )+—bz(8, 8,—)+c2(8, —0;))

XA (co +(1+a, )(co, co, )+b—)(8, —8, )+c,(8;—8;)) .

Thus Ss 8 (co„co;), the cross-spectral density,

represents the coincidence rate as seen by a pair of nar-
rowband detectors collecting light from the signal and
idler directions 8, and 8; and centered at the frequencies
co, and co;. This cross-spectral density is not equal to the
product of the signal and idler spectral densities because
of the entangled nature of the twin state. Also, by in-

tegrating this cross-spectral density over the idler fre-
quencies we do not obtain the signal spectral density
given in Eq. (32), but only the portion of it that is corre-
lated with the given idler direction. To get the signal
spectral density (marginal density), we need to integrate
Eq. (45b) over both idler frequencies and directions, as il-
lustrated in Fig. 2.

For a Gaussian pump, Eq. (45c) reduces to

S& s (co, )=jttN exp
Ico, —co,(8„8;))

20'

co, —co~(8„8;)
X sine (46)

where co&(8„8;),co&(8„8;),cr &, and cr2 are given by Eqs.
(35b), (35c), (35d), and (35e), respectively. The cross-

spectral density is very sensitive to the pair of signal and
idler directions. For a given signal direction 8„the in-

tensity correlation is maximum at the matched idler
direction 8,' given by Eq. (36). The idler entanglement
angle, representing the angular width of idler directions
that have a significant coincidence with the signal in the
given direction, is estimated by

a2b, co +(1+a, )
2m'

c,a2 —c2(1+a, )
(47)

where 8; and 8, + are solutions to
co&(8„8;)kbcoz/( I+a

&
) =co2(8„8;)+2m /a21. A similar

expression for the signal entanglement angle can be ob-
tained. In Fig. 4(a), Se e (co, ) obtained from Eq. (46) is

shown as a function of the normalized signal frequency
and normalized idler angle for different values of signal
angle 8, . Figure 4(b) shows cross sections of Ss o (co, ) as

a function of normalized signal frequency for different
values of 8,. and for L9, =8, .

In the limit of a monochromatic pump, Eq. (45b)
reduces to

(0, —0, ) (0, —0, ) bi
So o (co„co,)=2mpN sine + 5 co, —co, + (0, —8, )+ (0;—8;)ge' ge' ' ' (1+a, )

' ' (1+a, )

X5 co; —co; — (0, —8, ) — (8; —8, )(1+a, )
' ' (1+a, )

where

h8' =
S

1+0)
b2(1+a, ) —b, a2

(48b)

and



50 SPATIOTEMPORAL COHERENCE PROPERTIES OF ENTANGLED. . . 3359

QgC—
1+ad 2m

c~(1+a, ) —c,az I
(48c)

In this special case, the cross-spectral density contains a product of two 5 functions that determine the frequencies in
terms of the observation directions with co, +co; =co . The weighting factor in Eq. (48a) is determined by the sine func-
tion representing the phase mismatch of the corresponding wave vectors.

In the opposite limit of exact phase conservation, Eq. (45b) reduces to

(8,—8, ) (8;—8;)
Ss s (co„co;)=2mpN exp — ' +

S I 268; 2b, 8;.

X5 co, —e, + (8, —8, }+ (8;—8;)p 2 p 2 p

where

p
a 217 ] a $ 62 pX5 cg; co; (8, —8, )—

Qp

Q2C) Q )C2
(8, -8', )

Q2
(49a)

68'=6 Q&

b, a2 —b2(1+a, )
(49b)

and

58'= 6 Qp
(49c)

In this special case, the correlated cross-spectral density is also a product of two 5 functions that determine the frequen-
cies in terms of the observation directions. The weighting factor in Eq. (49a) is determined by the pump amplitude at
co~ =co, +co;, where co —

co~ is expressed in terms of the signal and idler angles.

C. Coincidence rates of photons collected through finite apertures

When the down-converted light is collected by slit apertures of widths 58, and 50; centered at 0, and 8; and in the
x-z plane, the observed intensity correlation function is obtained from Eq. (44):

G,'; '(r}=IJN f d8, f d8; f dao, si nc [a2(co, aP)+b2(—8, —8, )+c2(8;—8;)]
J

X A2(a)~+(1+a, )(a), co, )+b, (8, ——8, )+c,(8;—8;)) .

On the other hand, the intensity falling on the signal aperture is obtained from Eq. (31):

I, =pN f d8, fd8; f dco, sine ja2(co, co, )+b2(8, —8o)+c2(8,——8o)[2'
X A (co&+(1+a&)(co, co, )+b&(8—, —8, )+c&(8;—8;)) . (51)

G(2)(r)

S

(52)

is inversely proportional to the pump intensity through
the factor 1/p. This behavior has been predicted and
tested experimentally by Friberg, Hong, and Mandel [33].

The only distinction between Eqs. (50) and (51) is that

The intensity falling on the idler aperture I,- is given by a
similar expression.

From Eqs. (50) and (51), it is apparent that the normal-
ized intensity correlation g,'; '(r) defined by

the integral over the idler directions in Eq. (50) is restrict-
ed by the idler aperture 50;. If the idler aperture 58;
permits all directions matched to the signal aperture,
then [6]

G(2)
SE S (53}

This equality, modified by the signal- and idler-channel
collection efBciencies, has been used to test the entangled
nature of down-converted light [7] and was proposed as a
technique to achieve the absolute calibration of photo-
detectors [34,22]. To investigate this asymptotic equality
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FIG. 5. Normalized coincidence rate R„given by Eq. {54),as
a function of idler aperture for different values of signal aper-
ture. The signal and idler aperture are assumed to be centered
about the angles 8, and 8;, respectively.

FIG. 7. Effect of idler aperture misalignment on the coin-
cidence rate R„for different signal apertures, assuming an op-
timal idler aperture for each case. The quantity 8„—8; is the
idler aperture misalignment angle.

G(2)
R, :—

I,
(54)

This ratio is plotted in Fig. 5 for the same set of parame-
ters used in Fig. 3, as a function of the idler aperture b,8,.
for difFerent values of the signal aperture b8, .

In some applications, it is useful to normalize the coin-
cidence rate to both the signal and idler singles rates by
defining

(55)

This normalization is more appropriate when it is desired
to optimize the coincidence rate for given signal and idler
rates. This version of the normalized coincidence rate is
shown in Fig. 6 as a function of the idler aperture 68, ,

further, we examine the ratio of the coincidence rate to
the signal singles rate,

for different values of the signal aperture 68, . In this
case, for a given signal aperture b,8„there is an optimal
idler aperture for which R„is maximized. The max-
imum value approaches 1 for 68, )&68,'. It is also clear
from Fig. 6 that for a signal aperture 66I, smaller or of
the order of the signal entanglement angle 60, , the op-
timal idler aperture 68, is greater than the idler entangle-
ment angle b,8,'. On the other hand, for 68, »b8,', the
optimal idler aperture 58; approaches the value
b,8;(b,8, /b, 8;).

The effect of misalignment of one of the apertures with
respect to the other will not change the signal and idler
intensities in the linear approximation used here, but it
will reduce the coincidence rate. In Fig. 7, R„is shown
as a function of the angular misalignment of the optimal
idler aperture for difFerent signal apertures. This quanti-
tatively accounts for the parameter p introduced by Lar-
chuk et al. [16] to account for a reduction of fourth-
order bandwidths relative to those of second order.

IV. SUMMARY AND CONCLUSIONS

u. b-

c 0. 4-
"o

0.2-

0
0 4 6

A8,Normalized idler aperture size
h, 8,

'
10

FIG. 6. Another version of the normalized coincidence rate
R„given by Eq. (55) as a function of idler aperture for different
values of signal aperture. The signal and idler apertures are as-
sumed to be centered about the directions 8, and fP;, respective-
ly.

The signal and idler fields generated in optical para-
metric down-conversion have unique spatiotemporal sta-
tistical properties, which are engendered by the energy-
and momentum-matching requirements for eScient in-
teraction. Each spectral component of the signal has a
corresponding idler component for which energy match-
ing is perfectly satisfied. Likewise, each signal plane-
wave component associated with a given direction (spa-
tial Fourier component) has an idler plane-wave com-
ponent in a corresponding direction for which momen-
tum (or phase) is perfectly matched. We have investigat-
ed the effect of imperfect phase matching by assuming a
crystal of finite width, and we have assumed that the
pump has a finite spectral width, so that there is more
than one possibility for satisfying energy matching.

%e have examined the second-order spatiotemporal
coherence properties of the signal-idler field. Although
the pump is spatially coherent (a plane wave), it was
found that the signal- (or idler-) field plane-wave com-
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ponents in different directions are statistically uncorrelat-
ed. Also, a signal-field plane-wave component is uncorre-
lated with any of the idler-field plane-wave components.
The power spectral density associated with each plane-
wave component of the signal is dependent on its direc-
tion, so that the field is not cross-spectrally pure. The
center of this spectral distribution varies approximately
linearly with the angle, so that it exhibits lower frequen-
cies in one direction and higher frequencies in the other
direction. The idler spectral distribution varies similarly,
but in the opposite direction.

We have also determined the fourth-order (intensity)
coherence functions (the photon coincidence rates) of the
dawn-converted field as a function of the signal and idler
directions. The coincidence rate for two directions
within the signal is due to purely random coincidences.
However, the coincidence rate for one direction within
the signal and another within the idler is enhanced by the
process of down-conversion. This rate is independent of
the time delay ~ because the correlation exists only be-
tween single frequency pairs. However, its angular
dependence is governed by a cross-spectral density deter-
mined by the degree of tolerance to energy and phase
mismatching, which are set by the pump spectral width
and the length of the interaction region, respectively.
This cross-spectral density represents the coincidence

rate for each pair of signal and idler directions as seen by
narrowband detectors centered at the appropriate fre-
quencies.

Finally, we have investigated the effect of apertures on
the coincidence rate normalized to the geometric mean of
the signal and idler marginal rates. We have found that
for a signal aperture occupying a fraction of the signal
entanglement angle, the optimal normalized coincidence
rate is obtained for an idler aperture occupying a larger
fraction of its entanglement angle. This effect is less im-
portant for apertures much larger than their respective
entanglement angles. This optimal coincidence rate ap-
proaches 100% as the matched apertures become much
larger than their corresponding entanglement angles.
This effect can be used to experimenta11y estimate the en-
tanglement angles. The optimal coincidence rate drops
gradually as the idler aperture misalignment angle
exceeds the idler entanglement angle. As expected, this
effect is more pronounced for small apertures.
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