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Complexity of dynamical bifurcations in detuned degenerate four-wave mixing
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We investigate numerically the dynamical bifurcations that occur in detuned degenerate four-wave
mixing as the pump intensity is varied. We find several types of gluing bifurcations and symmetry-
breaking bifurcations. A sequence of symmetric-breaking and gluing bifurcations leads to Lorenz-like

chaos.
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I. INTRODUCTION

Interesting characteristics and dynamical behavior
have been found in nonlinear optical systems involving
two-photon processes. Such processes include second-
harmonic generation, two-photon optical bistability,
two-photon lasing, optical parametric oscillation, and
four-wave mixing (FWM). These two-photon systems are
of special interest because they show explicit macroscopic
quantum characteristics, generating light with nonclassi-
cal statistical properties (e.g., squeezing) [1-6], which has
been observed in recent experiments [7,8]. In the classi-
cal limit, these systems present rich and complicated in-
stability behaviors [9-13]. It is useful for generalization
to know that many of these two-photon systems have
similar features [9,13,14]. In addition, the macroscopic
quantum characteristics and the classical dynamical in-
stabilities are related in some cases [6,15,16].

Four-wave mixing is a good example of many of these
processes. It involves a two-photon process in both the
pump field and the signal field. Earlier theoretical analy-
ses and experimental observations of FWM have shown
that squeezed light can be generated [2,17-19] and re-
cently it was found that nearly perfect squeezing is possi-
ble for both the pump and signal modes in degenerate
four-wave mixing (DFWM) [6]. For resonant DFWM,
very complicated bifurcation behaviors have been found
[13]. And, due to the dynamical asymmetry between the
pump and signal modes, a Berry’s phase analogy may
occur in DFWM [20].

In this paper we analyze the instability conditions for
both trivial and nontrivial solutions in the instability
domain for detuned DFWM. Due to the dynamical sym-
metry of the equations with respect to inversion of the
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amplitude of the signal mode, the dynamics displays vari-
ous symmetry breaking and gluing bifurcations. These
processes are shown to lead to Lorenz chaos. However,
our numerical results also show that a period doubling of
intensities may occur in two ways: (a) normal period
doubling of a periodic trajectory in the phase space and
(b) apparent period doubling of a trajectory in the sub-
space of asymmetric variables combined with a symmetry
breaking of the trajectory in the subspace of symmetric
variables.

It is important to keep in mind that the model we use
in this paper, which is taken from Ref. [2], holds only far
from atomic resonances. More complete and complex
models, which do not suffer from this limitation, can be
found in [21-26].

II. THE SEMICLASSICAL EQUATIONS
AND THE STATIONARY SOLUTIONS

We consider two fields, each close to resonance with a
cavity mode (designated by subscripts 1 and 2), with an-
nihilation operators of photons a, and a,, frequencies w,
and w,, and losses y, and y,, respectively. The two
modes are coupled by a nonlinear medium which induces
a DFWM process at frequency o, close to @, and w,. We
assume modes 1 and 2 are different in some characteris-
tic, such as wave vector or polarization [6]. Mode 1 is
pumped by a coherent field at frequency w,,.

Following Ref. [2], we assume that the dynamics of
this system is governed by a master equation which can
be written in the interaction picture as

d 1 2
L = — S Hp+Hg+Hppl+ 3 Ajp M

j=1

where H. is the free Hamiltonian of the two modes

2
H.=3 ﬁAj'yja;a (2)

j=1

j
with the detuning parameters A; defined as
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Hp, describes the action of the pump,

(j=12); (3)

Hy=i#E(a}—a,), )

where the pump field amplitude E is taken real and posi-
tive for definiteness; H; governs the FWM interaction

H,=iﬁ%(a%a§2—a12a§) , (5

where « is the coupling constant proportional to the non-
linear susceptibility x'*’; and the Liouville operator A;
(j=1,2) describes the losses of the modes in the cavity

Ap=7;(la;.pa{1+[a;p,a]1} . (6)

In the deterministic semiclassical approximation, one
neglects all fluctuations and their correlations. The re-
sulting semiclassical equations are [2]

a;=E —y,(1+iA))a,—kata?, (7a)
d2=—72(1+1A2)a2+Ka;a% N (7b)

where a; and a, indicate the mean values of a, and a,,
respectively. By introducing the normalized variables

< |2

A= _‘}Z a;,
< 12
A,= 7’_1 a,, (8)
EE£ N 172
Y1 |72

the semiclassical equations for DFWM become
yi'Ad\=E—(1+iA)A,— At 42, (9a)
vy A, =—(1+iA)A,— 4342 . (9b)

A; (j=1,2) denotes the normalized amplitude of mode j,
and the 4/’s (j=1,2) obey the complex conjugates of
Eqgs. (9a) and (9b). Exactly as in the case of the degen-
erate optical parametric oscillator [11], Egs. (9) are
symmetrical with respect to a change of sign in the signal
field: if {A4,(¢), A,(¢)} is a solution of Egs. (9), then
{A,(2),— A,(¢)} is also a solution. For example, if the
solutions are limit cycles, there are only two possible situ-
ations: (i) the trajectories of {A,(¢),4,(¢t)} and
{ 4,(2),— A,(t)} are identical, in which case the trajecto-
ry itself is symmetric with respect to the inversion of 4,,
or (i) the trajectories are not identical in the complex
plane, in which case there are two solutions which are
termed antisymmetric. For convenience we will refer to a
variable for which the equations have this inversion sym-
metry (signal field) as a symmetric variable. The other
variable (pump field) will be referred to asymmetric. In a
four-dimensional phase space, these symmetries can be
hard to visualize, but the trajectories upon inversion can
be compared in the projection onto the complex plane for
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a symmetric variable. If the projection is symmetric
upon inversion of both the real and imaginary parts of
A,, then the solution is symmetric [i.e., situation (i)].

The stationary solutions are obtained by setting
A;=A,=0. There are two different kinds of stationary
solutions.

(1) The trivial solution is

A,,=0, (10a)

E
Als_

= 1+iA, (10b)

(ii) The nontrivial solutions, such that | 4, |20, for
which the intensities of the modes satisfy [6]

|4, >=V1+4}, (11a)
2(1—AA,) 712
PR L L G ST S
V1+A3 V1+A3
(11b)
and the complex amplitudes of the modes are
_ A, 7(1—iAy) |
A =E 14”'A1‘*"L|—22 , (12a)
VvV 1+ A2
E—(+iApA,, |'?
Ay = (12b)
*
1s

As in the case of the optical parametric oscillators [11],
the steady-state curve of | 4,,|? as a function of |E|? is
multivalued when

AA,>T . (13)

Under this condition there is a possibility of bistability
between the trivial solution and the positively sloped part
of the nontrivial stationary solutions (see Ref. [11]). For
convenience and uniqueness, we will use the value of
| 4,,1? to identify a particular steady-state solution in the
phase space (as is common in studies of bistable optical
systems).

III. LINEAR STABILITY ANALYSIS

By the linearization of Egs. (9) with respect to the fluc-
tuations § 4, and 8 4,, we obtain

84, =—vy,[(1+iA))8A,+ A2 8AT+2A4,, AL.84,],
(14a)
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8A,=—v,[—2A4,, A58 A4, +(1+iA))84,— A2 843%],
(14b)
where we have indicated the stationary values of these

variables by 4 and A4,;.
Solutions of the form

(1+iA)+A/y, A3 24, A%,
(A%)? (1—iA)+A/y, 0
—2A4,, A% 0 (14+iA)+A/y,
| 0 —2A4% A, —(A})?

For the trivial solution, it is easy to obtain the instability
condition

|4,,12>V 1+ A2 (17a)
or, equivalently,
IE>(1+ADV 1+AZ . (17b)

For the nontrivial solution, the eigenvalue equation is
A+ M+, +c3h+c, =0, (18)

where

¢, =2y,(1+u), (19a)

=717, [4+u(1+A)+8V 1+ A% 4, 12—l 4,514,

(19b)
ey =293y, |(1+A2)+41 1+ Al 1+L | 4,
7’
—|Ayl* ], (19¢)
ca=4y2V 1+ AN1—AA,)| 4,12
+2(14+43) 4,,1*], (19d)
and
71
p=- . (19€)
Y2

By the Routh-Hurwitz criterion, the necessary and
sufficient conditions that the solution is stable are

¢, >0 (20a)
c, 20, (20b)
cic,—c320, (20c)
(c1c;—c3)c3—cicy 20 . (20d)
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54, | b,
5A7Y | b,
54, l=exp(kt) b, (15)
§5A2 5 by }

give the eigenvalue equation

0
2A;5A1:
— A5

=0. (16)

|
|

(1—idy)+A/7,

To see which of these conditions controls the onset of in-
stabilities, we examine each in turn. Condition (20a) is al-
ways satisfied. To evaluate condition (20b), one can re-
formulate ¢, as

dEJ?

, 21
dl A, |?

ca=ayivIV 1445 4,2
where the derivative is calculated from Eq. (11b). As ex-
pected, c, becomes negative on the negatively sloped part
of the steady-state curve of | 4,,|? vs |E |2, indicating that
this region is unstable [11]. The critical points of condi-
tion (20c) (i.e., ¢;c, —c3=0) are located in the unstable
region determined by condition (20d) if c4 is positive
(which is true for the positively sloped part of the
steady-state curve) [cf. Eq. (21)]. Condition (20d) is
violated when there are Hopf bifurcations on the posi-
tively sloped parts of the steady-state curves. Therefore,
the critical points for loss of stability on the positively
sloped branch are governed by equality in condition
(20d). The frequency of the Hopf bifurcation at the bifur-
cation threshold is
172

€3

Q.. =
th ¢

1 2 )
T {(1+A1)+4\/1+A2

L

|‘/12s|2
172
] . (22)

In contrast to the case of the optical parametric oscillator
[11], where bistability and spontaneous oscillation are
mutually exclusive, spontaneous oscillations exist for
both single-valued and multivalued steady-state curves.
Figure 1 shows the instability domains in the plane of
the variables | 4,,|? and A,, where we have set p=1, and
we have drawn curves for five different values of A,=—3,
0, 1, 3, and 5. As indicated by our examples of A,=3.0

=7 1+
©

_§A25l4
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FIG. 1. Instability boundaries for the DFWM model in the
plane of the detuning A, and the steady-state intensity of the
signal mode | A,|? for u=1.0 and A,=0, 1, 3, 5, and —3, as la-
beled. The instability domains are above the parabolic curves,
as well inside the lower circle.

and —3.0, according to Egs. (19), when A, changes its
sign, the corresponding boundary curves of the instability
domain are mirror images with respect to the vertical
axis at A;=0. Instabilities occur for values of |A,|?
above the V-shaped boundaries. For large detuning of
the signal field A,, there is also an isolated instability
domain very near the oscillation threshold of the signal
field. We have studied the instabilities in this region
more thoroughly, because they may be observed more
easily in experiments.

IV. NUMERICAL SOLUTIONS

We have solved Egs. (9) numerically for p=1,
A,=-—2, A,=5, and increasing steady-state values of
| 4,,|? (equivalent to increasing the input field E) under
conditions where the steady-state curve is single valued.
The steady-state curve for these parameters is shown in
Fig. 2, where the dotted parts of the curve are unstable,
and a very small stable region (0 <| 4,,|? <0.0065) is not
visible. There are two unstable portions, one bounded
and one unbounded. The existence of these two unstable
domains can be ascribed to the fact that the interaction
Hamiltonian for DFWM is of the two-photon type both
for the pump and for the signal mode, and therefore this
system is simultaneously similar to the case of degenerate
parametric oscillations and to the case of second-
harmonic generation. The unbounded unstable domain,
which also exists in the resonant case, is similar to the in-
stability typical of second-harmonic generation [9,10],
while the bounded unstable domain, which exists only in
detuned configurations, seems related to the oscillatory
instability in detuned degenerate optical parametric oscil-
lators [11].

3325
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FIG. 2. Steady-state curve of the input intensity |E|* versus
the intensity of the signal mode | 4,,|? for u=1.0, A;=—2.0,
and A,=5.0. The dotted parts of the curve are unstable.

The bounded instability domain leads to two branches
of time-dependent solutions. For convenience we give
the names of “lower” and “upper” to these two branches,
according to the ranges of values of | 4, |? in which they
appear. The lower branch lies in the domain

0.0065 < | 4,,|><0.124 ,

and the upper branch is found in the domain
0.117< | A, |*<1.47 .

Either solution may be found in the range
0.117<| 4,,|*<0.124 .

Figure 3 shows some projections of the trajectory in the

(@) (b) (c)
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FIG. 3. Orbits in the complex plane of the signal mode for
solutions on the lower branch in the isolated unstable domain
for pn=1.0, A;=—2.0, and A,=5.0, and for different steady-
state intensities of the signal field | 4,[% (a) 0.1, (b) 0.105, (c)
0.11, (d) 0.11351, (e) 0.11352, (f) 0.115106, (f) 0.115107, (h)
0.117, and (i) 0.12. Dotted orbits are the coexisting solutions
obtained by inversion of 4,. The origin is indicated by a “+.”
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complex plane of the signal mode amplitude for the
“lJower” branch of solutions for different values of | 4, |2
Projections of the trajectories onto the complex planes of
both the pump and signal modes for solutions on the
upper branch are shown in Fig. 4. For example, at
| 4,,1*=0.1 on the lower branch of solutions [see Fig.
3(a)], the orbits of the signal mode can be either one of a
pair of simple asymmetric cycles (which one is reached
depends on the initial condition), while at | 4,,/2=0.29
on the upper branch of solutions the orbit of the signal
mode becomes a large single cycle, which is symmetric
with respect to the origin [see Fig. 4(a)]. The intermedi-
ate development of the attractors is not simply a “gluing”
of two asymmetric solutions to form the symmetric one.
Instead, in Fig. 3, we show that there is a period-doubling
sequence which reaches at least period 4 and then returns
to period 2 before being interrupted by a unusual gluing
bifurcation [27-29]. The glued orbit [see Fig. 3(e)] is not
a simple symmetric union of a pair of asymmetric orbits
[Fig. 3(d)]; instead, it is still asymmetric: its partner solu-
tion [the dotted line in Fig. 3(c)] does not coincide with
itself. As we increase the input field further, this asym-
metric glued solution undergoes a period doubling and,
then, gradually becomes symmetric, as shown in Fig. 3(f).
At |4,,|=0.115107, we see that there has been an
ungluing; the trajectory has become one of a pair of
asymmetric solutions [see Fig. 3(g)], which are similar to
those found in Fig. 3(e). Then, these orbits gradually be-
come symmetric again in Fig. 3(h). Near the end of this
branch, chaos appears [Fig. 3(i)]. For values of the input
field larger than 0.124, there is a jump to the upper
branch—a periodic simple cycle with a symmetric
configuration [similar to that shown in Fig. 4(a)].

The evolution of trajectories for the “upper” branch is
more regular when | 4,,|? is increased. A basic stage of
this evolution is shown in Fig. 4. While the orbit of the
pump mode in the complex plane doubles its period, the
symmetric orbit of the signal mode loses its symmetry
gradually [see Figs. 4(a)-4(c)]. Then, a chaotic solution
appears in which the chaotic attractor for the signal
mode keeps the basic shape of the previous periodic one
[Fig. 4(d)]. When | 4,,|? is increased further, a gluing of
two chaotic attractors occurs in the chaotic motion [Fig.
4(e)]. [Note that because of the symmetry of the signal
variable, there is an another chaotic solution for which
the signal mode trajectory is the inverse of that shown in
Fig. 4(d).] This new symmetric chaotic attractor for the
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FIG. 4. Orbits in the complex planes of both pump (upper
plots) and signal (lower plots) fields on the upper branch in the
isolated unstable domain for p=1.0, A;=—2.0, and A,=5.0,
and for different steady-state intensities of the signal field | 4,, |
(a) 0.29, (b) 0.33, (c) 0.35, (d) 0.37, (e) 0.38, and (f) 0.39. The ori-
gin is indicated by a “+” sign.

signal mode evolves to a stable periodic cycle [Fig. 4(f)],
with a period which is approximately twice that of the
previous periodic solution [Fig. 4(c)]. This process re-
peats until a Lorenz-like chaos is formed (Fig. 5).

These developments are summarized in Table I, where
(a) and (b) refer to the lower and upper branches, respec-
tively. The notations P and C denote periodic and chaot-
ic solutions, respectively; LC identifies chaotic behavior
reminiscent of Lorenz chaos [30]. The subscripts s and a
indicate symmetric and asymmetric orbits, respectively,
and the superscripts (%) emphasize that there is a pair of

TABLE 1. Development of bifurcations in the isolated instability domain indicated in Fig. 2: (a) Lower branch and

(b) upper branch.
(a) Lower branch
0.11- 0.113- 0.11353—  0.115- 0.118—
| A, |2 0.1 0.105 0.112 0.11351 0.11352  0.114  0.115106 0.115107 0.117  0.124
Pump P(1) PQ2) P4) PQ2) P(4) P(8) P(4) P(4) P(Q2) C
Signal  PX(1) PX(2) PX(4) PX(2) PX(2,2) PX4,4) P(4,4) PE2,2) P,(2,2) Cc
(b) Upper branch

[A,]*> 0.117-0.29 0.3-0.35 0.37-0.38  0.39 0.4 0.41 0.415 0.42 0.43 0.6—1.47
Pump P(1) P(2) c PQ2) P4) C P(4) P(8) c ce LC
Signal  P(1,1)  PX(1,1) Cc P(2,2) PX(2,2) C P (4,4) P;F(4,4) Cc i LC
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solutions symmetric to each other with respect to the ori-
gin. (Note that this is redundant as a always has .) The
numbers in the brackets indicate the number of intensity
peaks in a period. In order to distinguish the intensity
pulses of different phase for the complex amplitudes, we

L L L L L AL
-(a)

Im Az L

||111I|1*;L1|J|111\rl_1

-2 -1 o] 1 2
Re A2

0 100 200

t-v,y
15 , . ]
L (C)
10 L -
Xn+|
s | 4
s
0 P S

0 5 10 15
Xn

FIG. 5. Lorenz-like chaos for u=1.0, A;=—2.0, A,=5.0,
and | A4,,|*=1.47: (a) Orbit in the complex plane of the signal
field, (b) intensity evolution in time for the signal field, and (c)
Lorenz map for peaks in the intensity of the signal field.

use two numbers in a bracket (n,m), indicating m pulses
are approximately 7 out of phase with respect to n pulses.
When, instead, there is only one number 7 in the bracket,
this indicates that all the n pulses in a period are approxi-
mately in phase.

We conclude by noting the following features for the
time-dependent solutions in this bounded unstable
domain in Fig. 2. (i) When the solution for the signal
field is asymmetric, the signal and pump fields have the
same period, while when the solution for the signal field
is symmetric, its period is twice of that of the pump field.
(ii) For the latter case in (i), the symmetric orbital (signal
field) may not double its periodic directly [31]; instead, it
breaks its symmetry which appears as a period doubling
in the projection of the orbit onto the complex plane of
the pump field. However, we see apparent period dou-
bling of the intensity pulsations for both the pump and
signal fields. (iii) For the upper branch, chaotic windows
appear between transitions from asymmetric orbits to the
gluing of these orbits into a symmetric orbit (or the in-
verse ungluing process). Through a sequence of symme-
try breaking and gluing bifurcations that are mediated by
chaos, i.e.,

« P (n,n)—>P (n,n)—>C—P,(2n,2n)— - ,

one gets to Lorenz-like chaos [30]. These transitions are
very similar to those found in Ref. [32], and have been
discussed by Coullet and Tresser as a generalized route to
the Lorenz-like chaos in systems with at least one sym-
metric variable.

We show the Lorenz-like characteristics of the chaotic
solution in Fig. 5, where Fig. 5(a) shows the orbit of the
signal mode, Fig. 5(b) is its intensity evolution, and Fig.
5(c) is a Lorenz map: in a long sequence of oscillations,
we select the maximum intensities and arrange them in
an ordered sequence X; (i=1,2,...,n,n+1,...), and
then we plot X, ,, as a function of X,,.

In a small domain

1.457<| 4,,|*<1.470,

the stable steady-state solution and the Lorenz-like
chaotic solution coexist. This indicates that the Hopf bi-

P D|{C
b
o ~ ®
- - el el
- =

9.86

input field

FIG. 6. Global behavior of the upper unstable domain versus
the intensity of the signal field for p=1.0, A;=—2.0, and
A,=5.0; the symbols SS, P, D, and C denote steady-state,
periodic, period-doubled, and chaotic solutions, respectively.
The labeled values are steady-state intensities of the signal field
| A 2s |2'
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furcation of the steady state leading to the chaotic
behavior is subcritical.
For the unbounded instability domain in Fig. 2
(| A5512>9.859), there are also two branches, whose glo-
bal behavior is shown in Fig. 6. Simple periodic orbits
appear in the lower branch and more complicated solu-
tions are found on the upper branch, as shown in Fig. 7.
We have not found gluing bifurcations in this unstable
domain.

V. DISCUSSION

For some nonlinear dynamical systems, a subset of
variables may possess a dynamical symmetry. That is,
they may have some variables which can be inverted to

ImA2| (a i
a4 | |

i N 1

2 - \\. \ —

(ol == ]
2L B

Re Az
FIG. 7. Periodic orbits in the complex plane of the signal

field in the upper unstable domain in Fig. 1 for u=1.0,
Ay=—2.0, A,=5.0, and | 4,,|>=10.5: (a) periodic orbit on the
lower branch of solutions and (b) periodic orbit on the upper
branch of solutions.
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obtain alternative solutions. We call these variables
“symmetric variables.”” A typical example in nonlinear
optical systems is the Lorenz-Haken model [30], where
the real field and polarization are what we call symmetric
variables. Another example in two-photon processes is
the optical parametric oscillator, where the signal mode
is symmetric. Some special bifurcation behaviors are in-
volved in these systems, such as gluing bifurcations, sym-
metry breaking of symmetric orbits, and a route to
Lorenz-like chaos. These phenomena are found here in
the DFWM model, and we will discuss them phenomeno-
logically.

For DFWM, as we have shown in the previous sec-
tions, there are two kinds of limit cycles: symmetric and
asymmetric, assigned to the inversion symmetry of the
orbits in the complex plane. Asymmetric orbits of the
symmetric variable always appear in a pair, each of
which corresponds to inversion of the other. Symmetric
orbits satisfy time translation antisymmetry [31]:

H

\=~Au (23)
J

where T is the period of the limit circle. That means, in
the complex plane, the locus of the symmetric variable in
the first half period is the inversion of the locus in second
half-period. Hence its orbit is symmetric with respect to
the origin in the complex plane. By a Fourier expansion
of solutions satisfying Eq. (23), we can write for these
symmetric orbits that

> ay, 4 exp[2mi(2n +1)t/T], (24)

n=—o

A,(1)=

in which all the components with the even-harmonic fre-
quencies, as well the constant term, vanish [33]. Note,
however, that there are no other restrictions or sym-
metries placed on these g;’s.

The gluing bifurcation is one in which two limits cycles
C, and C, come closer and closer to the point corre-
sponding to the trivial stationary solution until they join,
giving rise to a new stable periodic orbit which essentially
follows successively the loci in phase space of the cycles
C, and C, [28,29]. Its inverse process is termed an
ungluing bifurcation. In most cases, C; and C, are a pair
of orbits, symmetric to each other, so we can describe
these bifurcations as P;(n)=P(n,n) or P (m,n)
=P (m +n,n +m).

For DFWM we have observed four types of symmetry
changing bifurcations:

Type 1, supercritical gluing: Pf(n,n)‘=’Ps(2n,2n).
Two orbits, Pai(n,n), become infinitesimally closer to
each other at the point which corresponds to the trivial
stationary solution and glue to form a symmetric orbit
P (2n,2n). An example is shown in Figs. 3(g) to 3(f). We
notice that unglued asymmetric limit cycles of the signal
mode in Fig. 3(g) are almost exactly half of the glued
symmetric limit cycle. Hence, there is almost no trace of
the bifurcation in the evolution of the intensity of either
the pump or signal field, as shown in Fig. 8 (the only
trace which can be found is a slight change of period, re-
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sulting because the glued orbit is closer than unglued
ones to the trivial stationary solution, where it spends a
longer time). Apparently, this type of gluing may satisfy
a topological condition—each half of the symmetric or-
bit is almost a closed limit cycle.

Type 2, gluing via chaos: P,,i(n,n)‘='C~=»Ps(2n,2n).
A pair of orbit PX(n,n) glue to form a symmetric orbit
P.(2n,2n) via chaotic processes [32]. An example has
been shown in Figs. 4(c)-4(f), where the gluing process
happens in chaotic motion. In the intensity evolution, we
can expect that chaotic oscillations appear in between
two very similar periodic oscillations, when the control
parameter is changed. Topologically, this type of gluing
can not occur through type 1, because half of the sym-
metric orbit is not a closed cycle.

The power spectra of both pump and signal modes are
shown in Fig. 9, where Figs. 9(b) and 9(c) correspond to
Fig. 4(c) (] 4,|*=0.35) and Fig. 4(f) (| 4,,/2=0.39), re-
spectively. The spectrum of the pump mode has no
significant change, and in the spectrum of the signal
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FIG. 8. Intensity evolution of both pump and signal fields for
u=1.0, A;=—2.0, and A,=5.0 in the lower island of instability
in Fig. 1: (a) |A4,[|*=0.115106, symmetric orbit: (b)
| 4,1>*=0.115 107, asymmetric orbit. (a) and (b) correspond to
Figs. 3(f) and 3(g), respectively.

log s(v/Y)
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1

FIG. 9. Power spectra s(v/y;) of the complex field ampli-
tudes for both pump (upper plots) and signal fields (lower plots):
(a) | A5|>=0.29, (b) | 45]*=0.35, and (c) | 4,,/2=0.39, which
correspond to Figs. 4(a), 4(c), and 4(f), respectively. The arrows
indicate the reference frequency of the input field.

mode a frequency shift of half of the frequency interval
between the peaks can be observed. In fact, this is a re-
sult of combination of the two effects after gluing: the
fundamental oscillation frequency is reduced by half and
the even-harmonic frequency components vanish. The
spectra of type-1 bifurcations are expected to be similar
to those of type 2. Hence, this is a way to observe the
evidence of the supercritical gluing bifurcation.

Type 3, abnormal gluing: PX(n)=P}(n,n) or
P, (n,n). Two orbits come close to each other at the
trivial stationary fixed point solution and glue into one of
a pair of new joint orbits. We denote this as abnormal
because the glued orbit is also asymmetric. A possible
explanation is that the normal glued symmetric orbit is
unstable. An example was shown in the transition from
Fig. 3(d) to Fig. 3(e). In this case, both the pump and sig-
nal modes double their period, so in the intensity evolu-
tions we observe a period-doubling bifurcation and their
spectral changes are similar to those of a normal period-
doubling bifurcation.

Type 4, gradual loss of symmetry: P (n,n)=PX(n,n),
Although the breaking of symmetry of orbits can occur
in ungluing bifurcations of types 1 and 2, for definiteness,
we note that there are also symmetry-breaking bifurca-
tions [32,34] in which the symmetric orbit begins to grad-
vally lose its symmetry. In this process the orbit of the
asymmetric variable doubles its period. The inverse pro-
cess is termed symmetry restoring. An example is shown
in Figs. 4(a)-4(c). Intensity evolutions of both pump and
signal modes appear as in a period-doubling oscillation.
The before and after optical spectra are given in Fig. 9,
where Figs. 9(a) and 9(b) correspond to Figs. 4(a)
(] 4,,12=0.29) and 4(b) (| 4,,|>=0.35), respectively. The
changes of the spectra are very similar to those following
a period-doubling bifurcation by means of the subhar-
monic generating process; the only difference is that be-
fore the symmetry breaking, the fundamental oscillation
frequency of the pump field is twice that of the signal
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field, but they still have same frequency spacing because
all the even-harmonic components of the spectrum of the
signal field disappear.

For the symmetric periodic solutions of the DFWM
model, as many authors (see, e.g., [31]) have indicated
should be the case, a symmetric orbit is never observed to
bifurcate directly to a period-doubled limit cycle. How-
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ever, a sequence of symmetry breaking and gluing bifur-
cations may be a route to reaching Lorenz-like chaos.
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FIG. 5. Lorenz-like chaos for p=1.0, A;=-—2.0, A,=5.0,
and | A,,|*=1.47: (a) Orbit in the complex plane of the signal
field, (b) intensity evolution in time for the signal field, and (c)
Lorenz map for peaks in the intensity of the signal field.



