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Electron-beam-induced super-radiant emission from a grating
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An alternative mechanism for Smith-Purcell radiation is proposed. This mechanism may have
relevance to recent reports of higher radiation power. The electron beam excites resonant transitions of
atomic quantum levels in the optical grating material by the fields of the traversing electrons. The dipole
moments of all the atoms which are excited by the same electron radiate in phase with each other and
produce "super-radiant radiation. " To calculate the radiant intensity due to this process we first calcu-
late the dipole moments of the atoms excited by the classical electrical field of the traversing electron.
Assuming that the dipole oscillations are dominated by a collision time T2 we calculate the classical ra-
diant intensity from the optical gratings due to this process. Sample numerical calculations based on a

ruby grating result in substantial radiation levels.

PACS number(s): 42.50.Fx, 41.60.Cr, 52.75.Ms

I. INTRODUCTION

The radiation produced by the interaction of an elec-
tron beam and a grating was first measured by Smith and
Purcell [1]. They suggested that the radiation was caused
by oscillating charge induced in the metal gratings by the
electron beam.

In 1961, Salisbury [2] reported a measurement of
Smith-Purcell radiation with an intensity that exceeded
substantially those of other experimental reports as well
as predictions of theoretical calculations. Recently, Shih
et al. [3] also reported measurements of higher intensi-
ties than expected according to classical Smith-Purcell
calculations. These prompted suggestions for alternative
theoretical explanations for the measured radiation. A
model based on interaction of the electrons with the
space-charge field produced by other electrons scattered
from the grating was suggested by Salisbury [4]. Recent-
ly Chang and McDaniel [5] proposed another mechanism
based on bremsstrahlung amplified by interaction with
the di8'racted electron wave function. Reservations con-
cerning the validity of these models were raised by Gover
et al. [6] and Gover and Halperin [7].

In an attempt to find an explanation for enhanced
emission of Smith-Purcell radiation (beyond the basic
model of difFraction off the gratings), we explore here
theoretically a scheme in which the Smith-Purcell radia-
tion is enhanced by resonant excitation of radiative tran-
sitions in the grating material. According to this model
the electric field of an electron traversing near the grating
excites electronic quantum transitions of atoms in the
grating. The dipole moments of atoms excited by the
same traversing electron radiate with a definite relative
phase that is determined by the velocity of this electron.
Consequently the traversing electrons emit coherent
super-radiant [8] radiation in directions determined by
the grating periodicity according to the Smith-Purcell ra-
diation condition.

For simplification we use in the present analysis a mod-

el of a two-level atom. This model would be rigorous

only for a situation in which the grating material is
characterized by distinct quantum levels where only the
lower level is occupied (e.g., a three-level laser material
like ruby and possibly direct band gap semiconductor
material like Ga:As}. In amorphous or polycrystalline
materials and metals (from which commercial gratings
are usually made} an extension of this model may be re-
quired.

An electron passing over the grating creates a transient
electric field experienced by the atoms of the grating ma-
terial (Fig. 1). The atom is much smaller than a charac-
teristic length in which the field changes. Therefore the
atom is a@ected by a spatially constant time-dependent
electric field. This electric field excites the atom which is
assumed to be initially in the ground state. The excita-
tion of the atom is calculated by using time-dependent
first-order quantum-mechanical perturbation theory.
The electric excitation is used to calculate the induced di-
pole moment in the grating and the overall radiation.

II. PERTURBATION CALCULATION

The expression used for the electric field of the travers-
ing electron is the classical field relativistic expression [9]
(mks units):
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FIG. 1. Schematic diagram of radiation process.

1050-2947/94/50(4)/3316(6)/$06. 00 50 3316 1994 The American Physical Society



50 ELECTRON-BEAM-INDUCED SUPER-RADIANT EMISSION. . . 3317

1 yqD
4~a (D2+y2 2t2)3/2

2+y 2

(2)

(3)

where it is assumed that the electron of charge q = —
~q~

and velocity u traverses along the z axis [coordinates
(0,0,ut) ] with an impact parameter D relative to an atom
which is located at coordinates (x,y, 0) (see Fig. 1). The
impact parameter is the minimal distance between the
atom and the electron trajectory. For simplicity we con-
sider in our analysis only the dominant transverse com-
ponent of the electric field E~. We first calculate the ex-
citation amplitudes of the quantum states in the atom.
The calculated amplitudes will be used in the next step
for calculation of the radiation from the different atoms.

The wave function of the excited atom is expanded in
terms of the eigenfunctions of the unperturbed atom uk.

y ak{t}uke
k

(4)

where cok =E„/A', in our case, k =1,2.
The excitation level of the atom is calculated by solv-

ing the time-dependent perturbation equation for a two-
level atom:

a (t)= (2~H'~l)a, (t)e
fi

H'=qE r,
where H' is the perturbation interaction Hamiltonian.

a2(t)=a2( —~ }+ f (2~qE r~1 )a, {t)e "dt . (7}

atom due to the passage of the traversing electron can
now be calculated explicitly by performing the integra-
tion. In order to be able to perform the integration
analytically, we replace the Lorentzian shape of the elec-
tric excitation impulse [Eq. (2)] with a Gaussian shape
impulse of the same width r =D /yv:

7q (t/—~)1
e

where the normalization factor g is chosen so thatf" E~dt= J Ejdt, which results in /=2/~m=1.
This approximation makes it possible to obtain an expli-
cit analytical expression for the excitation amplitude of
the upper level:

a = e
ie'r2& d —(g)~ /yg)~

(12)
4nefjg') u

where r;1
—= (ire ), and d=xx+yy is a unit vector

pointing from the electron trajectory (z}axis to the atom.
The interaction time between the traversing electron

and the atom in the grating is much shorter than the
characteristic time of radiation by the excited atom. The
radiation during the time of passage of the electron is,
therefore, neglected. We assume that after the electron
passes, the atom's excitation level (and therefore the
overall dipole moment} decays exponentially with a rela-
tively long time constant T2. This is the characteristic
time after which atoms excited by the same electron lose
coherence with one another due to phonon interaction
(this terminology is borrowed from common laser-physics
terminology [8]).

The complex excitation amplitudes of the states are in a
first-order approximation:

a, (t)=a, ( —~ )=1,
4

a2(t)= f (2~qE r~l)e "dt .

(9)

(10}

We insert Eq. (2) for the electric field in Eq. (10). The
longitudinal (z) component of the electric field is neglect-
ed because it changes sign during the passage of the elec-
tron above the atom {though in certain cases this may
produce a resonant effect}. The excitation level of the

Initial Conditions

E
2

a(-- )=O
2

E a(-- )=j
1

This equation is solved under the initial condition of an
unperturbed atom whose electron is at the lower energy
level as shown in Fig. 2, where

E2 —E)

III. POLARIZATION CALCULATION

We now use the excitation amplitude of the two quan-
tum states for calculating the radiation process. In order
to do that, we compute the dipole moment of each atom
with the initial condition of a coherent state in the sense
defined by Scully et al. [10]. The quantum states have
distinct phase relations between their complex ampli-
tudes. These amplitudes were calculated in the previous
step where we calculated the atom excitation by first-
order perturbation theory [a&(0+)=1 and a2(0+) =a2f
as given in Eqs. (9) and (12)]. We neglect any contribu-
tion to the radiation process during the short excitation
time.

The dipole moment of a single atom is calculated to be

(13)

where r is the position operator of the electron in the
atom. In our simplified model we take the collision time
into consideration by multiplying the upper-state wave
function by a time decaying exponent. This is a widely
accepted approximation (a more rigorous approach
would have been to do a statistical calculation of the dis-
tribution of collisions over time and calculate the result
according to the mean value). The coherent state of the
atom after the excitation stage is thus given by

FIG. 2. Illustration of a grating atom s initial conditions.
1col f

P=—e ' u, +a2fe 'e 'u2 . (14}
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We note that in this approximation the normalization of the wave function is not exact.
The time-dependent dipole moment of the excited atom is given as the expectation value of —er using the wave func-

tion of the excited atom (in the coordinate picture) [Eq. (14)j.
I col t —t co2t —t /T2 I

cell
1 —

& co2t —t /T2p= —e e ' u1+a2fe 'e 'u2 r le 'ul+a2fe 'e 'u2

—2t/T2 i ~2, r —t/T2 1 c021t t/T2= —e(r&&+ Ia2f I I2$e +a2fe e 12$+a2fe 'e 1/2)
—2t /T2 ~ i a)21t —t /T2 —i co21t

—t /T2= —er)) —
elan I rq2e

' —aqIr2)e "e ' —ea2~r)2e "e

dp 2 —im21t —t /T2ea 2f r22e '+iecu2, a2f r,2e
"e '+c.c.

dt T2
—t cgP21t

—t /T2
=-ieco2(a2f r)2e "e '+c.c . (16)

We may view the process as consisting of two main
stages: (a) an excitation period starting at t =0 in which
the electron passes next to the atom and excites it, lasting
a time duration =~=D/yv; and (b) a radiation period
following the excitation during which the atom radiates
until losing coherence due to collisions in a time duration
T2 »~. We assume that the two stages are distinct and
that no radiation is produced during the excitation
period. While this assumption is not fully accurate, it
should not afFect the final results due to the very short
time length of the excitation stage. Consequently we
multiply the dipole moment calculated above with a step
function rl(t) where t =0 is the time when the atom is ex-
cited (presumably instantaneously). We then take the
time derivative of the polarization and consider only the
significant part, which is the one oscillating at the optical
frequency co2&.

cos+ =

dp (r, t) 1 &e coz& Ir2i I y

dt 4m c,p @gal) 3v

Xe " e
ia) (t —z/v ) —(t —z/v)/T

z
X g t —— +c.c.

v
(20)

Note that D =D (x,y}. We now use the definition of po-
larization density as follows:

P(r, t)—:n(r)p(r, t), (21)

where n(r) is the density of radiators (atoms) in the
matter. The polarization current density J(r, t) is then

J(r, t )—:dp
dt

3 2 2Ie CO2&r2&y ' ~21/~v) ~21(21 e 21

AD v

We now substitute the result of Eq. (12):
(t —z/v)/T2 2

X e 'g t —— +c.c.
v

(22)

dp 1 « ~2]lr2] I
—(D~ z~U)'

d 21

dt 4m'Ep

& co21t —t /T2Xe " 'g(t)+c. c. (17)

The density of radiators n (r) is a function of the follow-
ing form:

n(r) =n,q(r),

1p~(r, t)

dt AD v

—(Dc@21/gv )

cosine

21 2i co (t —z/v) ( t —z/v)/T

Note that the above expression was calculated with the
simplifying assumption of an atom with isotropic optical
response, so that the polarization p is in the direction of
the field E~ (d). We now make an additional approxima-
tion by neglecting the lateral component (x) of p, assert-
ing that the lateral polarization components produced on
the atom by the different electrons in a finite-width elec-
tron beam cancel each other on the average. Also note
that the above expression was calculated for an atom lo-
cated at position (x,y, 0) and excited at time t =0. For
an atom located at coordinate r=(x,y, z) and excited at
time t =z/v we calculate

J„(r,co)=—f J(r, t)e ' 'dt,

ie N2]r2, y (D„ /y, )
3 2 2

J (r,co)= n(r)y e
z/v 47TCO

(24)

iQ)21(t —z/v) ( t z/v)/T2

1, jk,„~z&(j+—,'}A, , y&
—h y ~y&

q(r)= '

0, otherwise,

where j =0, 1,2, . . . , and h is the grating rulings' depth.
The grating base (y (y, —h) is neglected even though
there are certainly radiators there, because that part of
the grating is not periodic and therefore cannot contrib-
ute to the overall radiation.

We take the Fourier transform of the current density:

z
X g t —— +c.c. ,

v
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t'= t——z/v .
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(27)

D(x,y)7=
yv

IV. RADIATION CALCULATION

The overall spectral energy radiated by a single elec-
tron can now be calculated by inserting the Fourier
transformed current density into the classical radiation
formula [11].

e
CO2) C0 t /T2

~21 —l tL)z/v v 2
2

e e BU„1 }((,0dc0—
M 4n s()

' 1/2
2f (J Xk)e '"'dV dco, (29)

where

1 —(co2&~)
e

C02, +co i /T—2

Xe e
—Ja)z/v '/" T2 (28}

where J is the Fourier transform of the current density
and k is the radiation wave-vector. The integration is ex-
tended to all the atoms in the grating —the entire radiat-
ing volume. Note that r=r(x, y) in (28), and it limits the
effective interaction volume, and n(r) =n0q(r) [Eq. (23)]
introduces the efFect of the grating periodicity:
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2
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367T CE05
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x [I,(k„,k, )/2/I, (k, }/2, (31)

The calculated result for the spectral radiated energy is

c) U„

to the real part.

I,(k, }-=
sin

N„
2

CO kzA~
V

1 w
sin —co —k A,

2 v

(35}

„-~ yD
I,(k, ) reaches its maximal value when

N——k A, =2m',z w

I (k ) f Ld
( }

i(a —k v+i'/T2)(z/u)

0
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dz e
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where 0 is the elevation angle of radiation and N is the
number of grating periods involved in a coherent radia-
tion process.

The integrals I, and Ij are considered next:

A. =
m

C——cos8
V

m ly2y ~ ~ ~ ~ (36)

This is the Smith-Purcell radiation condition.
The integral of I~ cannot be calculated analytically in a

straightforward manner. A numerical calculation was
performed. In order to perform the numerical calcula-
tion, the above equation was written with variables that
are dimensionless:

w

sin
N

2

1
sin —co

2

—k, A. +i
U VT2

. A—k, A, +i
V VT2

(34}

I

I)(K„,K }=f du f dv 3/2e
k (u 2+ v 2)3/2

X (tt + )( p)

u =kx, v =ky, h'=kh, y1=ky,
We assume that T2 is sufficiently long so that the imagi-
nary part of the argument of Eq. (34) is negligible relative

k„kEC„=, X =, k =2m/A, 21 .
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The results are as shown in the graph of Fig. 3 for param-
eters P=0.5, y, =O (grazing electron). It may be seen
that the results of the numerical calculations have an
upper bound of the order of 1 and the dependence on
transverse radiation angles E,E is small.

Further calculations were done to see the effect of the
electron beam width on the radiation. These effects can
be seen through the dependence of the integral I~ on the
distance of the electron above the grating: yI. I~ is a de-
caying function of y, with a decay length yPA, 2, /2~.
This means that traversing electrons which pass above
the grating with y, »yPA2t/2m make a negligible contri-
bution to the integral and to the measured radiation. The
spectral radiant intensity which would be emitted from
an electron beam which fills up uniformly a layer of
thickness m above the grating is proportional to the
square of the integral of Ij over the beam thickness (from
0 to w). This is displayed in Fig. 4, where the parameter

f o Indy', is drawn as a function of m'=w2~/A2, , and in

Fig. 5 where the parameter ( I/ tc) jo I~dy I is drawn. In
both cases, E, =K =0 and P=O. 5. In an experiment in
which a uniform density sheet electron beam traverses
above the grating, filling up the space from the grating
face to a thickness w (controlled by an aperture), the radi-
ant intensity is proportional to the curve in Fig. 4. In an
experiment in which the beam thickness m is varied by re-
focusing the electron beam, keeping the total current in
the beam constant, the radiant intensity would be propor-
tional to the curve in Fig. S. In both cases it is shown
that, like other Smith-Purcell radiation mechanisms, the
effective range of electron interaction with the grating is
yPA, 2, /2m.

V. RESULTS

The spectral radiant energy intensity [Eq. (30)] includes
a term which is resonant in the energy-level difference be-
tween the two atomic levels. The "explosion" of the reso-
nance is damped by the coherence lifetime of the excited
atom T2. The radiated energy is dependent on the num-
ber of radiators squared, which is a typical result for
super-radiant processes. It is also proportional to the
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FIG. 4. Graph of radiation integral j Iz(K„,K~)dy~ v&

w' —the electron beam width in units of k» j2m. Here
K„=K =0, P=0.5.

number of grating periods which are involved in the pro-
cess. This is a result which is typical of Smith-Purcell
processes. As shown in Eq. (36), the resonance is
achieved when the radiation angle, wavelength, and grat-
ing period fulfill the Smith-Purcell radiation condition.

Super-radiant radiation is coherent radiation from
atoms that emit in phase with each other either because
they are close to each other (within a wavelength range)
or because of the periodic structure that has a "phase
ma c in~t hing" effect. It is instructive to estimate the num er
f toms that are made to emit coherently with each ot-

1-er in this process in order to assess the enhancement re a-
tive to incoherent spontaneous emission.

We proceed to calculate the number of radiators in-
volved in the process. The characteristic volume of the
grating that is involved in the radiation process is in the
shape of half a cylinder. The radius of the cylinder is
given by the penetration depth of the electron stimulation
into the grating. This can be seen from Eq. (12):
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FIG. 3. Graph of angular distribution of radiation I(E„,Ey ).

FIG. 5. Graph of the normalized radiation integral~

~ ~

I(K K )dy' /w vs w' —the beam width in units of A.21/2m. .
Here K, =K» =0, P=O. S.
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and the characteristic number of radiators which emit
coherently is

'lTQ v T2N=—n0
2co2)

We see that the number of radiators involved in the radi-
ation process and with it the radiated energy will be
strongly dependent on the velocity of the stimulating
electron and on the coherence lifetime of the grating ma-
terial.

A sample calculation of such a process was done as-
suming a grating made of ruby. This calculation gave the
result of relatively substantial radiation. To calculate the
result for ruby we used the data

A, =0.69 asm,

n =1X10~s m 3 (doping level —10 ppm),

t, „,=3X10 3 sec,

and to get the value of rz& the following formula was used
[8]:

8NPl0
tosppnt

=
3ETC flE ~spont

The result for the calculated radiation is

where 8 is the radius of the half cylinder or the penetra-
tion depth.

The length of the interaction region is L =vTz. This is
the distance the electron will travel during the time that
the coherence of the excited atoms is maintained. Thus,
when the electron reaches the end of this region, the
atoms at its beginning just go out of coherence. Thus the
volume Vof radiators is

V= ~~~'L

BVq = 1 X 10 photon/sterad-electron
an,

(39)

and the number of radiators involved is N =—1X10 . This
radiation level is of the same order of magnitude as that
measured in the experiment conducted by Gover et al.
[6] at Tel-Aviv University.

Thus quite a substantial radiation level results theoreti-

cally from this process due to the fact that the number of
"super-radiant" radiators involved is indeed quite large.
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VI. SUMMARY

We proposed a quantum-mechanical model for a pro-
cess that includes quantum excitation of atoms by
traversing electrons and "super-radiant" radiation of
those atoms from a periodical grating. It was shown that
such a process radiates according to the Smith-Purcell ra-
diation rule. For this process the radiant intensity levels
were derived and calculated through a classical formula.
As expected in a "super-radiance" process, the radiation
intensity is proportional to the square of the radiators'
density. The number of radiators (excited atoms) that
emit coherently with each other, as result of excitation by
a single traversing electron, was calculated to be quite
large. Radiation levels were calculated for a grating
made of ruby and shown to be quite significant. For fu-
ture study and experimentation, we suggest that it would
be interesting to conduct such an experiment with a pure
specimen of a two-quantum-level crystal such as gallium
arsenide. Due to the square law dependence of the radia-
tion intensity on the concentration of radiators [Eq. (31)]
such an experiment may yield high radiation levels.
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