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Non-Markovian analysis of coherence in a driven two-level atom
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Recent femtosecond processes [Phys. Rev. Lett. 66, 2464 (1991)] confirm the importance of non-

Markovian effects since the dynamical characteristic times of the system become of the same time scale
as the reservoir. We analyze here the memory effects in the density-matrix coherence for a driven two-

level atom in the stationary regime. The coherence parameter g is written in terms of the detuning, the

strength of the external driving force, and the temperature as the reservoir. We verify that the memory

effects, present in the density matrix, are enhanced by the external driving force. We introduce the

Shanon information entropy and we verify that, while in the Markovian approximation the entropy de-

creases monotonically as function of the detuning, in the non-Markovian approach it is characterized by
a minimum, which enables us to differentiate between the two processes.

PACS number(s): 42.50.6y, 42.50.Ar

I. INTRODUCTION

Non-Markovian effects have received special attention
in the past years, mainly in optics and radiation-matter
interaction subjects, either in predicting novel effects or
due to the necessity to go beyond the Markovian approxi-
mation in experiments involving femtosecond processes.
Among the experimental papers we can cite recent ones.
Tchenio et al. [1] prepared a non-Markovian atomic ex-
citation process, with adjustable memory time, using
correlated laser pulses and they verified that under
strong-field conditions the atoms are not able to keep
memory of the field phase and amplitude over a time in-
terval larger than the coherence time. Considering fem-
tosecond experiments [2-6],non-Markovian behavior ap-
pears in the optical dephasing of molecules in solution,
since the dynamics of the thermalized environment may
occur on the same time scale of the system.

Concerning the theoretical approach, Lewenstein,
Mossberg, and Glauber [7] predicted the suppression of
spontaneous emission related to the decay of cavity atoms
in the presence of a strong driving field, thus modifying
the spectrum of resonance fluorescence. Villaeys, Vallet,
and Lin [8] studied the non-Markovian effects in the
atomic absortion band shape for the transient and
steady-state regimes; they conclude that in the steady
state the appearance of the non-Markovian effects are
washed out and therefore they cannot be probed, but in
the transient regime these effects are perceptible. In this
same line Gangopadhyay and Ray [9] constructed a non-
Markovian master equation by considering density ma-
trices with small delay time v and then expanding up to
first power in this parameter; they obtained the same
qualitative results as in Ref. [8] in the transient regime;
furthermore, they extend their formalism to nonlinear
systems.

In the present work we are interested in analyzing the

non-Markovian coherence in a driven two-level atom
coupled to a thermal reservoir in the steady state and for
nonzero temperature. For such we investigate the coher-
ence parameter as well as the Shannon information entro-

py (SIE) as a function of the detuning and intensity of the
probe field for two different memory functions of the
reservoir.

%e verify that the coherence parameter and the SIE
are sensible in their shape to the correlation time of the
reservoir and the memory effects are enhanced by the
strength of the probe field. Even when the initial density
matrix has zero coherence it asymptotically has a finite
coherence that will depend on the detuning, the intensity
of the external field, the correlation time ~, and the tem-
perature of the reservoir. More importantly, one must
pay attention to the fact that only the SIE permits one to
differentiate between the Markovian and the non-
Markovian processes due to a distinct feature of the
latter.

The paper is organized as follows. In Sec. II the gen-
eralized master equation is introduced. In Sec. III the
asymptotic density matrix is obtained for two memory
functions of the reservoir. Section IU presents and ana-
lyzes the numerical results for the occupation probabili-
ties, the coherence parameter, and the entropy. Section
V is devoted to the conclusions.

II. GENERALIZED MASTER EQUATION

For the kind of Hamiltonian

Ho+ and Ho~ are the Hamiltonians of the system of in-
terest (4) and environment (A), respectively, V' is the
system-environment interaction, and V (t ) comes from a
time-dependent external force acting only on S. The cor-
responding quantum Liouville equation is
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i =[8„P(t)]+[0',P(t)]+[0'(t),p(t)], (2} P,'( t) =e""P'

where H0=H0++H0~. In the interaction picture this
equation becomes

ap, (t ) iLO~ t
i =[e ' f",pr(t)]+[e ' 0'(t),pr(t)], (3)

and

P~(t)=e "P'(t) .

where

p~(t )=e ' p(t )

and fott and fo are Liouville operators,

Note that Eq. (4) is exact; no approximations were as-
sumed for its derivation. Since we are interested in the
time evolution of the system 4, irrespective of the envi-
ronment, we take the trace over the environment vari-
ables and then we get the reduced density operator

P„(t)=Tr~P,(t);

where

i f d—t'[ P'~(t ), [f'~(t'), pz(t') ]]
i f dt—'[P~(t), [f ~(t'),p~(t')]], (4)

After integrating and iterating, Eq. (3) can be written as

ap, (t }
i =[0'~(t),p~(0)]+[V~(t),p~(t)]

moreover, assuming the conditions (1} V' has nondiago-
nal terms in the chosen representation, (2) p&(0)

=p&e(0)p&(0), where p~(0) =e o& ""/Tr~e Ho~ ~" is
diagonal in the representation in which we take the trace,
and (3}for all times p&(t) =p~e(t )p~(0), i.e., the environ-
ment behaves as an ideal reservoir that remains undis-
turbed independently of the strength of the interaction
V', Eq. (4} reduces to the generalized master equation
(GME}

p»(t )
i [i"~( —

)t,p»(t)] f d—t'Tr~[P'~(t), [f'~(t'), p»(t')p~(0)]] .

Again we stress that no hypotheses were made about the strengths of the interactions. In the Schrodinger picture we
have

pe(t )
i [Bott+—P' (t),pe(t)] —f dt'Tr&[P', [e ' P',p@(t')p~(0)]] .

0

Our physical problem is a two-level atom (4) coupled
to a reservoir (A), represented by a very large number of
harmonic oscillators (HO's) in thermal equilibrium at
some temperature T, and driven by a classical (c-number)
monochromatic electric field. For this case we have
(A'= 1 }

&.,= '(It)&ll-ls&&sl),
2

&o~ = g ~.std.

~'= g(&„'&tll&& tl+&„&„ll&(ll),

~'(t)=(Foe ' lJ &(tl+Foe ' lt&(Ll) .

In the above expressions
l 1 ) and

l l) are the states of the
two-level atom and m0 is the transition frequency. The
operators b„and b„, associated with the reservoir's HO's,
satisfy the bosonic commutation relations and the co„are
the frequencies of the oscillators. K„(K„*)are the cou-
pling parameters related to the atom-reservoir interac-

tion, while Fo (Fo ) are the coupling parameters con-
cerned with the interaction between the atom and the
electric field. These latter parameters are given by
Fo = —p.E, where )u is the atomic dipole matrix element
and E the electric field amplitude multiplied by the unit
vector in its direction; further, co, is the electric field os-
cillating frequency.

In order to get a solution for the reduced matrix opera-
tor we work in the interaction picture and we do an ex-
pansion ofp»(t ) in terms of a complete set of operators,

4
p»(t)= g IV, (t)O, ,

j=l
where

o, =lt&&tl,

o, =la) & sl,
o, =le)(sl,
o,=li &(ll,

being these operators orthonormal with respect to the
inner product



3306 J. R. BRINATI, S. S. MIZRAHI, AND G. A. PRATAVIERA

&o, Io, ) =Tr,o,'o, =s,,
Thus, the expansion (8) may be written as

peg«}=wi«)ll && &I+ wi«}II&& SI+wi(t)ll && il

+ w, (t )I 1 ) & 1 I .

WJ(p)= g X k(p. )Wk(0), j=1,2, (14a)

for the transforms WJ(p ) and Wi(p ). The solution of this
algebraic system yields

The normalization condition Troupe&(t)=1 leads to the
relation

W, (t)+W, (t)=1,

where

p&,k+(0 iz&, i+Q2i &,i)+ IFo I h(p }

p(p+Qii(p }+Qii(p)+2IFol'ii(p })
for the occupation probabilities, while for the coherence
coefficients we have Wi(t ) = W4(t )'.

The coefficients WJ (t ) are obtained from

Wi(t ) =Try[0; pttg(t )]; (10)

then, taking the time derivative of Eq. (10}together with
Eq. (5), we get the following set of difFerential equations:

W, (t)= g f dt'Q, „(t,t')W„(t')
k=1

whereas

W, (p ) —W2(p )
W)(p ) =iF()

p+i bto Qi3(p—)

and

W4(p ) = W&(p )' .

(14c)

(14d)

and

—( —1)~[iFoWi(t ) —iF() W4(t )],
j=1,2, (1 la)

W (t)= f dt'. Q, (t, t')W,"(t')
0

—( —1)~[iFo' W, (t ) —iF() W2(t )+i hcoWJ (t )],

In the above expressions,

j=3,4 . (1 lb)

Q»(t, t')=e '
[g,(t —t') +g, (t —t')],

Q44(t, t') =Qii(t, t')" ,

Wi(t }=e ' 'Wi(t),

W4(t ) =e' 'W4(t ),

j,k=1,2,

(12)

with hco=m0 —~, the detuning between the atomic and
the driving field frequencies. The functions g, (t —t') and

(2(t t') are correlati—on functions of the reservoir opera-
tors at difFerent times, given by

In these expressions it was assumed that initially
W&(0)= W4(0)=0, meaning an absolute lack of coher-

ence. The quantities Qik(p) and Q33(p) are the trans-
forms of Qjk(t ) and Q33(t ) and their expressions are

Q»(p)= f dtog(to)IJ:(~o)l'n(to)
0 p +(coo —to}

Q2i(p)= f dcog(oi)IK(io)l [n(to)+1]
0

2p

p + (coo co)

Q„(p ) = —f d n'og(to) IE(to) I'[2n(to)+ 1]

l

p i (to, —to)—

h(p)=
p +l Eco —Q3i(p )

+C.C.

in which we introduce the density distribution function
g(co) for the frequencies of the reservoir's HO's. In Eq.
(14b), h(p ) is defined as

(k(t t')= g IE (co )I e—

where

X [n(co )+5k, ], k =1,2, (13)

The coefficients W (t ) are finally obtained by applying
the inverse Laplace transform to W,.(p), j=1,2, and

W (p ), j=3,4, that is,

n(to )= &bt b ) =(e —1)

stands for the quanta mean value of the mth HO, k~ is
the Boltzmann constant, and T is the absolute tempera-
ture.

To solve the system (11) we use the Laplace-transform
method, which leads to a system of algebraic equations

and

W (t)= f dp e~'Wj. (p), j= 1,2,
2&l —

/ oo+6

Wi(t)=e+' "' f dp e 'W i(p)i,
2TP1 t oo +6

(15a)
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III. ASYMPTOTIC DENSl I Y' MATRIX

We are interested in the steady-state situation (t~ 00 )

and this is achieved by calculating the residue of the in-
tegrand at the pole p=0 in Eqs. (15); so we get in the
Schrodinger picture and

[Q„(0)5,, +Q„(0)5,,]+)E,)'k(O)

Q„(0)+Q„(0)+2~F,~'i (0)

(16a)

—le8' —e3

iFo [Qn(0) —Q2t(0)]

[Q)z(0)+Q~, (0)+2~Ep~ h(0)][+id') Q3—3{0))
(16b)

(17a)

and

In order to get analytical results for the steady-state diagonal and nondiagonal elements of p~, we have to introduce
shapes for the distribution function g(t0). Initially considering g(to}=go constant for all values of the frequencies, we

get the Markov approximation (MA) in which the W"'s acquire the form

[n(top)+512][y [n(cop)+ ,'] +b—co ] +2~F
p~

[n(cop)+ —,']
2[n(cop)+ —,'][y [n(cop)+ —,'] +hto +2~Ep~ ]

Ep (b,to—+i y [n (too)+ ,' ])—
2[n{o)+-,'][y'[n(~o)+-,']'+~~'+2IEoI'] ' (17b)

where y =2ngo~E(too)~ .
To characterize a non-Markovian process the function g(to) is assumed to have some nontrivial structure, distinct

from the flat one In the following we will consider two types of shapes for the distribution function the square and the
Cauchy, that depend on the heat-bath correlation time ~.

A. Square distribution

The distribution function is considered to have a flat shape for a limited interval of frequencies only,

gp, cop T co cop+1
—lg g —1

gto='
0, otherwise,

with width 2~ '. This distribution yields for 8'~",j=1,2,
~ ~

k{n(a)o)+ 2 )
[n(too)+5 2] y2[n(too)+ —,'] +hto 1 — ln

Qm 1 —Q
+2(Fp (2[n (a)p)+ —,

' ]

2[n(top)+ —'] y [n(top)+ z']2+bra 1,
—k(n(a)o)+

&
)

ln
Qm 1 —Q

+2IFp I'
(18a)

for Q (1,and

n(top)+5jz

2[n (top)+ —,
' ]

if Q) 1; and for 8'3,
k{n(coo)+—,

' )—Fo hco 1— ln
Qm 1 —Q

+iy [n (a)p)+ —,
' ]

l Ci) tS' =e
3 k{n(coo)+—,') 1+0

ln
Qm 1 —Q

for Q&1, and

2[n(a)o)+ ,'] y [n(co—p)+,']~+Lice 1—— +2[Fo(' .

(18b)

8'3 =e
2[n (cop)+ —,

' ]Leo 1—k(n (a)p)+-,' )
ln

Qm 1 —Q

(18d}
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if 0 & 1. In these expressions we introduced k =y~ and Q =h~~.

8. Cauchy distribution

The Cauchy distribution function is a smooth continuous function for all values of frequencies, i.e.,

1g(~)=go
1+(co—coo) 2

with a peak at co =coo. For this distribution we obtain for 8', j= 1,2,

[n(coo)+5.z]{y [n(coo)+ —,'] +bc@ [1+0 k—(n(coo)+ ,')]—]+2IF
OI [n(coo)+ —,'](1+0 )

2[n(coo)+ —,'][y [n(coo)+ ,'] —+hco2[l+02—k(n(coo)+ —,')] +2IFOI (1+f1 )]

and for W3",

Fo (1—+0 ) [bco[1+0 —k(n(coo)+ —,
' )]+iy[n(coo)+ —,

' ]]
W3" =e

2[n(coo)+ ,'][y—2[n(coo)+,'] +b—co[1+0 k(n—(coo)+ —,')] +2IFOI (1+0 )]
(19b)

for any value of Q.

IV. OCCUPATION PROBABILITIES,
COHERENCE PARAMETER,

AND ENTROPY

Besides the occupation probabilities of the levels, Eqs.
(17a), (18a), (18b), and (19), we also introduce the coher-
ence parameter and the Shannon information entropy to
analyze the system asymptotically. The former is defined
as

(20)

and the entropy is

than the one for the non-Markovian Cauchy distribution.
(3) The square distribution curve decreases, in all plots,

abruptly to a constant value, WP =n /(2n+ 1) at
Aco=v ', due to the logarithm function in expression
(18a).

(4) The external force strength Fo stresses the memory
effects, being the differences to the MA more significant
for hen around the value v '. For very strong forces,
(IFOI »y, b,co), WP =

—,', except when b,co &r' for the

square distribution, as one can see from the expressions
for S')".

(5) Keeping Fo constant, as the temperature, or n, in-

creases the memory effects lessen.

(21) B. Coherence parameter

where the

(22)

are the eigenvalues of the reduced density matrix.
We are interested in the behavior of the occupation

probabilities, the coherence parameter, and the entropy
as function of the detuning hen, the strength of the exter-
nal force Fo, the temperature, and the correlation time ~
of the reservoir. From now on in all figures the MA plot
is represented by a solid line, the Cauchy distribution by
a dashed line, and the square distribution by crosses.

A. Occupation probability

The occupation probability W," is plotted as function
of the detuning in Fig. 1 for three difFerent sets of (n, FO)
and fixed values of y=0.2 and v.=0.1. It displays the
following features.

(1) For hue=0, resonance, and b,~~ ~ all curves coin-
cide independently of the values of the parameters.

(2) The occupation probability for the MA is higher

The coherence parameter rI, Eq. (20), displays essen-
tially the quantum effects of the system since it compares
the diagonal elements with the nondiagonal ones of the
reduced density matrix. Even when initially the system is
in a complete mixed state, W3(0) = W„(0)=0, asymptoti-
cally W3" = W~"*%0, Eqs. (17b), (18c), (18d), and (19b).
This means that an external classical force induces a
coherence in the system even when it is coupled to a
reservoir. Obviously for Fo =0 then 8'3" =0 and there is
no creation of coherence. Figure 2 shows the plots of q
as function of b,co for different sets of parameters and the
main features are listed below.

(1) Again for b,co =0 and b,co~ oo all three curves coin-
cide for any set of parameters.

(2) Here the MA curve presents lower coherence than
the Cauchy distribution one, whereas for Aco&v. ' the
MA and the square distribution curves are almost totally
coincident.

(3) At b,co=r ' the square distribution curve now ex-
hibits a discontinuity: rI(b,co=a ')=0, although at the
left and at the right of this point it assumes quite different
values.
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FIG. 1. The occupation probability W&" as a function of the
detuning h,~ for diferent sets of n and I'o and 5xed values of y
and v; The solid line corresponds to the MA, the dashed line
corresponds to the Cauchy distribution, and the crosses corre-
spond to the square distribution.

FIG. 2. The coherence parameter g as a function of the de-
tuning hco. All curves correspond to the same distributions as
in Fig. 1.
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(a)

n =0.5
=0.2
=0.1

~ay

(4) The external force strength Fo stresses the memory
effects much Inore than in the occupation probability
case, Fig. 1. Now, for very strong forces 8'3 ~0 and q
vanishes, so coherence is destroyed, except when
A~ & 7. -' for the square distribution.

(5) Again, as the temperature increases, and keeping F„
constant, the memory effects become less pronounced.

(6) As an important point we note that at resonance,
Ace=0, the coherence is lowest and attains a maximum at
a value of Am depending, in a form that is not simple, on
F„,y, r, and n(coo)

Concerning the occupation probability and the coher-
ence parameter, we must note that, excluding the singu-
larity in the square distribution, the shapes in Figs. 1 and
2 do not permit one to distinguish between the Markovi-
an and non-Markovian processes in the stationary re-
gime. However, we will show below that the distinction
between the shapes is feasible by using the SIE.

C. Entropy

0 4

0.2 -,

o.o

Q«4-

w+~~r~+
+

+
++

+
+

+

A

=0.2
=0. t

Fo = 5

W «

It becomes crucial to analyze the behavior of the Shan-
non information entropy S as a function of the several pa-
rameters cited since the external force induces asymptoti-
cally finite-valued nondiagonal matrix elements for a den-
sity matrix, initially diagonal. In Fig. 3 we plot S as func-
tion of Aco for the MA and for the other two non-
Markovian expressions. Besides the general features re-
1ated to the behavior of the curves already mentioned in
Secs. IV A and IVB, we additionally observe the follow-
ing.

I1) Since at 6~=0 the memory effects vanish and the
coherence is the lowest, this implies a high value of S.

(2) As b,co~ ~ one gets for all cases W,"=0,
W P

= n j(2n + l ), and Wz" = ( n + l ) /(2n + l ), which are
the thermal equilibrium values in the absence of the
external force, then the entropy becomes lower than its
value at resonance.

(3) For intermediate values of b, co the memory effects
are important, leading to lower entropies than at the
value S(b,co~~). More importantly than the other
features we note that, while for the Markovian process
the SIE decreases monotonically, for the non-Markovian
one the SIE curue presents a minimum at hm- ~

which disappears as ~~0.
The fact that the SIE distinguishes between the two

processes can be exploited to analyze experimental re-
sults, as wi11 be discussed in the next section.

(c)

V. SUMMARY AND CONCLUSIONS

O.O
0 lQ 20 30 40 50

FIG. 3. The Shannon information entropy S as a function of
the detuning hm. A11 curves correspond to the same distribu-

tions as in Fig. 1.

In the present work our aim was to analyze the
influence of memory e6'ects and strength of an externa1
driving force on a two-level atom. Unlike previous works
in this same line, we concentrated our study on essential««

ly two quantities, the coherence parameter and the Shan-
non information entropy, besides the usual occupation
probabilities. We considered the reservoir constituted by
an infinite number of HO's and we assumed two types of
frequency distributions g(co), the Cauchy and the square.
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We were not concerned with the transient regime but
only with the steady state, since this is easier to work on
in experimental setups. As expected, the memory efFects
owe their existence to the driving force and, moreover,
they are enhanced by its strength, these effects being
more pronounced in the coherence parameter than in the
occupation probabilities. At resonance, hco=O, these
effects are small compared with higher values of hm, un-
less for hco~(x}, where the efFects vanish. We verified
that even when the coherence parameter is initially null,
i.e., the system is in a complete mixed state, at stationari-
ty there is a construction of coherence induced by the
external force irrespective of the process.

We also note from Eqs. (17}—(19) that for strong driv-
ing forces ( ~Fp ~

))7 Eco), the coherence disappears
(g =0 }, the occupation probabilities are equal
( WP = Wz" =

—,
' ), and the entropy attains its higher value

(S=ln2). Such a situation occurs either for the MA or
the non-Markovian treatments, unless hco&~ ' for the
square distribution, meaning the disappearance of
memory efFects. This behavior was experimentally
verified in Ref. [1].

In experimental setups the absorption band-shape
function is available and it is related to the imaginary
part of the susceptibility y"; and by using the Kramers-

W3" =e W,
"—W,

"
c )F40

i hta Q—33(0)

together with the condition W, (t }+W2(t }=1,the quan-
tities W&" and Wz" are also obtained. Therefore, with
W&", W2", and W3" calculated from the experimental
data, we can in the steady state draw the coherence pa-
rameter, g(b co), and the SIE, S(hco), curves; the presence
of a minimum in the S(hto) will characterize a non-
Markovian process.
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Kronig relations [10] one gets the full complex suscepti-
bility y. Now, since [8]

2 + EC0

3 IFol'

the W3" is obtained from the experimental results; from
Eq. (16b), rewritten as
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