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Gaussian noise and quantum-optical communication

Michael J. W. Hall
Department of Theoretical Physics, Australian National University, Canberra, Australian Capital Territory 0200, Australia

(Received 7 June 1993;revised manuscript received 11 January 1994)

The description of Gaussian noise for single-mode quantum fields is briefiy reviewed and applied to
calculate the maximal information properties of three quantum communication channels degraded by
Gaussian noise. These channels are based on (i) heterodyne detection of coherent states, (ii) homodyne
detection of squeezed states, and (iii) photodetection of number states. It is found that each channel can
outperform the others for a given noise level, where the optimum channel is essentially determined by
the product of the average noise and signal energies.

PACS number(s): 42.50.Ar, 42.50.Dv, 89.70.+c

I. INTRODUCTION

The quantum theory of light insists on a statistical
description for the properties of electromagnetic fields.
However, even in the classical theory, statistics are al-
ready required to model phenomena such as thermal ra-
diation, refractive index fluctuations, and scattering by
random media [1,2]. In general, such phenomena provide
unwanted noise and in optical communication theory
lead to the problems of detection and estimation of opti-
cal signals in the presence of noise [3,4].

For narrow-band classical fields, the most commonly
considered noise model is (additive) Gaussian noise [2,3].
The ubiquity of this model arises via the central limit
theorem [2], which implies that the sum of many in-
dependent random disturbances will typically have a
Gaussian distribution. Gaussian noise further provides a
worst-case scenario for the information properties of clas-
sical communication channels [5] and is therefore useful
in investigating the performance limits of such channels.

The analog of Gaussian noise for narrow-band quan-
tum fields is of obvious interest as a generic noise model
for quantum-optical systems and was first considered by
Glauber [6] for the case of the vacuum state. Various
generalizations have since been obtained to describe noise
added to coherent states [7,8] (see also Sec. V.4 of [4]),
squeezed coherent states [9,10], and photon number
states [11,12]. Some general properties were considered
in [13] and applied to obtain an upper bound for the mu-
tual information of narrow-band quantum channels de-
graded by Gaussian noise.

In Sec. II of this paper, the quantum representation of
Gaussian noise is derived for arbitrary states, in a manner
which clearly demonstrates its generic nature. No ap-
peals are made to thermal radiation, quasiprobability dis-
tributions, chaotic light, or master equations. Some basic

I

properties of quantum Gaussian noise, necessary for the
purposes of calculation, are briefly noted.

In Sec. III the channel capacities of three narrow-band
quantum channels degraded by Gaussian noise are calcu-
lated. These channels are based respectively on hetero-
dyne detection of coherent states, homodyne detection of
squeezed-coherent states, and photodetection of photon-
number states. Results are compared in Sec. III E and it
is found that the qualitative features difFerentiating per-
formance depend upon the product of the average signal
and noise energies. In particular, the number, squeezed,
and coherent-state channels become optimal in turn as
this product increases. Conclusions are presented in Sec.
IV.

II. GENERIC NATURE AND PROPERTIES
OF GAUSSIAN NOISE

A. Gaussian noise model

The simplest approach to quantum Gaussian noise is to
consider, in direct analogy with the classical case [2], a
single-mode field subject to displacements P„P2, . . . , P„
at times t&, t2, . . . , t„, respectively. For quantum fields,
such displacements are implemented via the Glauber dis-
placement operator

D(P) =exp(Pat P'a ), — (1)

and hence, assuming free-field evolution between succes-
sive displacements, the state of the field at time t ~ t„ is
described by the density operator

p'=U(t)pU (t), (2)

where p is the initial density operator and U(t) denotes
the unitary operator

—iNru( t —t„) —iKro( t„t„ t
)——iNco(t2 —f l ) —i%a)t lUt =e "D „e " " ' . e ' 'D(p, )e

=e ' 'D(P„e ") D(P,e ')

(3)
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=e ' '(a+p, e '+ +p„e "), (4)

just as for the classical case [2].
It is seen from Eq. (3) that the displacements corre-

spond to adding linear terms to the free-field Hamiltoni-
an, viz. ,

n

H=Aco(N+ ,')+i%—g5(t t, )[—P,a P' a—] . .

j=1
(5)

Such terms can model either the interaction of the mode
with classical field amplitudes p or radiation into the
mode from a classical current [6]. Note that more gen-
erally the displacements may act over nonvanishing time
periods rather than as 5-function spikes as in (5}, still
leading to an overall displacement of the field of the form
(3) [6].

Now suppose that the interaction process is of
a random nature, so that the quantities
p, exp(i cot, ), . . . , p„exp(i tot„) are random variables.
The statistics of their sum p is then modeled by some
classical probability distribution p(p), and the state of the
field at time t & t„ follows from (2) and (3) as
e ' "'D(p)pD (p)e' "' with probability p(p). An en
semble of such fields is therefore described by the aver-
aged density operator [14]

[In Eq. (3), N is the photon-number operator and e'» is an
unimportant phase factor. ] In the equivalent Heisenberg
picture the modal amplitude a' at time t ~ t„ is thus relat-
ed to the initial amplitude a by

a'=U (t)aU(t)

[4,7—10,12,15]. There are, however, a number of sound
reasons for avoiding the latter label. First, as mentioned
above, Gaussian noise provides a noise model applicable
to many different scenarios, so that the label "thermal" is
unduly restrictive. Second, it is important to distinguish
Gaussian noise from entirely different types of noise that
have also been labeled "thermal" in the literature
[16—18]. Third, an early motivation for labeling Gauss-
ian noise as thermal turns out to be misleading. Glauber
suggested in [6] that the "superposition" of two fields be
represented by the convolution of I' representations, lead™
ing Lachs [7] and Lee [15] to define thermal noise as aris-
ing from superposition with a thermal state. While such
thermal noise is equivalent to Gaussian noise [p&, in Eq.
(7) is the P representation of p„i, [6] ], the basis of this su-

perposition approach to Gaussian noise is conceptually
fiawed: the convolution of two I' representations does
not in general yield the P representation of any state (con-
sider the case of two number states). Similar remarks ap-
ply to the approach of Loudon and Shepherd [11],which
equivalently seeks to represent the superposition of two
fields by the multiplication of normally ordered charac-
teristic functions.

Finally, it may be remarked here that Gaussian noise
as defined by (6}and (7) could more exactly be referred to
as Gaussian displacement noise. This would serve, for ex-
ample, to distinguish (6) from the Gaussian phase noise
process„

F(p) = f .dip(P) exp(iNP)p exp( iN&), —

where p($) is a Gaussian distribution on the real line.

p, =e ' "' f d Pp(P)D(P)pD (P) e' (6) B. Properties

Since the predictions of quantum mechanics deal only
with ensembles, the effect of random displacements on
the statistics of the field is completely described by (6).
The randomness leads to a mixed-state description of the
field in general, even when the initial state is pure [cf. Eq.
(9.24) of [6] for the case of a (multimode) field initially in
a vacuum state].

The distribution p(p) in (6) is in general determined by
the environment of the field. However, the central limit
theorem states that under quite general conditions the
sum of a large number of independent amplitudes tends
to be Gaussian distributed [2]. In particular, if the quan-
tities p, exp(ieot, ), . . . , p„exp(i cot„) are stochastically
independent, with zero means and random phases, and if
n is sufficiently large, then the statistics of their sum p
can typically be modeled by a distribution of the form

p(p}=p(p) =(nn )—' exp( —
~p~ Inr ),

where n ~ is a variance parameter. Environments
modeled by Eqs. (6) and (7) may be called Gaussian noise
sources and include thermal radiation, gas discharges,
Cerenkov radiation, and other noncoherent macroscopic
light sources [6,7]. A further example is the zero-gain
linear amplifier (see Sec. II 8).

Gaussian noise, as defined by (6) and (7), has been com-
monly referred to in the literature as thermal noise"

No systematic exposition of Gaussian noise for quan-
tum fields appears to have been given in the literature.
Here several basic properties required for calculations in
Sec. III are noted. Attention is focused on the mapping
p~l'(p) defined by

1(p)= f d Ppr(P)D(P)pD (P), (9)

with pr (p) as in (7), since (i) the exponential factors in (6)
represent free-field evolution, which is well understood,
and (ii) these exponential factors can be removed by
transforming to the interaction picture [Eq. (19a) below].
It is convenient to adopt a notation whereby if Q denotes
some quantity calculated for state p, then Qr denotes
that quantity calculated for the state I (p).

First, for the normally ordered moment

M"'= tr[(a ')"a 'p] (10)

of state p, it follows as per Eq. (10) of [13]that

min(k, 1 )~kj ~ '

~ r~k —r t' —rr.n

Choosing k = I = 1 yields

(N&„=&N&+n, ,

and thus the variance parameter n may be interpreted as
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=exp( n—„~g~ )y(g) . (13}

the average noise energy added to the field. Evaluating
the quadrature and photon-number variances via (11)
leads to the result that just half a photon of Gaussian
noise is sufhcient to destroy all quadrature and intensity
squeezing for any state.

Second, let y denote the normally ordered characteris-
tic function for state p [19,20]. From (7) and (9) one has

yr(g)=tr[e'~ ' e'~'I (p}]

ap a tr ei&'(a —a 'eg(a —a)~
~ Q f Q ~

y

[It is worthwhile noting that the relationships between
the normally ordered, antinormally ordered, and signer
characteristic functions and their corresponding mo-
ments [19] imply that Eqs. (11) and (13) in fact hold for
all three orderings. ] Equation (13}may be recognized as
the characteristic function of a state subject to linear
amplification for time t (identifying nr with aNt, where cr

is a rate constant and lV is the total number of amplifier
atoms [21-23]), in the case of zero gain. Thus the corre-
sponding master equation [21—23] provides a dynamical
model for Gaussian noise. Note that this master equation
may be solved to give an explicit perturbation expansion

Zm m m m
I (p)=(1—z)g, g „(—1)"+'(at) "a'p(at)"a

m rs=0
(14)

for Gaussian noise [24], with z =n l(nr +1), which is useful for numerical calculations when nr is small.
Third, a formula for the number-state matrix element (m

~
I'(p }~n ) in terms of the matrix elements of p can be de-

rived following Vourdas [12],yielding

(n+j ~I (P)(n ) = g Rj,'(nr )(k+j ~P~k ),
k

where 8 'J' is the symmetric matrix function with coefFicients

n "+ min(n, k) k n+j
r r+j

1/2k+j
r+j

(15a)

(15b}

Choosing j =0 in (15a) yields the number-state distribution of I (p) in terms of the number-state distribution of p, and
for this case one has

g(0)( )
(1 U) U p(k — 0) 1+U

Ilk
( 1 + )k+( I!

for n + k, where P„' '@(x ) is a Jacobi polynomial [25]. More generally, (15a) and the property

r„.r.=r„.
derivable from (9}(where I'„denotes Gaussian noise of variance U ) imply that

Z'J'(U )=exp(. A (~'),

where A'J' is a constant matrix. The coefficients of A (i' may be calculated from (15b) and (18a) as

(16)

(17)

d
lf d 1f

v=0
= —(2n+1)5«+[n(n+j )]' 5g, k+(+[(n+1)(n+j+1)]' '~. +(,k (18b)

I (e' (tpe ' e) =e' el (p)e

I (D(a)pD t(a) )=D(a }I(p)D (a),
tr[AI (B)]=tr[I (A)B] .

(19a)

(19b)

(19c)

The addition of Gaussian noise in the interaction repre-
sentation p, =exp(iN cot )p, exp( i N cot ) follows from—(6)
and (19a) simply as p, =I (po), emphasizing the funda-
mental role of the mapping I in describing Gaussian

Equations (15), (16), and (18) will be used in Sec. III D
and the Appendix to calculate information properties of
number-state channels degraded by Gaussian noise.

Finally, three useful invariance properties of Gaussian
noise will be noted here, which follow from (9) and prop-
erties of the Glauber displacement operator [6,19]:

I

noise for quantum fields. Equation (19b) implies that
adding noise before or after a displacement leads to the
same result, and further implies simple representations
for the e8'ect of Gaussian noise on heterodyne and homo-
dyne statistics (Sec. III). Equation (19c) proves useful for
simplifying expectation values of the form tr[AI (p)] in
cases where I ( A ) may be easily evaluated.

III. APPLICATION TO NARROW-BAND
COMMUNICATION

A. Notation

For a narrow-band optical channel, with center-
frequency f and bandwidth B ((f, a selected transverse
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mode is held fixed and the symbols are encoded on an or-
thogonal set of longitudinal modes. The narrow-band re-
striction allows each symbol s. to be represented by a
density operator p corresponding to a single-mode field
of frequency f, and the average transmission rate is 8
symbols per unit time [18,26]. To enable discussion of as
wide a class as possible of measurements at the receiver
(including heterodyne detection in Sec. IIIB), it will be
assumed only that the measured quantity A is represent-
ed by a probability operator measure [4,18,27]; i.e., by a
set of positive operators [ Ak ] that sum to the identity
operator, and such that the probability of output value a&
for input state p is given by tr[ 3kp].

The mutual information per symbol for such a channel,
representing the quantity of information that may be
transmitted over the channel without error, is given by
[5,18]

I=I(~ l&&gjpj ) &J(—JII( ~ Ipj. ), (20a)

where state p is transmitted with probability g, , and

H(~ Ip)= —&k «[~ip]»«[~kp] (20b)

denotes the entropy of the output distribution for input
state p. The logarithm base in (20b) can be chosen as any
number b)1, with the choices b=2 and b=e corre-
sponding to units of "bits" and "nats, " respectively.

Maximizing the mutual information subject to any
channel constraints yields the capacity of the channel [5].
A general upper bound for the capacity of narrow-band
quantum channels degraded by Gaussian noise of vari-
ance nr is given by [13]

represent the annihilation operators for the signal and
image-band fields, respectively [18,28,29]. Heterodyne
detection thus estimates the complex amplitude of the
signal field, subject to image-band noise, and is therefore
appropriate for extracting information from the well-
defined complex amplitudes of coherent states.

For the case of uncorrelated signal and image-band
fields, represented by density operators p and p, respec-
tively, the measurement statistics of ideal heterodyne
detection are given by [30]

P(P)=~ 'tr[D=(P)p;D "(P)p] . (24a)

Here P denotes the complex eigenvalue P, +iP2 of a+6,
D(l3) is the Glauber displacement operator in (1), and P;
is related to the image-band state p; via the (antiunitary)
transformation

p,. = y ~m &&n(( —1) +"&m~p, ~n &* .

For evaluation purposes the operators in (24a) and (24b)
are all defined on a single Fock space with annihilation
operator a. The measurement statistics in (24a) corre-
spond to the continuous probability operator measure

'D(P)p;D (P)] (see Sec. IIIA), where P ranges over
the complex plane.

Gaussian noise in the signal and image-band fields
combines additively. In particular, let the signal and
image-band fields each be subject to Gaussian noise, of
variances U and m respectively. It follows using Eqs.
(15a), (15b), (17), (19b), (19c), (24a), and (24b) that the
detection statistics can be written as

n +1

+(n, +nr ) ln 1+ 1

n, +n

1—n ln 1+r n r
(21)

P„(P)=m ' tr[D(P)I"„(p, )Dt(P)I', (p)]

=m
' tr [ I"„[D(P)I (p; )D t(P) ]p]

' tr[D(P)I „+ (p;)D (P)p] .

It may similarly be shown that

P„(P)=~ ' tr[D(P)p, D (P)l', + (p) ] .

(25a)

(25b)

where

n, =X,g tr[Ep,. ] (22)

n,I,i„„„i(n„n ) ~ ln 1+c assica s s r

denotes the average photon number per signal. In the
limit of large noise levels (n ~0D), Eq. (21) becomes
equivalent to the corresponding classical bound [5]

From Eqs. (25) it follows that only the sum of the noise
variances is relevant to the detection statistics.

Consider now a narrow-band communication channel
based on the transmission of Glauber coherent states,
which are to be resolved via ideal heterodyne detection
with a vacuum-state image-band field. If the channel is
subject to Gaussian noise of total variance n, then the
output distribution for input state p follows from (24) and
(25b) as

The channel capacities of various narrow-band
quantum-optical channels are examined in Secs. IIIB,
III C, and III D below, and comparisons are made with
(21) and (23).

P (Plp)= '&Pll (p)IP&,

leading via (9) to the simple convolution relation

P~=p eP, (26b)

B. Heterodyne detection of coherent states

It has been shown that under ideal conditions, optical
heterodyne detection measures the (commuting) real and
imaginary parts of the operator a+&, where a and b

where P denotes the output distribution in the absence of
noise.

For the coherent input state ~a & & a~ it follows from (7),
(26a), and (26b) that Pr is the convolution of the Gauss-
ians p r and ( & a

~ P & (, yielding



50 GAUSSIAN NOISE AND QUANTUM-OPTICAL COMMUNICATION 3299

P„(Pla)=m '(nr+ I )
' exp[ —lP —al /(n«+ I)] .

(27)

The capacity of the channel for a given average signal en-
ergy n, can now be determined by maximizing the mutual
information (20a} subject to the constraint

n, =fd ag'(a) lal (28)

where g(a) denotes the prior probability of transmitting
state la & & a l. But Eqs. (27) and (28) are equivalent to the
case of a classical channel with additive Gaussian noise,
subject to a quadratic constraint [5], for which the op-
timal prior distribution is well known to be [5,18]

In the limit of high noise levels (n »1), the channel
capacity (30) approaches the quantum upper bound (21),
so that the coherent-state channel discussed here be-
comes optimal. This is related to the property that, un-
der the addition of Gaussian noise, coherent states have
the smallest increase in entropy relative to all other states
[13]. However, for sufficiently low noise levels the
coherent-state channel is not optimal, as will be seen
below.

C. Homodyne detection of squeezed states

Ideal homodyne detection provides a sharp measure-
ment of the quadrature-amplitude operator

g(a)=(nn, ) 'exp( —lal /n, ) . (29) X =
—,'(ae' +a e ' }8 (31}

Substitution of (27) and (29) in (20a) then yields the capa-
city per symbol of the channel as

I""(n„nr}=ln 1+
n +1 (30)

The capacity (30) is similar to the classical capacity
(23), but with a minimum "quantum noise" of one pho-
ton. A semi-classical derivation of (30) is given by Gor-
don in [31], which more generally predicts a minimum
"quantum noise" level of c. ' photons, where c denotes
the quantum ef6ciency of the photodetection process.
For the case where no Gaussian noise is present (n« =0),
the channel capacity is derived in [18,26].

=e'"' '&x ll'(ly &&z l)lx & (32)

follows from (19b), and therefore the left-hand side of (32)
vanishes unless y =z. But

for some fixed value of 8, and hence is suitable for distin-
guishing between states characterized by well-defined
quadrature-amplitude properties (e.g., quadrature-
squeezed states) [18,28].

If [lx &] denotes the eigenket basis for Xe (where x
ranges over the real numbers}, then the relation

&xll'(ly &&zl)lx &

=&xle
' 'I'(e' 'ly&&zle

' ')e' 'lx&

&xll(ly &&yl)lx&= f d' ap, ( a&)xl D( aly)&&ylD (a)lx&

apz a x —
&y yx-

=(en ) f f dP&dPz exp[ —(Pi+P2)/n r ]5(x —Pi —y )

=(nn )
'i exp[ —(x —y) /n ], (33)

pr =pr e'p (34a)

for the effect of Gaussian noise on the statistics of homo-
dyne detection, where p denotes the one-dimensional
Gaussian distribution

where P, +iPz denotes the decomposition of ae' into
real and imaginary parts. Hence if p(x)=&xlplx &

denotes the statistics of homodyne detection for state p,
Eqs. (32) and (33) yield the simple convolution relation

I

and suppose that these states are to be distinguished by
ideal homodyne detection. The signal states in (35) have
amplitudes squeezed in the Xo quadrature, so that 8=0
will be assumed. In the absence of noise, the output dis-
tribution for input state ly, r & is given by [18,32]

p(xly, r}=l&xly, r &l'

= [2e "/n ]'i exp[ —2(x —y ) e "] .

pr(x)=(mnr) 'i exp( x lnr) . — (34b)
Equations (34a) and (34b) then yield the general result

ly «& =D(y )S(r)IO& yam, r &0,
where S(g}denotes the squeezing operator [32]

S(g)=exp[ —,'g'a —
—,'g(a ) ],

(35)

(36)

Equation (34a) may be compared with the analogous re-
sult (26b) for the statistics of heterodyne detection.

Consider now a narrow-band channel based on the
transmission of the quadrature-squeezed states

p„(xly, r)=[a.(n +—,'e ')

Xexp[ —(x —y)2/(n + —,'e ")] (37)

for the output distribution when Gaussian noise of vari-
ance nz is present.

Assuming the squeezing parameter r is held fixed, the
average energy per signal is given by [18,32]

n, =sinh r+ f dy g(y)y (38)
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FIG. 1. Contour plot of the optimal squeezing parameter r
for the squeezed-state channel of Sec. III C, with exp(2r) given

by the argument of the logarithm in Eq. (40).

where g(y) denotes the prior probability of transmitting
state ~y, r ). In analogy with Sec. III B, Eqs. (37) and (38)
are equivalent to the case of a classical channel with addi-
tive Gaussian noise and a quadratic constraint, and the
capacity of the channel for fixed r follows as [5]

I'q(n„n, r )

=
—,
' in[1+2(n, —sinh r)/(n + —,'e ")] . (39)

Finally, optimization over r in (39) yields a "best" chan-
nel capacity per symbol of

(1+4nr[2n, +n +r1])'~ —1

(40)
2ll

y

I'q(n„n ) =ln

I'q(n„nr ) ~ I""(n„n )

where exp(2r ) is given by the argument of the logarithm
in (40).

The dependence of the optimal choice of squeezing pa-
rameter on n, and n is indicated in Fig. 1, and it is seen
that zero squeezing becomes optimal as the noise level in-
creases. The zero noise case (nr =0) has been discussed
in [18,26]. From Eqs. (30) and (40) it follows that the
squeezed-state channel outperforms the coherent-state
channel of Sec. III 8 whenever the product nr(n, —1) is
less than unity, i.e.,

FIG. 2. Channel capacity versus noise variance for the
coherent and squeezed-state channels (solid lines); plotted from
Eqs. (30) and (40) for an average signal energy n, =100. The
crossover point follows from Eq. (41) as n~ =1/99. The quan-
tum upper bound (21) and the classical upper bound (23) are
also plotted for comparison purposes (dotted and dot-dashed
lines respectively).

I = —g g 1ng —g („H„,
m n

where

= gR'„'(nr)g„,
n

H„= —gR'„'(n )lnR'„'(n ) .

(42a)

(42c)

To determine channel capacity, consider the variation-
al quantity

following from (12} and (15a), the extremal equations
BJ/B(„=0 may be solved for the optimal prior distribu-
tion [(„],to give

where A, and p are Lagrange multipliers constraining the
normalization of [g„] and the average signal energy n, .
Using (18a) and the properties

gR'„'(n )=1, gnR'„'(n )=m+n

if and only if n (n, —1) ~ 1 . (41)

This result is illustrated in Fig. 2 for the choice n,, =100
and is discussed further in Sec. III E.

g„= gR' „'( nr )Z 'exp ——Pm —g R'0„'( n)H„—
D. Photodetection of number states

The last type of quantum channel to be considered here
is based on the particle aspect of light. To be particular
then, suppose that the photon-number state ~n )(n

~
is

transmitted with prior probability g„, and that an ideal
measurement of photon number is made at the receiver.
If a number-state channel is subject to Gaussian noise of
variance n „ the mutual information follows from (15a),
(20a), and (20b) as

where

Z = g exp —Pm —g R ' „'( nr )H„—(45b)

n, = g ng'„= —— lnZ n, — (46}

The parameter P is determined implicitly by the average
signal energy via the relation
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following from (44), (45a), and (45b).
The channel capacity per symbol can now be calculat-

ed by substituting Eqs. (45) into (42), yielding the "ther-
modynamic" expression

I"" (n„n~)= lnZ —P lnZ . (47)

For the case of zero noise (nr =0), R ' '( n—r } reduces to
the identity matrix, implying Z=(1—e ~), and lead-
ing to the well known result [17,31,33]

I"" (n„0)=ln(n, +1)+n, ln(1+I/n, ) . (48)

This capacity in fact attains the quantum upper bound
(45) for the zero-noise case (see [13,18,34] for further dis-
cussion), implying that the number-state channel has
near-optimal information properties for suSciently low
noise levels.

More generally n„)0, and the channel capacity (47)
must be evaluated numerically (see Sec. III E). However,
for n « 1 and n n, & (4m e ) ', one has the approximate
formula (see Appendix)

1+C pg

Inurn(n n } 1 ln
4n. n y

(49}

where C=0.5772157 denotes Euler's constant. Note
that this is approximately one-half of the classical chan-
nel capacity (23). The restriction nr «1 is physically
relevant since, for example, thermal radiation of tempera-
ture T-300 K and frequency f-10' Hz corresponds to
a noise variance nr —10 . Approximation (49} is ex-
plored further in the following section.

E. Comparisons

A plot of channel capacity versus average signal energy
is given in Fig. 3 for the coherent state, squeezed-state,
and number-state channels discussed in Secs. III B, III C,
and III D, respectively. The noise variance is chosen to
be nr =10, and the capacity upper bound (21) is also
plotted. The Sgure indicates that the number-state,
squeezed-state, and coherent-state channels each become
optimal in turn as the average signal energy n, increases.

~14
~~ 12

10
c 8

6
8 4
0

0
1 10' 10' 10' 10'
average signal energy n,

FIG. 3. Channel capacity versus average signal energy for
the coherent-state, squeezed-state, and number-state channels;
plotted from Eqs. (30), (40), and (47) for the choice n„=10
Approximations for the crossover points are given in Eqs. (50a),
(50b), and (50c). The dotted line indicates the quantum upper
bound (21).

I'q(n„nr)=I "(n„n„) for nrn, =l . (50c)

Equations (50) are in good agreement with Fig. 3, and in
general indicate that the qualitative features
difFerentiating performance depend upon the product of
the signal and noise energies, at least for the case n &(1.

IV. DISCUSSION

Gaussian noise is seen to provide a generic model for
the effects of random linear excitations on single-mode
fields (Sec. IIA). The various properties noted in Sec.
II B are therefore expected to have a wide range of appli-
cability, particularly in regard to determining the robust-
ness of various quantum-optical systems with respect to
noise.

One obvious application, motivated by analogy with
classical information theory, is to study the efFects of
Gaussian noise for quantum communication channels.
While preliminary results are given in Sec. III, the op-
timal channels discussed there are rather more theoreti-
cal than practical in interest, as the corresponding chan-
nel capacities (30), (39), (40), and (47) rely on the availa-
bility of an in6nite choice of signal states and zero signal
attenuation.

It is important to also make noise calculations for
channels based on the transmission of a small number of
signal states and to model signal losses. Results such as
the perturbation expansion (14},the number-state repre-
sentation (15), and expressions (25), (26), and (34) for the
effects of Gaussian noise on heterodyne and homodyne
statistics may be of use to such calculations, while the
thermal noise model in [16] may be useful for modeling
the combined effects of Gaussian noise and attenuation.
Note that Helstrom [4] and Yoshitani [8] have examined
error rates for channels based on transmission of two
coherent states in the presence of noise, Vourdas [35] has
numerically calculated error and information rates for
channels based on the transmission of two number states,
and Srst-order results for the error rates of general
number-state channels degraded by noise are given in
[13].

A primary motivation for studying the coherent-state,
squeezed-state, and number-state channels in Secs. IVB,

Further, Eqs. (30), (41), and (48) imply that the ordering
of optimality remains the same if instead the noise vari-
ance nr is increased for a fixed value of n, [though note
from (41) that the coherent-state channel never actually
achieves optimality if n, & 1].

Approximation (49) for the capacity of the number-
state channel may be used to predict the crossover points
in Fig. 3. In particular, for nr «1 one finds from (30),
(40), (41), and (49) that

I"" (n„n )=I'~(n„nr)
axe'+c

for n n,=, =0.051, (50a)1'
( 16~ e 1+c)2

I'" (n„n )=I""(n n )

e1+C
for nrn, = =0.385, (50b)

4m
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IV C, and IV D, respectively, was to determine the rela-
tive robustness of various properties of light with respect
to noise. In particular, these channels respectively ex-
ploit wave, quadrature-amplitude, and particle properties
of radiation. Results indicate that it is the wavelike
coherent-state channel of Sec. IV B that is the most stable
when either noise energy or signal energy is increased,
while the particlelike number-state channel of Sec. IV D
is the least stable [see Figs. 2 and 3 and Eqs. (50a), (50b),
and (50c)]. This "information" stability of the semiclassi-
cal coherent states, in the limits of high noise and high
signal energies, is related to a minimum-entropy property
of these states in the presence of noise [13,36], and hints
at a strong connection between noise and classical
decoherence [36,37]. It would be of interest to determine
the robustness of channels based on the phase properties
of light (some results for the zero-noise case are given in

[38]).
Finally, it should be remarked that the assumptions

used in Sec. II to derive the Gaussian noise model place
limits on its physical applicability. For example, the am-
plitude correlation function for a state p subject to
Gaussian noise follows from (6), (7), (9},(11),and (19c) as

(at(0)a(t)) =tr[a e ' '1(a)e' 'p]
—iNruta i¹oi

]

=e '"'(a (0)a(0)), (51)

and thus the spectral density function, proportional to
the Fourier transform of (51) [39], is a 5 function peaked
at co. Hence Gaussian displacement noise is inappropri-
ate for modeling line-broadening processes. This limita-
tion is essentially due to the linear nature of the excita-
tions assumed in Sec. II (as is well known, Lorentzian line
shapes can be obtained from the Gaussian phase noise
model (8) [39]).
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For n~ && I &&n„ the channel capacity then follows from
(A2) and (20a) as

I=ln[n, . +n, +1]+(n,+n~ )in[1+(n, +n, ) , ']
——g („H„

=inn, e —g g„H„.

To estimate H„ in (A3), it will be assumed that the
photon-number distribution of I'(~n )( n~) is approxi-
mately Gaussian for n~ &&1 &&n, i.e.,

R' '„(nr)= — exp[ —(m —iu„) /(2o„)] .
21TOq'

The mean value p„and variance cr„are determined via
{11)and (12) as

p,„=n+n~=n, o„=n (2n+nr+1}=2n n .

Note that Eq. (16) and the asymptotic expansion of Jaco-
bi polynomials (theorem 8.21.7 of [40]) imply

R' '(n )=(4mnn )
' +0(n

)

in agreement with (A4) and (A5), while the intensity dis-
tribution for a classical signal of intensity J degraded by
Gaussian noise follows from Eq. (2.4. 11) of [41]as

P(I
~
J ) = (2n, )

' exp[ (I+J ) /n ]ID(—2&IJ /n r ),
which for nr, ~I —J

~

&& 1 reduces to

P(I
~
J}=(4mn~J) ' exp[ (I J) —/(4n~—J)],

in direct analogy with (A4) and (A5).
From (A4), (A5), and (42c), one may approximate the

entropy H„by the entropy of a (continuous) Gaussian
distribution of variance 0.„,i.e.,

0„=—,
' ln4m. en n .

This approximation is checked numerically in Fig. 4 for
the case nr =10 . It is sensible only for n~n ~ (4m.e)

APPENDIX

g„=n,"/(n, +1)"+', (A 1)

it will be assumed that this distribution remains approxi-
mately optimal for n «1. Hence, using (14), (17},and
(42b) of the text,

=(n, +n ) /(n, +nr+1) (A2)

Approximation (49) of the text, for the capacity of
number-state channels degraded by Gaussian noise, is de-
rived here via simple arguments. More sophisticated
analyses based on Eqs. (45a) and (45b) do not appear to
give significantly improved results.

First, noting that the optimal prior distribution for the
zero-noise case follows from (45) and (47) as the thermal
distribution,

R

es m

0
g -1--
0

1 10 100 1000
photon nu~ber

FIG. 4. Entropy of the nth photon-number state when de-

graded by Cxaussian noise, plotted from Eq. (42c) for the choice
n ~

= IO ' (solid hne} and the corresponding approximation (A6)
of the Appendix (dotted line). The ordinate units correspond to
the choice of the natural logarithm base e in Eqs. (42c}and (A6}
Csee Sec. III A).
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n,g g„H„=—,
' 1n4srenr+ ,'(—n,+1) ' g inn

n, +1
=—,

' ln4sren +(2n, )
' J dx exp( —x/n, ) lnx

=
—,
' ln4sren +—,'E, (n, '), (A7)

to ensure a positive entropy, and hence this inequality
will be assumed to hold on average in what follows, i.e., it
will be assumed that nrn, (4sre) ' in addition to
n r « 1 « n, . It may be checked via (14}that Ho =0 for
n r « 1, and hence from (Al) and (A6) it follows that

n 1+c=
—,
' ln

n 4n
(AS)

for the channel capacity per symbol, as given in Eq. (49)
of the text.

where Ei denotes the first-order exponential integral [25],
and n, &&1 has been assumed. But for x (&1, one has
E i (x )= —C —lnx [Eq. (5.1.11) of [25] ], where
C =0.577 215 66. . . denotes Euler's constant. Hence
combining (A3) and (A7), one has the final approximation

I=inn, e —
—,
' ln4srenr —

—,'( —C+lnn, }
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