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Multilevel light-induced continuum structure: Strong-probe and stabilization efFects
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We present an analytical solution to a multilevel model of light-induced continuum structure, in

which, instead of a single level, a quasicontinuum of excited levels is laser embedded into a previously
structureless atomic continuum. The found solution is fully time dependent and is valid for probing
strengths of the structured continuum from the ground level by another laser, which can vary from being
much weaker than the embedding one to being as strong as the embedding one. For three different
embeddings (weak, moderate, and strong), each one determined by a different relation between the ion-
ization rate y and the spacing 6 of the quasicontinuum levels (A'y/6 «1, Ay/4 =1, and fiy/5 &&1), we

study the evolution of the ionization spectrum with increasing probing strength. We observe and inter-

pret such strong-field effects in the spectra as (i) conversion of a Fano-like train of peaks into a train of
dips; (ii) peak moving, narrowing, and lowering; and (iii) saturation, population trapping, and stabiliza-
tion against ionization.

PACS number(s): 32.80.Rm, 42.50.Hz

I. INTRODUCTION

In its fundamental formulation [1], the model of what
is termed a light-induced continuum structure (LICS) in-
volves only a pair of discrete levels (the ground and an
excited), which are Raman coupled via structureless con-
tinuum by the use of two separate 1asers. The strong
laser, embedding the excited level into the continuum, is
known to dress this continuum introducing some struc-
ture into it with the position and width of this structure
depending on the embedding-laser frequency and intensi-
ty. If such a structured continuum is probed from the
ground level by a weak laser, it usually gives a resonant-
like profile when measuring ionization versus probe-laser
frequency. Asymmetry of this profile is what is tradition-
ally considered as evidence of LICS. However, it has
been known since 1986 [2-4] that under the LICS condi-
tions a supplementary Raman coupling between the two
discrete levels of the LICS model, i.e., the coupling that
employs non-resonant bound states of real atom as an in-
termediary, plays its role as well. The effect of this addi-
tional coupling is to symmetrize the profile and thus to
mask the pure LICS efFect. Now we know that not only
this additional coupling, but also realistic atomic parame-
ters and the actual spatiotemporal characteristics of the
lasers [5], as well as continuum-continuum transitions [6],
must in genera1 be taken into account to explain the
LICS phenomenon. As a comprehensive review article
on a LICS is available we refer the reader to it [7] instead
of quoting a number of papers discussing a LICS in a
variety of contexts, e.g., the context of optica1-
polarization rotation, third-harmonic generation, fre-
quency up-conversion, multiphoton ionization,
photoelectron-spin polarization, population trapping, and
control of ionization rates. Though known for many
years, the LICS has achieved direct experimental evi-
dence in ionization only very recently. At the end of
1991 two groups did report the observation of a LICS in

atomic sodium [8,9]. In both experiments the ground lev-
el was that from which the structured continuum was
probed. Depending on the experiment, the excited level
embedded into the continuum was either 4S or 5S. Both
experiments consisted in measuring the ionization signal
versus the frequency of the probe laser and in both a sub-
stantially asymmetric profile was actually observed. In
the middle of 1993 one of these groups [10] reported
direct observation of a LICS in ionization of calcium
atoms where real autoionizing states contributed essen-
tially to the effect. Quite recently the possibility of ob-
serving a LICS in multiphoton detachment of the elec-
tron from negative ions was contemplated [11], and in
[12] an analog of a LICS in photonic continuum was con-
sidered.

It is rather a simple task to point out the situations in
which the fundamental model of a LICS is expected not
to work well. One such a situation is when the excited
level has some internal structure or it is in the company
of another close-lying level. In fact, the model of a LICS
with a pair of excited levels, dictated by the appropriate
experiment [2], was worked out by us [13] and shown to
give a richer ionization spectrum. The extreme seems to
be the case when a highly excited level lying close to the
ionization edge is laser embedded into continuum. Be-
cause of high density of levels in this region, their ioniza-
tion broadening, and finite bandwidth of the laser, the
term "isolated level" bears no sense any longer. In this
case it is adequately to speak about a group of levels,
forming some type of quasicontinuum, being laser embed-
ded into continuum. Such a multilevel model of a LICS
was recently introduced by us [14] and solved, but only in
the limiting case of a weak probe. At present, we give
and discuss general solution of our multilevel LICS prob-
1em, nonperturbative with respect to both laser intensi-
ties, the solution which also covers the case when probing
is as strong as embedding. The advantage of the general
solution presented is its completely analytical form. Ob-
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viously, to achieve such an analytical solution we had to
make a number of approximations. The most important
of them concerns modeling of the embedded quasicontin-
uum by the Bixon-Joertner structure (e.g., [15—19]).
Though an idealization, the Bixon-Joertner quasicontinu-
um is often considered as a good first approach to any
real quasicontinuum, particularly of Rydberg type in the
so-called semiclassical region [20]. Thus the results,
though obtained within the model, are believed to have a
correspondence to real atomic objects. Another impor-
tant approximation is that of rectangular-in-time optical
pulses, which we have made in fact, though we are aware
of the role of the pulse shape in the interpretation of ex-
perimental spectra of the LICS [5). These two approxi-
mations, when put together with the rotating-wave ap-
proximation (RWA), pole approximation, and semiclassi-
cal approximation for bound-free matrix elements, have
made our multilevel model of the LICS analytically so1v-
able for arbitrary laser pulse intensities and durations.

Our paper is organized as follows. In Sec. II we
present formal theory. Section II A is devoted to intro-
ducing our general model, called the ¹ype model, and
solving it completely in the Laplace domain. Then this
solution is specialized In Sec. II 8 to a simpler model of A
type, obtained from the previous one by ignoring one of
the two atomic continua originally included. In Sec. II C
we present analytical time-dependent amplitudes for all
levels of our A model, obtained by adopting the Bixon-
Joertner quasicontinuum. Our representative results are
then given and discussed in Sec. III, with emphasis on
strong-probe and stabilization e8'ects. %'e end our paper
with a summary in Sec. IV.

II. THEORY

A. General N-type model

The essence of our model (Fig. 1) is a stimulated Ra-
man transition between a low-lying isolated discrete level,
to be referred to as the ground level, and a set of high-
lying closely spaced discrete levels forming some type of

P-nd
continuum C' '

quasicontinuum (QC). This Raman transition is assumed
to be accomplished by two independent laser pulses em-

ploying the structureless atomic continuum (C) as an in-

termediary. Obviously, another intermediary formed of
the off'-resonant bound states lying below ionization
threshold should in general be considered as well when
two lasers are applied [2—7]. Since the effect of this addi-
tional intermediary is only to redefine [3,4] the appropri-
ate Pano parameters, to be introduced later on, we have
decided not to reveal it in Fig. 1. The laser pulses are as-
sumed to be overlapping in time and we idealize them as
having a rectangular time envelope. %e attach the index
0 to the ground level and indices p =1,2, . . . , k to the lev-

els in the QC, allowing k to tend to infinity in the extreme
case. To save space, when writing down equations of
motion„we also introduce the index n encompassing all
discrete levels of the model, i.e., such that n =0, 1,2. . . , A.

([n I
= [0„[p]]). We shall call the continuum playing

the role of the intermediary in the Raman transition as
the first continuum and label it by C"'. lt is obvious that
another second continuum C', reached from the QC by
the first probe laser, must in general be included as well.
%ith this additional continuum taken into account, ouI
model is of X type rather than A type, with C-C transi-
tions ignored. %e also ignore the e8'ect of the second
embedding laser on the ground level to continuum cou-
pling. To have the results obtained within this model as
general as possible„we do not specify at the beginning
which discrete level of the model is initially, i.e.„at t =—0,
occUpied.

Let b„be the Laplace transforms of population ampli-
tudes of discrete levels of the model, while b

~ l) and 6,2,

are those of the first and the second continuum, respec-
tively. In the R%'A these amplitudes are to be found
from the Laplace form of the Schrodinger equation

s+i b =(i)rt) 'gV iibii+b (0), (II
aug P a

where s is the Laplace variable, b (0) is the value of the
amplitude at t =0, V

&
is the matrix element of the

atom-laser interaction, and E denotes the energy of the
combined atom plus the laser-field state with the field de-
scribed in photon-number language. For our X-type
model this equation splits into

1-st
continuum C

1-st
probe
laser

)) Q2- nd

ground level l0&

ing

1-st
laser

3
2

p=1
quasicontinuum

QC

s+i b„= b( )0+(i )t)1'g V (, )b
E(1)

+8( 1g )(l))t) g V E(2)b&'2)
F(2)

(&) )(('.

s+i b ())=(i&) g VE()) b„,E E n n

FIG. 1. General X-type atomic model of a LICS with a
quasicontinuum of excited levels QC, and two continua C" ' and
C(2)

with 8( n ) being the discrete Heaviside function defined
as 8(n =0)=0 and 8(n =p)=1 for all 1 p ~k. As is
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in which

q
(&')—
nn'

~„E( ) ~E( )„.nE E n' (]) ( )

g(i)
L J

n V (;)V (;),d(E")

is a Fano parameter [7] for the coupling between any two
discrete levels via the continuum (i =1,2).

Having obtained Eq. (5}, we apply it to calculate the
continuum-state population amplitudes from Eqs. (3) and
(4}. According to these equations, we need to find two
sums

k k

g V ()) b„=V ()) b()+ g V (() bq,

k k

y 8(n) v (2) b = y v (2) b
n=0 p=1

traditional, we remove the continuum state amplitudes
b (» and b (» from Eq. (2) by substituting into it Eqs. (3)

and (4} and then replacing the sums over continuum
states by energy integrals [QE~fd(E)dE], assuming

for simplicity the same state density in both continua
[d(E"')=d(E' ')=d]. After the standard pole approxi-
mation, Eq. (2) is converted into the equation for
discrete-state amplitudes only:

k
s +i b„+—d g (1+iq(„") V (() V@()),b„

n'=0

k

+—18(n) g 8(n')(1+iq„'„')V (&)V (2),b„=b„(0)
n'=0

by the first laser. Formally, we treat Eqs. (9) and (10) as a
set which is to be solved with respect to bp and b . %e
calculate bo from Eq. (9) and then insert it into Eq. (10),
obtaining, as a result, the equation for QC levels only. As
required by Eqs. (7) and (8), we multiply the obtained
equation by V (;) and sum it over all p. Though in gen-E'
eral the sum g V (;) b cannot be found in a close form,P E'p P
there fortunately is the case when it can be done. From
now on we shall exclusively focus on this case, which is
defined by the approximations

q
( ) )

q
( ) )

q
( ) )+f(p p )

q(2) q(2) q(2)+f(p pl)

())
= 1+f(P) &

I vt) ()) I 7I)

where q is the branching ratio for ionization from a given
QC level to the two continua allowed
[y~("=(2m./))1)I V (;)I d]. The case defined by Eqs. (11)

pE '

means that this branching ratio is approximated to be p
independent, i.e., the same for all QC levels. It also
means that the Raman coupling between the ground level
and the QC is governed by one Fano parameter q, also p
independent. This p independence is also maintained for
the Raman coupling between any two QC levels via the
first continuum (q"') and via the second continuum
(q' '}. Obviously, these approximations are restrictive,
but are roughly justified, e.g., for a highly excited Ryd-
berg QC since then the matrix elements depend only on
the appropriate power of the QC index (p ~ }. With
these approximations, the sum required is found to be

in which we have split the discrete-level space into the
ground-level and the QC-level subspaces. For these two
subspaces we get from Eq. (5)

where

p(s) —f (s)Q(s)bo(0)
E ~ ~ 1 +f(s)R (s)

(12)

.EO rps+l + &0

k

+ d Vo@()) g ( 1 +iq()~ ) V~() ),bp
=b()(0)

p'=1 E I P

s+i bq+ —d(1+iq'(')')V (()V (() b()pE

k

+ dV ()) g (1+)'q )V ((),b
p'=1

k

+—dV (~) g (1+iqp~p.)
) V (2),bp. =b (0), (10)

p'=1

where

E,' —E,=n.dq~())
I v, („I'

Pf(IV ())I /E )d(E )dE

and yo=(2m/))))I V ()) I d are the shift and the width of
the ground level due to its coupling to the first continuum

k V~() ),b~ (0)
p(s)= g

s+i

y(1)/2
f(s)= g

p=1 Ep
'

s+i

Q(s) = (1+iq) V (()

Et0+ 70
2

.Eoa s+i +P
R (s)= El0+ VO

2

with

a= 1+q+i(q"'+riq' '),

(13)

(14}

(15)

(17)
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bo = [1+af(s)]bo(0)1

D(s)

——d(1+iq) V I ~Ip(s) (19)

—dV
b (0)—

D s

P= [a—(1+iq ) ]
70
2

The noteworthy fact is that the sum S (s) is a function
of only the atom-laser coupling matrix elements and the
initial conditions, with no population amplitude involved.
This $(s), along with the approximations (11},gives the
appropriate bo from Eq. (9). Having bo, we find b from

Eq. (10). With bo and S(s) available, we recall Eqs. (3)
and (4) and calculate b ~&~ and b, 2, from them. Along

this line, our starting Laplace equations of motion [Eqs.
(2)—(4)] are found to have solutions in the form

the second continuuin reached from the QC by the first
laser is only poorly populated and, as a result, can be
neglected to a good approximation (i)=0). The model
simplified in such a way is thus of A type (Fig. 2). This
one-continuum model does not necessarily imply that the
ground level is coupled more weakly to the continuum
than the QC levels. This is so because, besides laser in-

tensity, the other factor influencing the strength of cou-
pling is the dipole matrix element which, for realistic lev-

els, diminishes drastically with increasing level index. It
is thus likely that a highly excited QC can be coupled
even more w'eakly to the continuum by the strong second
laser than the ground level is coupled to the continuum
by the weak first laser. We also take the liberty of setting
the Fano parameters identical (q =-q" -——q" ). With
these two assumptions, a and p defined by Eqs. (17) and
(18) become proportional to each other, namely,

P iq ) o( a /2 ), wllel'e Ilow a —1 + lq. Tlils propor-
tionality relation implies considerable simplification of
our general Laplace solution, given by Eqs. (19)—(23), to
the form

S+1

X (1+iq) V (&) bo(0)

El
+ a s+i +p

Xp(s) ' (20)

1 Tr
b = —-- —b (0)——d(l+iq)n E n

5 +l

P(s)
1+(1+iq)F (s}

(iiri)- ' P(s)
1+(1+iq)F(s)

5' +l

(iiri} '
1

E g(1) D (s)
X+I

when n encompasses both 0 ( ground level) and p (QC lev-

els), while

V t~I, b& (0)
P(s)= g

n'=0 E„
5 +1

X [1+(a—1 —iq}f(s)]V,~~ bo(0)

Eo+ s+i p(s) (21)

y(1)y2
F(s}=g.=o S+I

(27)

—(iiri)
bE~2~=

~2~
(1+iq) VEI ~ ~g(s)bo(0)

5+l

~
Eo VQ

s +i + p(s), (22)
2

where

. Eo ro .&oD(s)=s+i + + a s+i +P f(s) .

B. Simplified A model

From now on we shall concentrate on a simplified ver-
sion of our model when the first probe laser is weak when
compared to the second embedding one. This means that

1-st
I ~)

continuum C

2- nd
embedding

laser~-st
probe
laser

3
2

QuasiCOnt inuum

QCi i)(
ground level lo&

FIG. 2. Simplified A-type atomic model of a LICS with a
quasicontinuum of excited levels QC and one continuum C"'.
The population is initially in the ground level ~0).

are generalizations, by inclusion of the ground level, of
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6(s)= 1 1

1+(1+iq)F(s)
S+1

(28)

our previous functions p (s) and f (s) [see Eqs. (13}and

(14)]. We would like to stress that by neglecting the first

laser, and thus the ground level, along with setting q =0,
Eqs. (24) and (25) are converted into those of Fedorov
and Movsesian [21] for their model of one-laser coupling
between Rydberg levels and continuum. With the ground
level included in our two-laser A model we will encounter
a more troublesome problem of the transformation our
Laplace solutions into time-dependent amplitudes.

As typical for the LICS, we now assume that initially
at t =0 all the population is in the ground level ~0). This
means b„(0)=5„o,entailing P(s)= Vz (()o/[s +i (Eo/irt)].

In this case it turns out to be convenient to define the
function

C. A model with the Bixon-Joertner QC

The Bixon-Joertner QC is a very popular structure par-
ticularly in the theories of intramolecular processes [15],
quasicontinuum photoexcitation [16—19], and Rydberg-
atom stabilization in strong laser fields [20—23]. It is an
infinite sequence of equidistant levels, with energy spac-
ing 6, which are coupled to continuum with the same
strength y independent of the QC index p. This QC imi-

tates pretty well the realistic highly excited (p » I) Ryd-
berg QC, for which the energy spacing is b, =28/p and
the coupling to continuum behaves like y-1/p in the
so-called semiclassical region [20]. As long as

~p
—p' )~ &&p' ', where p' ' is some central level in the

Rydberg QC, the two parameters b, and y are practically
the same for all p, justifying the introduction of the
Bixon-Joertner structure. For the Bixon-Joertner QC the
function F(s},defined by Eq. (27}and inherent in Eq. (28}
for 6 (s},is recasted to

s+i
—(1+iq) 6(s},Xo

2

and to express through it all Laplace amplitudes with the
results

.E'"
F(s)= + coth s +i

E() 2 6/fi
s+i

(36)

bp
=—(1+iq) ( )

Ep Eo G(s)
i' E

s+i

(30)

where E' ' is the energy of the central level in the QC
combined with laser-field energy (Ep =E' )+pb, ).

To invert 6 (s), we follow the method of Stey and Gib-
berd [24], i.e., we use the exponential representation
coth(x)=(1+a)/(1 —a), with a=e ", and expand
6 (s) in powers of a applying the relation

b (()=(i%) V (() 6(s}+
E() E 6 (s)

E(1)
s+i

(31)
1 1

" (a b)—
a+b coth(x) a+b i (a+b) +' (37)

After this, we inake use of the inversion formula [17,25]

As a consequence, the time-dependent amplitudes be-
come

(s —A. —P} '
1

+ te 'L'— ,—(pt),g)m+1
(38}

—iE0t/h PO
bo(t) =e ' —(1+iq) 6 (t), (32)

where L' is an associated Laguerre polynomial. The re-
quired 6 (t} is then found in a completely analytical form
as

b (t)= —(1+iq) &y,yo
JJ 2

—E
X G(t)+ I(t,E )

—iE t/A0

G(t)= [1—e P' —(2n) uvZ(r)],
(1+iq)y o/2

(33) where

(39)

VE(y)O
b ((l(t) = G(t)+

E(&)
I(t,E("), (34)

Z(r)= g (r—m)A (r)L' )(P(r—m))8(r m) (4—0}

where in accordance with the convolution theorem

f ((( —()E/AG(t&)dt&
0

(35) m —1 —i 2~mx

( )
2,mp(r m)— —

( I+nv )
+' m

(41}

with P= —4n uv/[1 —(mv) ]. Here 8(~—m) is Heavi
side function, being nonzero (equal to 1) only for
~—m )0, while

with G(t) being the Laplace inversion of G(s). As seen,
only G(t) and I(t,E) are what we need Obviously. , G(t)
depends on the type of QC and we emphasize that only
for a very special QC the analytical form of G(t), and
thus I(t,E) as well, is possible to be found. Below, we
shall proceed with one such QC.

(2m. ) '
a (m)=j m —j —1

m —1

L ', (P(r—m ) )= g aj(m)(r m)J, —
j=0

(42)

(43)
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and

u (1+'9)'Vo/2 (1+iq)) /2p=, Q=
1+xv 6/fi '

t) /A'
U=

6 t
~/~' ' 2~/2

(44)

I(t,E)= —— [G (t)+t, e ' K (r, E)]
0

with

(45)

The parameters u and U are the measures of the ground-
level coupling strength and the QC-coupling strength to
the continuum, respectively, 5 is the detuning from two-
photon Raman resonance between the ground level and
the central level in the QC, and t„=2M/6 is the so-
called recurrence time. For the highly excited Rydberg
QC, this time coincides with the classical Kepler time of
the orbiting electron t„=t x=(M /R)p, with p having
the sense of the principal quantum number.

Having calculated G (t), we are able to find the needed
integral I(t,E) defined by Eq. (35). Thanks to the
power-in-r representation of Laguerre polynomial [Eq.
(42)] we readily obtain

b, ))(r) =i2m. ' ' K(r, E"))e ' "
which are fully analytical nonperturbative solution of our
A model with the Bixon-Joertner QC. This solution is

nonlinear with respect to the intensities of the two lasers

applied, the embedding and the probing ones. After re-

placing the laser coupling between the QC and the con-
tinuum by Coulombic configuration interaction, our solu-

tion becomes the solution of the old stated Fano problem
of a number of discrete autoionizing states and one con-
tinuum [26], but, contrary to the Fano result, with the
advantage of no restriction on the probing strength.
%ith our solution we can find the time-dependent ioniza-
tion probability P(r) as

I.
'53ji

For a fixed laser pulse duration and intensities, we wi11

study this ionization probability as a function of two-

photon Raman detuning, i.e., the so-called ionization
spectrum. %e will also study the dependence of ioniza-
tion probability on laser intensities, for a fixed time and
detuning, pointing to the effect of stabilization, i.e., to a
decrease in ionization with increasing intensities.

K(r, E)= 1

z(E)
e

—i 2'(E)r

1+AU
(e

—z(E)z 1) III. RESULTS

A. Weak-probe spectra

+(2m ) u[pZ(r)+iy(E)H(~, E)], (46)

where

m —1

H(r, E)= g 3 (v') g (j +I)!a (m)
m =1 j=0

ez(E)(r —m)

X D/(r, m)+
[z(E)]2+'

Xe(r—m), (47)

1 (r—m)"
D (r, m)= g . , k, D (k(r, m)=0,.=, k' [z(E)]J+'-"'

and

(48)

z(E)=2rr[p —iy(E)],

E —Eo E —E"'
y(E)= =x+

(49)

The above G (t) and I(t,E), when combined with Eqs.
(32)—(34), lead to the final time-dependent amplitudes

First, we shall consider briefly the case usually realized
in standard LICS experiments. It is the case of very weak

coupling between the ground level and the continuum, to
be referred to as the weak-probe case. Mathematically it
means that ~u~ &&1, with no restriction on u. Under this
weak-probe condition and for interaction times ~ not
exceedingly long, very weak depletion [pot
=4nr Re(u) ((1]of the initially populated ground level

is expected and all the population probabilities should be
linear in u. In particular, linear in u probabilities for
discrete sates can be obtained from our general Eqs. (50)
and (51) by formally setting u =0 in Eqs. (40) and (46) for
Z(r) and K(r, E ). For u =0, only the first term with

j =0 in our Laguerre polynomial is nonzero and amounts
to ao(m)=m. As a result Z(r) is simply reduced to a

geometric series over I, combined with first derivative of
this series, whose upper limit is determined by the Heavi-
side function e(r —m) and thus equal to X=lnt(r).
Both this series and its derivative are analytically calcu-
lated straightforwardly, giving

Z(r) = — [(r—X)g, ' —(~ N 1)g, — —
4 1 —g,

bo(r) = [e r'+(2m)uuZ(r)]e.
—iEO t /A

b (r)=2~&uuK(r, E )e

(50)

(51)

--'(1 —g, )r—1]e (54)

where g=(1 mu)/(1+m. u—) a.nd gi =/exp( t 2rrx) It is- .
equally simple to calculate H(r, E ) when u =0, obtain-

ing as a result

u=0
)

s
1

—) 2zz), x +p)
( 1 g)

—)'2@x

4m(x +p)

pN —i 2~( r—1)(x +p)
1 —

g
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Equations (54) and (55) are our previous result in [14],
there obtained along a different line, namely, by setting
yo=0 as early as in Eq. (36) for F(s). By combining the
above equations with Eqs. (50), (51), and (53) we have a
convenient tool to calculate the ionization probability
P(r}, but in a weak-probe case only. This weak-probe
case was studied by us previously [14] in detail. Strictly
speaking, we have studied the weak-probe normalized
ionization probability P(r)/(pot ) =P(~)/[4mr Re(u) ]
against the normalized Fano detuning e related to our x
through e= —jq+[x/Re(v)]]. The main result found
was that by the appropriate choice of time, such that the
probing (yot «1) and embedding (yt »1) conditions
were simultaneously fulfilled, the LICS spectrum was a
Fano train, i.e., a series of equidistant asymmetrical
profiles with transparent windows and enhancement
points, each profile being described by the familiar Fano
formula (q+e) /(1+a ) known from the fundamental
model of the LICS with only a single excited level instead
of a quasicontinuum. Referring the reader to [14] for de-
tails on weak-probe multilevel LICS spectra, we now
focus our attention on the strong-probe case not dis-
cussed so far, when the approximated Eqs. (54) and (55)
become invalid.

B. Strong-probe spectra

Figures 3—5 show the exact spectra, i.e., the ionization
probability P versus the normalized Raman detuning x,
obtained with the use of the exact Eq. (40) for Z(~) and
the exact Eq. (46) for K(r, E}. All figures are made for
the Fano parameter q = 1 and, to save computer time, for
a not exceedingly long time ~=30. For the Rydberg
quasicontinuum around the level of the principal quan-
tum number n =40, for which t„=10 ps, the chosen v.

corresponds to the real time of t =300 ps. Figures 3-5
differ with respect to the choice of the embedding-laser
strength Re(v). We have chosen three strongly dissimilar
strengths, namely, Re(v)=10 in the case of Fig. 3
(weak embedding), Re(v)=1/n in the case of Fig. 4
(moderate embedding), and Re(v) =3 in the case of Fig. 5

(strong embedding}. The second embedding-laser strength
is a threshold, one above which the stabilization effect in
the quasicontinuum-plus-continuum subsystem starts to
play its role [20-23]. When combining these strengths
with the assumed time, we find yt =4nr Re(v) equal to
1.2m for Fig. 3, 120 for Fig. 4, and 1130 for Fig. 5. These

y t values ensure that the embedding of the quasicontinu-
um into the continuum is at least partly established. The
spectra in each figure have been made for two different
probe laser intensities, the one corresponding to weak-
probe case [Re(u)=10 Re(v)] and the other to the
strong-probe case [Re(u )=Re( v )].

In Fig. 3, Re(v)=10 is assumed, which means that
the embedding laser perturbs each level in the quasicon-
tinuum to an extent much smaller than the level spacing
(A'y/6=0. 02}, thus leaving the levels isolated from one
another. It is the case of weak embedding. Figure 3(a)
is a weak-probe spectrum [Re(u )= 10 Re( v },
yot=4mrRe(u)=1. 2n X10 ] composed, as seen, of a
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FIG. 3. Part of the multilevel LICS spectrum under the con-
ditions of weak embedding Re(v)=10 2(fig/6=0. 02). The
other parameters are q = 1 and v =30. The asterisks correspond
to the lack of the embedding laser Re(v)=0. (a) Weak probe
spectrum [Re(u) = 10 Re(v)]; (b) strong probe spectrum
[Re(u) =Re(v)]; (c) narrowing of a given dip from (b) with in-
creasing laser-atom interaction time.

train of identical, equidistant, asymmetric profiles, well
built up around the Raman two-photon resonances with
successive levels in the quasicontinuum (x =0,+1,+2,
. . . ). The included asterisk line corresponds to the ab-
sence of the embedding laser [Re(v)=0] and we see in
this case a flat spectrum on the level of yot = 1.2m. X 10
By a comparison of the solid and asterisk lines, both the
enhancement point [P/(yot)&1] and the transparent
window [P/(yet ) & 1] are seen in each individual profile.
Each individual profile, though resembling the Fano
profile, is not, however, the exact Fano profile. The
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reason for this is that the parameters Re(u) and Re(U)
taken are not dissimilar enough and the time is not
suf5ciently long for complete embedding to be established
(compare Fig. 3 and the analysis in our previous paper
[14]). We have observed that with the increase of probe
strength each individual profile from Fig. 3(a) became
higher and broader and its wings lifted up. In the ex-
treme strong-probe case [Fig. 3(b)], when the probing is
as strong as the embedding [Re(u)=Re(U), rot =1.2m],
the wings are lifted so high that in place of asymmetric
peaks from Fig. 3(a) we observe dips. The dips are seen
to be formed at the positions corresponding to the exact
resonant frequencies (x =0, +1, +2, . . . , +P ) for Raman
transitions from the ground level to the levels in the
quasicontinuum. Away of these resonant frequencies the
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strong-probe spectrum is seen to be nearly saturated
(P =1). The dips formed are the result of population
trapping [6]. In the long-time scale the trapping is
caused by the existence of the purely imaginary pole
s =- iEo/fi at r—esonance frequencies (E =Eo) in our
discrete-level Laplace solutions given by Eqs. (29) and
(30). According to Eq. (28), the residuum of G(s) at the
pole s = MEDIA' a—mounts to 2/[( I +iq)(r0+r ) ]. It
leads to the trapping of the following populations by the
two resonantly coupled levels after a long time:
Ib,(~)I'=r'/(ro+r)' and Ib, (~)I'=ror/(ro+r)'
In the strong-probe case (ro=r ), as much as half of the

population is predicted by these formulas to be trapped
and thus the long-time ionization probability must drop
from 1 to 0.5 at resonance frequencies. This is nearly
what we see in Fig. 3(b)—the observed ionization slightly
lower than 0.5 in the dips means that the time ~=30
chosen by us cannot yet be considered as long enough. In
Fig. 3(c) we show that with increasing laser-atom interac-
tion time, each individual dip from Fig. 3(b) becomes nar-
rower and at the perfectly resonance frequency the ion-
ization tends to 0.5. Such a behavior of our multilevel
model is consistent with the predictions of the fundamen-
tal model with one excited level exclusively [6,7). The
whole Fig. 3 shows that at weak embedding Re(U) = 10
the spectrum evolves from a train of asymmetric peaks to
a train of dips, localized at the positions corresponding to
the frequencies resonant with Raman transitions from the
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ground to quasicontinuum levels.
In Fig. 4 stronger einbedding Re(v) = 1/n is assumed.

It means that now the embedding laser broadens each
quasicontinuum level to an extent comparable to the
quasicontinuum spacing (fiy /b, =2/~). It could be
called the moderate embedding case. In this case a given
quasicontinuum level is no longer isolated from another
one and it generates a qualitatively new situation when
compared to the weak embedding case Re(u) = 10
This is the reason why the spectra in Fig. 4 differ form
those in Fig. 3. The weak-probe case [Fig. 4(a)], for
which Re(u)=10 Re(v) and yet=1. 2X10, has a
simple interpretation. In this case the spectrum should
reflect the dressed-state structure created when strong
embedding laser couples the quasicontinuum to the true
continuum. Under the assumed weak-probe condition,
peaks are thus expected to appear in the spectrum at fre-
quencies ensuring Raman resonances between the ground
level and the dressed states created. In the case of the
Bixon-Joertner quasicontinuum we have previously [23]
derived a closed-form formula allowing us to obtain
analytically these dressed-state positions. For
Re(U)=1/n and q =1, the parameters of our interest,
this formula, when applied, leads to the following expect-
ed resonance peak positions: x = —0.32+@, where
p=0, 21,+2, +3, ... . As we see in Fig. 4(a), the peaks
formed are in fact localized exactly at the positions pre-
dicted by our dressed-state analysis. We observe that
with increasing probe strength each peak becomes
broader and higher. In the strong probe case [Fig. 4(b)],
corresponding to Re(u) =Re(v)=1/qr and yet =120, we
observe very broad peaks of the height equal to 1 (satura-
tion) separated by dips. As in Fig. 3(b), each dip is a
manifestation of the population trapping in those bare
atomic states which are resonantly coupled via two-
photon Raman transition. In Fig. 4(c) we show a narrow-
ing of dips with increasing interaction time, as in Fig.
3(c). The whole Fig. 4 shows that the formation of a given
peak in the case of moderate embedding [Re(v) =1/n. ] is
a collective effect employing all quasicontinuum levels. It
stands in difference to the previous case of weak embed-
ding [Re(v)=10 ], when a single asymmetric profile
was formed predominantly by a given quasicontinuum
level.

Figure 5 corresponds to the strong embedding
Re(v}=3, when the quasicontinuuin-level ionization rate
exceeds markedly the level spacing (ilia/b, =6). The
spectra for strong embedding are seen to be formed of
peaks, but now localized at x = —0.47+p, the positions
again agreeing with our dressed-state analysis. There are,
however, two noticeable essential differences when one
compares them with those for the case of moderate
embedding. First, the peaks in the weak-probe spectrum
are narrower and second, the peaks in the strong-probe
spectrum are lower. The first effect is likely to be related
to narrowing of the dressed states, formed in the
quasicontinuum-plus-continuum subsystem, with increas-
ing embedding-laser strength. This effect, predicted in
[21] and described analytically for the Bixon-Joertner
quasicontinuum in [23], does occur for embedding
strengths Re(U) ) 1/qr, for which Fig. 5 is made. On the

other hand, the mentioned peak lowering in the strong-
probe case is a manifestation of the stabilization effect in
the multilevel LICS, which we are going to consider now.

C. Stabilization in LICS
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FIG. 6. Ionization probability versus laser intensities under

the conditions of Re(u)=Re(v), q=1, &=30, and x =0.5. Solid
curve, our multilevel LICS model with complete quasicontinu-

um; dashed curve, the model of Parker and Stroud [28] of a pair
of discrete levels equally coupled to the continuum by one laser.

As in Figs. 3(b), 4(b), and 5(b) we assume that the
ground state and the quasicontinuum are coupled with
the same strength to the common continuum by two
separate lasers [Re(u)=Re(U}]. The intensities of the
lasers are assumed to be changed simultaneously and in
the same way so that the equality Re(u }=Re(U) is always
maintained. Under this condition we calculate from ex-
act Eqs. (53), (51), (50), (46), and (40) the ionization prob-
ability versus Re(u) =Re(u), for q =1, v=30, and a fixed
Raman detuning x. The solid line in Fig. 6 is an exempli-
fying result obtained for x =0.5. We observe that with
increasing Re(u)=Re(v) the ionization probability first
increases, but after reaching a maximum (saturation), it
starts to decrease. Such a decrease in ionization probabil-
ity with increasing intensity, for a fixed pulse duration, is
what is termed stabilization (see [27] for a review). Thus
the solid line in Fig. 6 points to stabilization in our mul-
tilevel LICS model. To our knowledge, stabilization in
the LICS context has not hitherto been considered. It
seems that stabilization in the LICS can be understood
qualitatively on the basis of some similarities between a
limiting case of our multilevel LICS model and the sim-
plest model of Parker and Stroud [28] of Rydberg-atom
stabilization. In this simplest stabilization model only a
pair of discrete energy-diferent-levels is coupled with the
same strength to a continuum by one laser. In the inten-
sity region determined by the condition that the ioniza-
tion rate y is greater than the doublet separation 5/fi,
this model predicts stabilization due to Raman redistri-
bution via continuum of the initial population in a given
level over the two discrete levels (dashed line in Fig. 6).
Let us now take the liberty of reducing for a moment the
whole quasicontinuum in our multilevel LICS model to a
single level. Then, under the assumed condition of
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Re(u)=Re(u), our two-laser model with detuning x
resembles the one-laser model of Parker and Stroud with
level separation equal to x. It forms a basis for under-
standing stabilization in the LICS. Obviously, in our
multilevel LICS model with complete quasicontinuum
the population redistribution is more complicated be-
cause a part of the population transferred to a given
quasicontinuum level from the ground level can be fur-
ther redistributed over whole quasicontinuum by the
embedding laser. This is why in the high intensity limit,
i.e., for Re(u) =Re(U) ) 1, the solid curve in Fig. 6, valid
for the multilevel LICS model, departs from the dashed
curve, valid for the model of Parker and Stroud. The ob-
served fact that in the stabilization region our curve
drops well below the curve of Parker and Stroud and
tends to zero seems to have a simple explanation, namely,
when there is the whole quasicontinuum instead of a sin-

gle excited level more population has a chance to be
trapped in the excited discrete states.

IV. SUMMARY

In this paper we have solved analytically a general
model of light-induced continuum structure in which in-

stead of a single excited level the Bixon- Joertner
quasicontinuum of levels was laser embedded into a pre-
viously structureless atomic continuum. This multilevel
model of the LICS is an optical parallel to the old-stated
Fano problem [26] of a number of discrete autoionizing
states coupled to the continuum of states by the Coulom-
bic configuration interaction. However, contrary to the
Fano result, our solution has the advantage of being fully
time dependent (thus applicable to any time scale) and,

moreover, it covers not only the weak-probe case (prob-
ing much weaker than the embedding) but all probing
strengths up to the strong-probe case (probing as strong
as the embedding). With this solution we have con-
sidered three physically different cases of the embedding-
laser strength, each case determined by the appropriate
relation between the quasicontinuum-level ionization rate

y and the quasicontinuum spacing 5, namely, the case of
weak embedding (Ay/b, &(1), the case of moderate
embedding (Ay/b, = 1), an-d the case of strong embedding
(fiy/5 ))1). For each embedding-strength case„we have
studied the evolution of the ionization spectrum with in-

creasing probe-laser strength. Such strong field effects in

the spectra were observed and interpreted as the conver-
sion of a train of asymmetrical Fano-like peaks into a
train of dips; peak moving, narrowing and lowering; as
well as saturation, population trapping, and stabilization.
We have also observed the effect of dip narrowing with
increasing laser-atom interaction time. Some of these
effects, e.g. , a Fano train instead of a single profile, dip
train, peak moving and narrowing, as we11 as complete
strong-field stabilization, had their origin in the excited
quasicontinuum, which was a pa, rt of our multilevel
light-induced continuum structure model.
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