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Atomic motion in a magneto-optical field
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We study the motion of three-level atoms in a magneto-optical field which consists of a laser
field with a polarization gradient and a static magnetic field. The Hamiltonian of the model is
diagonalized using band-theoretical methods of solid-state theory. Diffraction of atoms is stud-
ied numerically, and the results are compared to the ordinary Kapitza-Dirac effect. Spontaneous
emission is accounted for by the use of quantum Monte Carlo techniques.

PACS number(s): 42.50.Vk, 32.80.—t

I. INTRODUCTION

Following its first demonstration in the 1980s [1,2], the
difFraction of an atomic beam from a standing-wave laser
field, the near resonant Kapitza-Dirac effect, has found
widespread interest both in applied and fundamental
fields of research. In atom optics, coherent beam split-
ters for atom waves have been demonstrated [3,4] that are
based on the diffractive properties of the periodic inten-
sity variations of a standing light field. In atom lithogra-
phy, the focusing capabilities of the nodes of a standing-
wave laser field have been used to write periodic arrays
of Cr atoms on a substrate [5]. Beside the transmission
of atoms, the quantized atomic motion in the "lattice" of
the periodic intensity variations of a standing-wave light
field has attracted considerable interest both experimen-
tally [6—9] and theoretically [10—14]. Also, interesting
detection schemes have been proposed that are based on
the entanglement of the quantized light field and the mo-
tion of the atom, opening the possibility to measure the
position of an atom [15,16], its momentum [17], or even
the photon statistics of the light field [18,19].

In the most coinmon configuration of the near resonant
Kapitza-Dirac effect, two-level atoms are considered that
move in the one-dimensional "lattice" provided by the
intensity modulations of a near resonant, unifor7nly po
la@ized standing-wave laser field. Recently, a variation of
that classic configuration was conceived by Grimm and
co-workers [20—22], where three-level atoms are employed
rather than two-level atoms, and the lattice consists of a
combination of a laser field with a polarization gradient
and a static magnetic field aligned parallel with the opti-
cal axis of the laser 6eld. Diffraction of atoms in this con-
figuration was analyzed by Pfau and co-workers [23,24]
using a combination of the Raman-Nath approximation
and the adiabatic approximation. It was found that for
short interaction times, the magneto-optical configura-
tion (MOC) could be very efficient in splitting atomic
beams, enlarging the achievable splitting angles by or-
ders of magnitude as compared to the performance of
the ordinary standing-wave con6guration.

This prediction was confUmed in a subsequent ex-
periment by Pfau et aL [25], where a supersonic beam
of' metastable He atoms was split into two outgoing

beams differing in transverse momentum by an amount
of hP = 425k. The comparably large momentum trans-
fer makes the MQC a very promising candidate for the
use as a beam splitter in atom interferometry.

In this paper we present a thorough theoretical study of
the magneto-optical configuration, paying particular at-
tention to the effects of finite interaction times and trans-
verse profile of the diffracting laser field. In the language
of atom optics, our investigations neither invoke the cel-
ebrated Raman-Nath short-time approximation nor the
commonly employed adiabatic approximation. These ap-
proximation schemes are not used here because experi-
mental capabilities allow for interaction times which go
far beyond the Raman-Nath regime, and the resonant
beam-splitting observed in [25] involves degeneracies of
the quasipotentials where nonadiabatic transitions may
occur. The present investigations are based on an ex-
act diagonalization of the Hamiltonian of the magneto-
optical configuration, including the kinetic-energy opera-
tor of the atoms. The diagonalization is achieved within
a band-theoretical framework akin to the one used for
the analysis of standing-wave diffraction in [10].

Since we allow for arbitrary interaction times, we
also include spontaneous emission, using the method of
quantum Monte Carlo simulations recently developed by
Carmichael [26] and, independently, by Dalibard and
Castin [27]. The treatments used in this paper have al-
ready been applied to the usual standing-wave diff'raction
in the presence of spontaneous emission by Mpilmer et al.
[28].

The paper is organized as follows. In Sec. II we present
the model and its band-theoretic formulation. In Sec.
III we present results of our simulations. We give an
estimate for the relevant time scales and develop a simple
classical model which helps one to understand the basic
principle of the diffraction of atoms in an arbitrary light
6eld. Finally, Sec. IV contains our conclusions and an
outlook on the future prospects of the magneto-optical
diffraction scheme.

II. MODEL
A. Hamiltonian

The principal setup of a magneto-optical diffraction
experiment is depicted in Fig. 1. An atomic beam travel-
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Ey

I' crossed linearly polarized laser beams,

Ei(Z, t) = Epe cos(qZ —~t —y)

E2(Z, t) = E,e„cos(qZ+ ~t —p),

FIG. 1. The principal setup for the magneto-optical inter-
action.

ing predominantly in the y direction traverses a standing-
wave laser field E(Z, t) with optical axis in the z direction
and a homogeneous static magnetic field B = Bpe, which
is aligned parallel with the optical axis. Here e, is the
unit vector in the z direction. The atom is modeled as
a symmetric three-level system that consists of a ground
state ~g) of energy E~ and magnetic quantum number
m = 0, and a Zeeman doublet of excited states ]e+), ]e
of energy E, and magnetic quantum numbers m = kl.
Without loss of generality, we set Ez ——0 and denote as
~,~—:(E, —Eg)/5 the Bohr transition frequency.

Assuming that the atoms are sufficiently fast, we treat
their longitudinal motion in the y direction classically
and restrict our considerations to the quantum mechani-
cal motion in the z direction. We are thus led to consider
the following Hamiltonian:

p2
H = + H, —m, Bp —d. E(Z, t)

m = —Aggp~ e+ e+ —e e (2)

where p~ is the Bohr magneton and g~ is the g factor of
the excited states. Decomposing the electric dipole tran-
sition operator into its positive and negative &equency
parts,

Here, Z and P denote canonically conjugate center-of-
mass position and momentum operators for the atomic
motion in the z direction. They obey the conirnu-
tation relation [Z, P] = i,h. Furthermore, H t
hew, g (~e+)(e+~+ ~e )(e ~) denotes the Hamiltonian of
the &ee atom, m, is the z component of the magnetic
dipole operator, and d denotes the electric dipole transi-
tion operator. Expressed in terms of the electronic states
we have

I*)=, (~l~-) —I'+)),

lu) =, (~l~-) + l~+))

Expressed in terms of linear orbitals, and choosing y =
ir/4, the magnetic dipole operator (2) becomes

m~ = —hggp~ e„e~+ e~ ey

Furthermore, the negative &equency part of the dipole
transition operator (4) becomes

d = —p e~ ge E~+ etl g e EtI (10)

Finally, the state vector of the atom in the position rep-
resentation appears as

~C) = ) dZQ. (Z, t) ~s) 8 ]Z},

where s = (x, g, y) labels the internal state of the atom
and Z refers to the center-of-mass position.

Inserting (9) and the product of (6) and (10) into Eq.
(1), dropping antiresonant contributions in a rotating-
wave approximation, and going into an interaction pic-
ture with respect to the &ee internal dynamics of the
atom, the Hamiltonian for the state vector (g, gg, Q„)
becomes

respectively. Here, Eo is the amplitude of the laser 6elds,
u = cq is the &equency, q is the wave number, and p is
an as yet arbitrary phase.

Decomposing the total electric field E = Ei + E2 into
its positive and negative &equency parts,

E(Z t) = E~+)(Z).-*"+E~-)(Z)"-'

we have

Et+~)z) = -z ~ it~~-.I+«- ~"-~~). Ie)
12'"'

Since the electric field involves linear polarization, it
is useful to switch &om circular orbitals ~e~) to linear
orbitals,

we have

d(+) + g(—)

d =p e+ go++ e go*

M+ — Oe "~
2(dL,

—:T(P) + V(Z),

ne*~

0 Oe'

Oe 'v 0

where p is the reduced matrix element of the e M g tran-
sition and e~ = +~ (e + ie„)are circular unit vectors,
where ~ and ~„arethe Cartesian unit vectors in the z
and y directions, respectively.

The light field is formed by two counterpropagating,

where 0 = pEp/Ii is the bare Rabi &equency and ~1. =
gg/lgyBp denotes the Larmor &equency. Due to the rep-
resentation in terms of 1inear atomic orbits, I armor pre-
cession here appears in the form of a periodic population
exchange between the levels ~x) and ]y}, a process some-
times called precession of the atomic alignment [23].
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B. Magneto-optical interaction

For an atom placed at any fixed position z, the interac-
tion matrix V(Z) describes the internal dynamics of the
atom in which population exchange between the ground
and the excited states and the precession of the align-
ment appear intertwined. Population exchange takes
place with the Rabi &equency O. The precession of the
alignment, which occurs with frequency 2~I„changes the
probability of absorbing or emitting photons from one
laser field or the other. If the &equency of the absorp-
tion and emission cycles matches the &equency of the
precession of the alignment, i.e., for 0 = 2uL„we expect
a resonance in which the atom repeats cycles of absorp-
tion &om field 1 and emission into field 2 or vice versa,
leading effectively to a splitting of the atomic beam. This
picture is, however, an oversimplification as neither the
alignment nor the Rabi oscillations evolve &eely. Further
insight into the internal dynamics of the atom is provided
by the eigenvalues of the magneto-optical interaction.

The interaction matrix V(Z) may be diagonalized
by means of a similarity transformation U(Z) whose
rows are the eigenstates of V(Z): U(Z)tV(Z)U(Z) =
hD(A~(Z)~j = 1, 2, 3), where D is a diagonal matrix
and

~j,(Z)) = U(Z) ~s) for s = —,g, +. To avoid confu-
sion with the exact eigenstates of the full Hamiltonian
to be considered subsequently, we refer to the

~j,(Z)) as
dressed states of the atom. The eigenvalues of V(Z)/5
are given by

A, (Z) =2«os
~

+ —j ~, j =1,2, 3,p~(Z)
3 3

where

1 (r = l~&+ (14)

cos[A(Z)] = cos(2QZ) .u I.n'

In Fig. 2 the eigenvalues A~ are plotted as a function of
position z. The bold line depicts the eigenvalue pertain-
ing to the dressed state ]2s(Z)) into which the bare state
]g) evolves if the interaction is adiabatically switched on.
The shaded bands are the exact energy bands of H to be
introduced below.

In a weak laser field 0 (( ul„the eigenvalues show
a sinusoidal spatial modulation, oscillating around their
purely magnetic values Ai ———&uL„A2 ——0, As ——ul„see
upper part of Fig. 2. For increasing laser field strengths,
the oscillations deviate more and more &om a sinusoidal
characteristic. For a field strength Eo such that the
matching condition 0 = 2', is fu16lled, exact level de-
generacies appear and the middle portion of the spectrum
displays the triangular spatial dependency of a blazed
grating; see lower part of Fig. 2. For still larger laser
field strengths 0 )) urL„ the magnetic effects of the pre-
cession of the alignment become insigni6cant, and the
spectrum shows a weakly modulated spatial dependence
with As i —+0/2 and A2 = 0.

COL I&)

~I2l
~/2

Pl

FIG. 2. The quasipotentials for the interaction eigenstates
of the magneto-optical interaction as a function of position in
the z direction (the thick line denotes the energy of the inter-
action eigenstates into which the ground state may evolve adi-
abatically). Upper part: 0 = ~1,. Lower part: 0 = 2uL, . For
this ratio the eigenstate ~2) experiences a triangularly-shaped
potential. The periodicity is A/2, and the energy difference of
maximum and minimum of the triangular potential is 2~L, .
The shaded bands are the exact energy bands which are shown
in Fig. 4.

RN = 1/g~rec {16)

where ur„,= hq /(2M) is the recoil frequency.
To describe situations where the interaction times ex-

ceed rRN, the kinetic operator must be included. It is still
possible to work in the dressed-state picture described by
the Hamiltonian II = U(Z)tT(P) U(Z) + h D(Az(Z) [j =
1, 2, 3). However, because P and U(Z) do not cominute,

Consider now an atomic beam of ground state atoms
impinging on the interaction region head-on, i.e., with
p = 0. The atoms evolve adiabatically into the dressed
state ~2s) and experience the potential A2(Z).

For very short interaction times, the atoms have no
time to move and the kinetic-energy operator may be
neglected in a Raman-Nath approximation. In this
approximation, the magneto-optical field appears as
a thin phase grating and the outgoing beam is ap-
proximately described by a wave function gs(Z;7)
(2x) ~2 exp( —iA2(Z)r). The Fourier transform of that
wave function gives the momentum distribution of the
outgoing wave. For a laser field intensity which obeys
the matching condition 0 = 2~I„we have dA2/dZ
+20q/3, and the distribution shows two synunetrically
placed peaks, separated by Dp = (4/3)hqQr. This is
essentially the hearn splitting effect demonstrated exper-
imentally in Ref. [23].

For increasing interaction times, the short-time ap-
proximation becomes invalid for two reasons. First, spon-
taneous emission may occur which limits the applicability
of a purely Hamiltonian description. We shall return to
that point later and assume for the time being that inter-
action times are still short enough to allow spontaneous
emission to be neglected. Second, the Raman-Nath ap-
proximation becomes invalid for interaction times long
enough to allow the kinetic energy (bp) 2/2M to become
of the same order as the potential energy AQ. Equating
(by) 2/2M with KO using Ep = (4/3)hqOr, the interac-
tion times beyond which the Raman-Nath approximation
becomes invalid is given by
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the transformed Hamiltonian H contains ofF-diagonal el-
ements which couple the dressed states. In situations
where the o8-'diagonal elements are small compared to
the energy differences A[A, —%~I, the couplings may be
neglected in an adiabatic approximation, and the motion
may safely be described by three decoupled Schrodinger
equations with Hamiltonians of the generic form H~ =
T(I') + rA, (Z).

Evidently, the conditions of the adiabatic approxima-
tion are violated at the degeneracies A, = A~ met under
the matching condition 0 = 2cuL, for a blazed grating.
Because this configuration plays an important role for
the magneto-optical beam splitting, we do not make use
of the adiabatic approximation, discard the dressed-state
description, and turn to the problem of an exact diago-
nalization of the Hamiltonian (12).

C. Magneto-optical dispersion

Motivated by the periodicity of the interaction V(Z),
we envision the diagonalization of H using the methods
of solid-state theory. Such methods have been developed
in Ref. [10) to study the related problem of the motion
of a two-level atom in a standing-wave laser Geld.

We note first that the interaction V(Z) is invariant
under a translation by an optical wavelength A = 2vr/q.
That invariance, however, covers only half of the full sym-
metry group of H. The interaction is also invariant under
a hybrid transformation S which consists of the transla-
tion by half an optical wavelength concomitant with an
inversion of the electric polarization Ig)(x[ ~ —Ig)(z,
Ig)(y[ ~ —Ig)(y[. The transformation may be repre-
sented as

[H, s] = o.

Following common practice, we shall expand the eigen-
states of H in the basis of eigenstates of S. The eigen-
states of S are given by the electrotranslational states
[lo]

z) Ca lr + (2n+ l)q) for s = z
Isnr) =

g Ig) 13 Ir + 2nq) for s = g
) @l~+(2n+l)q) for s=y,

(19)

where (Z[r + mq) = e*("+ v~ is a plane wave with
wave vector A: = K, + mq, m = 0, +1, . . ., and x is the
Floquet exponent (crystal momentum) of the wave. The
states (19) obey S[snr) = e' "~'i[snr), i.e. ,

e* "«are
the eigenvalues of S, and &om (18) it follows that ~ is a
constant of motion. Restricting the values of K to the first
Brillouin zone —

q & K ( q, the set of electrotranslational
states Isnr) is orthogonal,

—1 0 0
S = 0 1 0 exp —P

0 0 —1)
and the invariance of H under the symmetry operation
S reads

(snrIs'n'r. ') = l„h„8(K—r'), (20)

and complete,

dr Isnr) (snr.
I

. (21')

The crystal momentum K being conserved, every eigen-
state of H may be expanded in a Fourier series for fixed

IP) = ) C,„Isnv) .

In terms of the expansion coefBcients C,„,the stationary
Schrodinger equation becomes

0
E&*~ = T2n+i&.n + —Cg~ + ~l.&yn,

2
0ECs„——T2„Cs„+—(C „+Cv„ i),
2

0EC„„=T2„+pe„+—Cg„+g+ ~I.C„,
2

(24)

(25)

where recoil units have been used, i.e. , E/~„,m E,
0/~... -+ 0, u)L, /~... m url„r/q -+ r, and T = (K+
m), with m = 0, +1, . . . is the kinetic energy in recoil
units.

With some relabeling, the above set of equations may
be brought into the form of a tridiagonal recurrence rela-
tion. The solutions of that recurrence relation are most
easily obtained by means of a continued &action method
or by a suitably truncated matrix diagonalization.

For a given r, the set of equations has infinitely many
solutions E, (C, „ Is = z, g, y; n = 0, +1, . . .j, which
are enumerated by a band index v = 0, 1, 2, . . . . For
a given band index v, the energy E (r) and coefficients
C,„(r)vary continuously as r varies in the Brillouin
zone.

The energy branches E (r) are shown in Fig. 3 for the
&eely moving atoms with only the magnetic field present,
and in Fig. 4 with the laser Field switched on. The pa-
rameters have been chosen for illustrative purposes; their
values are al, = u„,(Fig. 3) and 0 = 2uL, ——2u„,(Fig.
4).

The magnetic interaction being spatially homogeneous,
the energy branches shown in Fig. 3 are essentially the
kinetic energies of a &ee atom, shifted by an amount
+hcuL, due to the Zeeman splitting of the excited state.
In this figure, three families of energy branches may be
identified which correspond to the three atomic levels un-
der consideration. The energy branches intersect at var-
ious positions in the Brillouin zone. With the light field
turned on, the intersections disappear and are replaced
by anticrossings; see Fig. 4. This leads to the appearance
of a band structure which is also shown in Fig. 2. No-
tice the narrowing of the second. band as compared with
the lowest lying band. The lowest lying band is related
to the quasi&ee motion in the rather Hat bottom part of
the quasipotential, while the second band is related to
the motion in the bottom of the triangular section of the
quasipotentials. One must keep in mind, however, that
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2 I

-0.5 0.5

FIG. 3. The dispersion relation for a free atom in the pres-
ence of a magnetic Seld, cuL,

——u„,. The initial moxnentum
rc is given in units of the photon momentum q, the energy in
units of Ru„,. The branches with indices m = 0, k2, +4, . . .
and sn = +1,+3, . . . refer to the states Ig) and I+), respec-
tively. The energies of I+) are shifted due to the magnetic
Beld by 4~1,.

FIG. 4. The dispersion relation for an atom in the mag-
neto-optical potential, 0 = 2ul, ——2u„,. The intersections
of the free dispersion relation becoxne avoided crossings, lead-
ing to nearly Bat energy bands for low energies. There exist
three difFerent resonances at the avoided intersections: Bragg
resonance (between branches of the same family), doppleron
resonance (between Ig), I+) and between Ig), I

—)), and a Ra-
man-type resonance (between I+), I

—)).

the energy bands are not the energy bands of the quasipo-
tentials in the adiabatic approximation, but rather of the
full Hamiltonian (12).

At the anticrossings in Fig. 4, the energies nearly
touch, leading to two-beam resonances (Pendellosung) in
atomic beam diffraction. Three kinds of resonances may
be identified. Bragg resonances involving branches of the
same electronic states, velocity-tuned (doppleron) reso-
nances involving branches of different electronic states,
and a new, Raman-type class of resonances, involving
branches of different Zeeman sublevels. Bragg resonances
and doppleron resonances have previously been identified
for a two-level atom moving in a standing-wave laser field
[10]. The Raman-type resonances are identified here.

Characteristic for Bragg resonances is their position in
the Brillouin zone, which is either at the center v = 0
or at the boundaries r = +q. Doppleron resonances and
Raman resonances, in contrast, may appear for any value
e, the concrete value being given by the value of the Lar-
mor frequency which here serves as an effective detuning
between the laser frequency and the Bohr transition fre-
quency. Thus, for a prescribed value uL„these resonances
are encountered only for certain values of the atomic ve-
locity (velocity-tuned resonances).

snv K ~&K (26)

is orthonormal,

p K p K K 7 (27)

and complete,

(28)

For the expansion coefficients, these identities imply, re-
spectively,

) C;„„C,„„=b„„, (29)

) CsnvCs'~'s = ~ s'~varas'

~ith the coefficients C,„„(ic)and energies E„(e)nu-
merically evaluated, the time evolution of any initial state

D. Time evolution

The set of eigenstates constructed in the previous sec-
tion,

Ig(to)) = d~ ) P,„(to., r) Isn~)

is easily obtained. We have explicitly

Ig(t)) = d~) ) P, „(to;+)C,„„(m)'C,„„(e)e' "l")'
Isn't),

sn s'n'v
(32)
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where the term in the square brackets represents
P,„(t;K) The coefficients /3, „(r)are in a simple way re-
lated to the momentum distribution of the state at time
t Fo. r example, ~Ps„(t;r) ~2 is the probability of finding
the atoms at time t in the ground state, propagating with
momentum hr + 2nhq.

For the class of atoms impinging in the ground state
with sharp momentum po

——h(ro + 2noq) (plane wave),
we have P,„(to,r) = b,gb„„,b(K —ro) and the expression
for the state vector (32) reduces to a discrete sum. It
is to be noted, however, that the above procedure may
be applied for any arbitrary initial state, and, moreover,
may be used for any arbitrary representation, including
the position representation or the Wigner representation.
The only operation required for the latter representation
are suitable Fourier transforms of the density operator
g(t)) (g(t) ~, a numerical task which is accomplished most

easily by fast Fourier transform techniques.
In the procedure described so far it was assumed that

0 is time independent. In general, however, the atoms
experience different field strengths while traversing the
interaction region as a result of the transverse profile of
the laser beam. This effect is easily accounted for by a
replacement fl ~ f(t)O, where f(t) is a suitable enve-
lope function modeling the transverse laser profile. In a
numerical implementation, time is discretized such that
f (t,+i) difFers only little &om f (t, ), and H(t) is diagonal-
ized at each time step t, The pro. pagation of the initial
state Q(to)) is then obtained &om a sequence of prop-
agations ~g(jj, )) -+ ~g(t, +i)) using H(t, ) as an. effective
generator,

l I

0.3-

z0
+ 0.2-
U

0.1-

,pi:

-20
I

-10 0
l

10 2G

FINAL MOMENTUM

are 8 = 160m, , in both cases, with matched I armor fre-

quency urI. = fI/O for the MOD and b = 0.10 for the
SWD.

Two different envelope functions f (t) are used to model

III. RESULTS 0.4

In this section we present the results of the numerical
simulations of the diffraction of atoms from the magneto-
optical configuration (MOD) for a variety of initial states
and laser profiles. We also contrast the MOD with the
difFraction of two-level atoms &om a standing-wave laser
field (SWD). The latter situation is described by a Hamil-
tonian

P' ( b/2 0 cos(qZ) )
0 cos(qZ) —b/2

0.3-

z0
H 0.2-
U

I
I
I

I

1
1

1

where b is the detuning between the laser &equency and
the atomic transition &equency, and 0 denotes the bare
Rabi frequency of the atom-laser interaction.

The MOD results are depicted in Fig. 5, and the SWD
results are depicted in Fig. 6. The figures show den-
sity plots of the momentum distribution of the outgoing
atoms for incoming atoms in the electronic ground state
moving with zero transverse momentum. The horizon-
tal axis measures the momenta of the outgoing atoms in
units of hq; the vertical axis measures the efFective inter-
action time w in units of cu, . Note that the figures do
not show the time evolution during the interaction, but
rather the momentum distribution after the atoms have
left the interaction region. The interaction parameters

0.1-

P,

rr

0-
—20

I

—10 0 10

FINAL MOMENTUM

FIG. 5. Final momentum distribution for MOD (in units
of hq) as a function of interaction time (in units of 1/cu„,) for
0 = 2cuL, ——160m„,. The incoming atoms are in the ground
state with zero momentum. (a) With a steplike envelope func-
tion. (b) With a Gaussian envelope function.
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f(t) = O(t —t, ) —O(t —t, y ~) (84)

of duration 7. Underlying Figs. 5(b) and 6(b) is a
Gaussian function

l

Q.+
h' '

0.&

z0
Q

0.2-

OC

'!I! 'j-,I'::

IjI

0.&

the possible laser profiles. Underlying in Figs. 5(a) and

6(a) is a simple step function f(t) = exp
(

—
)

of 1/e width v. The steplike variation of the envelope
function (34) implies nonadiabatic transitions at the en-
trance and at the exit of the interaction region. For
the Gaussian profile, on the other hand, long interaction
times imply a smooth switch-on —switch-off characteris-
tic, which in turn implies an adiabatic evolution of the
state vector while the atom enters and leaves the inter-
action region. Because of the nonadiabatic transitions
which occur for the step function, the momentum dis-
tribution depicted in Fig. 5(a) is more uniformly spread
out than in Fig. 5(b), where a clear two-beam splitting
is observed.

A. Time regimes

Figures 5 and 6 show the momentum fan of the outgo-
ing atoms as it unfolds with increasing interaction time.
Clearly visible in the figures are two regimes: linear
growth of the momentum spread for short interaction
times and a saturation of the maximal momentum spread
for longer interaction times, where also collapses and re-
vivals occur.

0-,
-20

I

-10
I

0
I

10
I

20
X. Baman-Nath regime

I

0.4-

03-

0.1-

0-,
-20

FINAL MOMENTUM

I

—10 0 10

r-MAL MOMENTUM

Linear growth of the momentum spread is characteris-
tic for interaction times in the Raman-Nath regime. In
this regime, effects of the motion of the atoms are negligi-
ble and the interaction region acts like a pure phase grat-
ing; see the discussion in Sec. II B. Of the four situations
depicted in Figs. 5 and 6, the MOD with a Gaussian laser
envelope shows the cleanest two-beam splitting. This is
in accordance with the nearly constant slopes of the tri-
angular portion of the MOD quasipotentials (see Fig. 2).
In the case of SWD, the sinusoidal quasipotentials have
significant curvature, which is responsible for the popu-
lation of intermediate momentum states observed in Fig.
6(b).

We may also compare our results to the ones reported
by Adams et cL (Ref. [24], Sec. IV) on the occur-
rence of nonadiabatic transitions, which were obtained in

the Raman-Nath approximation. For our calculations we
used a typical maximum Rabi frequency of 0 = 5700~„,
and, in analogy to [24], a Gaussian laser profile f (t) with

JdtOf(t) = 20m. The corresponding interaction time
was about half the Raman-Nath time URN = 1/ger, ,Q.
Our exact calculations show good agreement with their
results. The momentum distribution of atoms emerging
in the excited state was qualitatively the same as given
in [24], Fig. 10, and the probability for nonadiabatic
transitions was found to be 8%, compared to 6% in [24].

2. Collapse and revival

FIG. 6. Final momentum distribution for SWD with
0 = 160m, , and b = 0.10. (a) With a steplike envelope
function. (b) With a Gaussian envelope function.

Characteristic for the variation of the momentum dis-
tribution with increasing interaction times beyond the
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Raman-Nath regime is a sequence of collapses and re-
vivals of the short-time pattern. The first revival is most
clearly visible for the MOD with a rectangular laser pro-
file. The revival time is essentially given by the maxi-
mum half-period of oscillations in the triangular-shaped
portion of the MOD quasipotential. For the parameters
underlying Fig. 2, this estimate gives r„=0.25, in ac-
cordance with the value which may be read off from Fig.
5(.)

In fact, the saturation of the momentum spread and
the sequence of collapse and revivals may be illustrated
by a simple model of classical particles moving in the
quasipotential of the atom-light interaction; see Fig. 7.
The classical analog of incoming atoms with zero trans-
verse momentum is given by a spatially uniform distri-
bution of point particles with zero velocity. Placed in
the potential region, these particles start to fall, thereby
picking up momentum, the distribution of which is de-
picted in the density plots in Fig. 7. For the triangular
potential mimicking the MOD, the momentum transfer
is clearly two peaked. In this case the particles fall down
the two sides of the potential. Since the slope of that
potential is piecewise constant, all particles pick up the
same momentum in a given time interval, leading to the
two-peaked momentum distribution. For the sinusoidal
potential mimicking SWD, on the other hand, the curva-
ture of the potential implies that different particles pick
up different momenta for a given time interval. Corre-
spondingly, the momentum distribution unfolds more dif-
fusely than for MOD. In the course of time, the particles
move eventually into a region of opposite slope, and for

even longer interaction times oscillations occur, the pe-
riod of which is essentially given by the initial position of
an individual particle relative to the minima of the poten-
tial. The erst revival time at which the zero-momentum
state is repopulated is given by half the maximum osciHa-
tion period. The quadratic behavior near the minima of
the sinusoidal potential gives every particle in that region
the same oscillation &equency. Accordingly, the revival
is more pronounced for SWD than for MOD, where each
particle has its own oscillation period.

Although the global features of the dependence of the
momentum distribution on the interaction time cari be
understood in purely classical terms, important features
like the exclusive population of discrete momentum states
and the washout of the revivals can only be understood in
wave mechanical terms. This is particularly true when-
ever the internal states of the atoms play an important,
role, for example, in the population trapping discussed
in the next section.

8. Population trapping

An interesting effect occurs for the MOD with a
Gaussian laser profile. For intermediate interaction times
TRN ( 7 ( T, nearly 40% of the population of the
outgoing atoms are accumulated in the ninth diffraction
order, corresponding to atoms in the excited Zeeman sub-
level

~

—
) traveling with transverse momentum +9hq. The

accumulation is relatively insensitive to variations in the
interaction time, yielding a very clean and robust beam

FIG. 7. A classical analog for
atomic motion. Noninteracting
particles with initial zero mo-
mentum move in a potential.
The classical momentum distri-
bution as a function of time is
shown (a) for a triangular po-
tential mimicking MOD and (h)
for a sinusoidal potential mim-
icking SWD.

FINAL MOMENTUM FINAL MOMENTUM
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splitting. This population trapping can be explained
as follows: For matched fields 0 = 2uL„ the degenera-
cies allow transitions &om state ~2) to the energetically
more favorable state [3). For a Gaussian envelope func-
tion, the matching condition is fulfilled only at a certain
time of the interaction [f(t) = I]. At other times the
energy levels are well separated [Fig. 2(a)], &ustrating
transitions between the states. Thus, as the magneto-
optical potential is switched on, the initial ground state
evolves adiabatically into the state ~2). As soon as the
fields are matched, transitions occur to the state ~3). As
the potential is switched off, the degeneracies disappear.
The atoms are now trapped in the state ~3), which then
evolves adiabatically into the free state

~

—).
In practice, excited atoms are experimentally unfavor-

able because of possible spontaneous emission which may
occur on the way to the detector. To cope with this
calamity, two possibilities appear at hand. The first pos-
sibility would be to use atoms with a A configuration
of electronic states rather than the V configuration. In
this case, atoms which are initially excited would be split
in the manner shown in Fig. 5(b) and the atoms would

emerge in the ground state. The second possibility would
be to keep the V configuration, but to apply a z pulse
just behind the interaction region. This would bring all
atoms &om the excited state coherently back into the
ground state, thereby avoiding spontaneous emission in
the following &ee Sight to the detector.

1.5-

0

~
0.5-

-20 10

I INAL MOMEN rUM

g. Bragg regime

For Gaussian interaction times exceeding the recoil
time u,„i,the evolution of the atomic state vector is adi-
abatic not only with respect to the internal state of the
atom but also with respect to the translational motion.
In the language of the band theory, the zero-momentum
state is energetically sufiiciently far off other states
(more than Ru„,), such that the slow variation of the
Gaussian envelope does not admit any population of out-
going states other than the zero-momentum state. Ac-
cordingly, the incoming atom leaves the interaction re-
gion with most of its population in the same momentum
state as it had initially; see Fig. 8(a). On the other hand,
for incoming atoms which fulfill a Bragg condition, even
the slowest switching on of the interaction leads to a pop-
ulation of two diffraction orders because the energies of
the &ee atom are degenerate. This effect is illustrated in
Fig. 8(b), which depicts the unfolding of the momentum
fan for incoming atoms moving with transverse momen-
tum Mq. As this momentum state is energetically degen-
erate with the momentum state —2hq, strong coupling
between these two states appears inside the interaction
region, leading to the Pendellosung behavior of the out-
going atoms as a function of the interaction time. The
&equency of these oscillations is essentially given by the
energetic level splitting at the avoided crossing located
at the Bragg resonance.
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t
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20
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FIG. 8. Momentum transfer for MOD with a Gaussian en-
velope function and 0 = 2cul. ——160~„,for long interaction
times. The atoms are initially in the ground state. (a) Iiii-
tial momentum zero. In the adiabatic regime r & I/~„,the
atoms leave the interaction region with zero momentum. (b)
Initial momentum 2hq. For r & I/u, , the final momentum
distribution oscillates between +2hq.



3274 U. JANICKE AND M. %'ILKENS

B. Postinteraction spontaneous emission

While spontaneous emission is unlikely to occur during
the interaction, this is not the case for the Bee Bight to
the detector. The reason is that the distance between the
interaction region and the detection screen should be as
large as possible to increase the accuracy of the resolu-
tion of the d'action pattern. This makes spontaneous
emission of atoms leaving the interaction region in an ex-
cited state almost unavoidable. To illustrate the impact
of a possible single spontaneous emission act following the
interaction, we simulated the magneto-optical diffraction
of Ca, with the laser field tuned on resonance with the
intercombination line 4 So —4 Pi. For this line I' = 2.5
kHz (radiative lifetime 0.4 ms) and ur„,/2m = 11.5
kHz. For our simulations we chose 0 = 2~L, = 4600I',
which corresponds to a Raman-Nath time URN = 1 ps, a
Gaussian envelope to model the profile of the laser beam,
and we also included effects of a finite detector resolution
of 0.4hq. The incoming atoms are assumed to be in the
ground state, traveling with zero transverse momentum.

The results of our simulations are depicted in Fig. 9.
In Fig. 9(a), we show the momentum distribution of the
outgoing atoms for an interaction time which lies between
the Raman-Nath time and the first revival time (the dot-
ted lines show the results without the impact of spon-
taneous emission). The two-beam splitting is still well

visible, although the two outgoing beams appear signifi-
cantly broadened as a result of the spontaneous emission.
In Fig. 9(b), the interaction time is of the order of the first
revival time. Here, the recurrence of the central peak is
clearly visible. In contrast to the outermost peaks, which
are broadened by spontaneous emission, the broadening
of the central peak is entirely due to the finite resolu-
tion of the detector. Broadening by spontaneous emis-
sion does not occur because the central peak corresponds
to atoms which leave the interaction region in the ground
state.

IV. SUMMARY

A thorough study of the motion of three-level atoms
in a magneto-optical field has been presented. The con-
siderations are based on an exact diagonalization of the
underlying Hamiltonian including the kinetic-energy op-
erator of the atoms. The diagonalization has been ac-
complished in a band-theoretical framework.

The band theory allows one to identify, beside the
well-known Bragg and doppleron resonances, a class of
velocity-tuned resonances, where the magnetic state of
the atom changes concomitant with a momentum trans-
fer of an even number of photon recoils.

For the diKraction of atoms, three time scales have
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FIG. 9. Momentum distribution for Ca with 0
= 2cuL, ——4600t', where I' = 2.5 kHE. Spontaneous emission is
included by s quantum Monte Carlo simulation (the dashed
lines denote the results without the impact of spontaneous
emission). The incoming atoms are in the ground state with

=0, th, e detector resolution is modeled to be 0.4hq, where

hq is the photon momentum. (a) ~ =- 0.327/~„,= 4.5 ps, (b)
r = 0.380/~„,= 5.3 ps.

been identified. For interaction times shorter than the
Raman-Nath time ~RN, the spread of the momentum
distribution increases linearly with increasing interaction
time. For interaction times of the order of 7RN, satura-
tion of the momentum spread appears as a result of the
phase mismatch refiecting the physical motion of the par-
ticles. For interaction times beyond 7RN, the momentuin
distribution shows features of collapse and revival refiect-
ing the periodic motion of the atoms in the interaction
region.

The theory has been presented in such a way that it
is easily adaptable for other configurations of the atom-
radiation interaction as well as for other representations,
such as the Wigner representation.
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