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Converged three-dimensional calculations of above-threshold ionization:
Angular-momentum constraints and the kinetic-energy distribution
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We present an application of the artificial-channel method to the calculation of multiphoton ioniza-
tion rates under continuous-wave illumination conditions. We use the method to treat above-threshold
ionization (ATI) of hydrogen in three dimensions with linearly and circularly polarized light at field in-

tensities ranging from 10 to 10' W/cm . The results are compared with perturbative as well as nonper-
turbative calculations for short pulses and with experiments. The range of validity of the dipole approxi-
mation for ATI processes is also examined. An analysis of both the angular and angular-momentum dis-
tribution of the photoelectrons at different intensities is presented. We find that ATI cross sections for
circularly polarized light at 532 nm are three orders of magnitude weaker, with electronic kinetic ener-

gies peaking at higher values, than in the case of linearly polarized light. This last effect is shown to re-
sult from the different ponderomotive potential experienced by the electron, due to the drastically
different angular distributions computed for the two cases. Connection is made between the angular dis-

tributions, and the angular-momentum constraints affecting it, and the kinetic energy of the ensuing
electrons. It is argued that it is difFicult to understand the ATI process without taking the three-
dimensional aspects of the problem into consideration.

PACS number(s): 32.80.Rm, 42.50.Hz

I. INTRODUCTION

Above-threshold ionization (ATI) consists of the ab-
sorption of a (large) number of photons in the continuous
part of an atomic spectrum. In this paper we analyze the
ATI problem by solving the Schrodinger equation for an
electron under the simultaneous action of the atomic and
laser fields. This is done for a number of reasons. First,
since both fields can be strong, perturbative methods and
most other approximate methods are expected to fail.
Whereas many models seem to explain qualitatively well
the distribution of the kinetic energy ("ATI peaks") of
the ensuing electron(s), the direct solution of the
Schrodinger equation is required if one wants to study
the dependence of the process on the photon energy.
This is especi. ally so with respect to the possible effect of
intermediate atomic bound states, which broaden and
shift in a nontrivial way under the action of the intense
laser field.

There are additional reasons for a full numerical study
of the problem in three dimensions (3D). Currently, the
prevailing feeling is that in order to understand the
kinetic-energy distribution of the ATI electrons, it is
sufficient to follow the electron from the instant it enters
the continuum [1—4]. There is, however, evidence based
on a comparison with experiments [5] and accurate nu-
merical simulations [6], that reveals substantial quantita-
tive discrepancies with the above models. Below, we
show that the manner in which the electron enters the
continuum is important. In particular, we show that the
kinetic-energy distribution is affected by the number and
angular momenta of the photons absorbed as the system
makes its way to the final continuum level.

In the past a number of studies have, in fact, included

both the bound-continuum and continuum-continuum as-
pects of the problem. However, often a number of sim-
plifying assumptions were made. Thus, when it was felt
that the contribution of intermediate resonances could be
ignored, the bound-continuum part of the process was
treated using ¹h-order perturbation theory [7,8], where
X is the number of photons needed to reach the continu-
um. Although perturbation theory works well for weak
fields, it fails for strong fields. Alternatively, models in
which only a truncated number of (bound and continu-
um) "essential states, " generally chosen to be in reso-
nance with some integer multiple of the photon energy,
have been employed [9—12]. The essential-states-type
models fail, however, for really strong fields that induce
strong mixing between highly off-resonance (bound and
continuum) levels.

A difFerent philosophy was to solve the problem fully
using model potentials [13—15] embedded in some cases
in a reduced number (one or two) of dimensions [14,16].
The choice of model potentials is often dictated by a
desire to overcome the singularity at the origin and the
very long-range aspect of the Coulomb and radiative in-
teractions. This is done by adding reflecting [14] or ab-
sorbing [15,17] potentials at well chosen boundaries or by
choosing periodic potentials [18].

As we show below, there are salient features of the pro-
cess which are only manifest in the 3D world. This is
particularly so with respect to the influence of the
electron's angular momenta on the efFective field driving
the electron. We show that the angular-momentum dis-
tribution affects the average ponderomotive potential,
which, in turn, affects the electronic kinetic-energy distri-
bution. Since difFerent polarizations impose difFerent
angular-momentum constraints, the 3D aspects of the
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process are important for understanding the kinetic-
energy distribution of the ATI electrons.

What hampers the execution of accurate calculations
in 3D is mainly the long-range nature of the Coulomb
and radiation-matter interactions. In particular, if one
works in the (otherwise convenient) length form, the
radiation-matter interaction, p.8 (the electric dipole
times the field), may extend literally over macroscopic
sizes. This problem is not so severe when short pulses
(lasting 10-50 fsec) are considered. Schafer and Ku-
lander [19] have solved directly the time-dependent
Schrodinger equation for such pulses. In this case, the
radiation-matter interaction shuts off before the electron
can travel too far. As a result, the spatial integration can
be stopped after a few hundred A or less.

Many of the ATI experiments [5,20,21] are, however,
conducted with nsec or psec pulses, which subject the
electron to strong interactions over many thousands of A.
Under these circumstances the direct solution of the
time-dependent Schrodinger equation is impossible.
Even the solution of the time-independent Schrodinger
equation is diacult. In the past, the problem has been
dealt with within the framework of Floquet theory
[22—24], where an eigenvalue matrix equation is solved.
The solutions are the complex energy values of the
dressed laser-atom eigenstates whose imaginary part
gives the total rate of ionization from each state. There
are different versions of the Floquet method. Recently,
alternative methods that combine the formalisms of R-
matrix and Floquet theory for solving multiphoton ion-
ization problems have been developed [24]. In this
method the R matrix is propagated from an internal re-
gion (close to the nucleus) to an external one (far from the
nucleus) where the eigenvalue problem for the dressed
states is solved.

In this paper we present an eacient algorithm which
allows for the direct evaluation of the steady-state ioniza-
tion rates from an initial bound state to the various final
kinetic-energy states. This is done by propagating the
(r-dependence) matter-field coupled-channels (CC) equa-
tions from the neighborhood of the nucleus up to the
"detector zone" where the field is absent, and imposing
there the bound-continuum boundary conditions via the
use of the artificial-channel method (ACM) [25]. In this
way, we are able to consider the multiple absorption of
photons in the bound and continuum manifolds in a uni-
form way. Since the bound-state manifold is an integral
part of the calculations, the effect of resonances derived
from the remnants of the atomic bound states is automat-
ically taken into account.

We present full 3D computations of the ATI of hydro-
gen by 532-nm cw light. We also test the validity of the
dipole approximation at the large electron-proton separa-
tions typical of this problem. We compare our results
with other perturbative [7] and ultrashort-pulse [19) stud-
ies, as well as with experiments [21]. We examine intensi-
ties ranging from "weak" (I=10 W/cm ) to "strong"
(1=10' W/cm },for linear, as well as circular, polariza-
tions. The latter computation constitutes the first full nu-
merical study of this case. We show that the angular and
angular-momentum distributions are connected to the

observed kinetic-energy distribution. This connection is
made via the computation of the dependence of the aver-
age ponderomotive potential (AC stark shift} on the elec-
tronic angular distribution.

II. METHOD

where a.u. are used throughout this
A (E,I, rn, n

~ E;,i;,m;, n; )—the photoionization
tudes —is given as

A(E, l, m, n~E, , l;, rn;, n; )

paper.
ampli-

=((E,l, m, n) ~V~E;, 1;,m;)~n, ) . (3)

In the above, ~E, , l, , m, ) ~n; ) is the initial state which is
assumed to be the product of bound material state (e.g.,
the hydrogenic ls state) and a radiation state with n,. pho-
tons in a single radiation mode of frequency co.

~E;,I;,m, )~n, ) is t.herefore the eigenstate of the nonin
teracting Hamiltonian

Ho =H~+H„d (4)

where H~ is the material Hamiltonian and H„dis the ra-
diative Hamiltonian. The noninteracting Hamiltonian
has both bound,

HOIE;, l;, m; ) ln; )

=(E;+n, ro)~E;, l, ,m, ) ~n; ) (E; &0), (5)

and continuum,

Ho[E, l, m ) ~n ) =(E+nro)~E, l, m ) [n ) (E)0) . (6)

states.
~(E, l, m, n) ) of Eq. (3) is an eigenstate of the fully in-

teracting Hamiltonian H(H =Ho+ V)

H~( El, mn) ) =(E+nro)~(E, l, m, n) ) .

It is the incoming scattering solution (a "minus" state),
i.e., it correlates in the distant future (as the radiative in-
teraction V is switched off) with ~E, 1,m ) ~n ) one ofthe-
noninteracting continuum eigenstate of H~. In order to
calculate the photoionization amplitude of Eq. (3), we
first expand

~ (E, i, m, n ) ) in the eigenstates of the
angular-momentum operator

~ I,m ) and the photon occu-
pation number states ~n ),

The derivation of our working equations for the
strong-field ionization rate of an atom subjected to a cw
radiation field proceeds as follows. We consider the case
in which we adiabatically switch on the radiation-matter
interaction,

V= —p 4',

where p, is the dipole operator and 8 is the radiation elec-
tric field. Under these conditions, the steady-state photo-
ionization rate is given [26] as

R (E, l, m, n~E;, l;, m;, n;)

=2m'~ A (E,l, m, n ~E;, l;,m;, n; ) ~
5(E+nco E; —n;co)—,

(2)
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(R ~(E, l, m, n) &
=—gg",.(R) ~v'&,

V

(8) I dE—no)+-
2m~

l (1+1) 1

2m, R2

where v= [l,m, n [ and ~v&—:~l, m, n&.
The radial-channel wave functions f„".(R) are obtained

by substituting Eq. (8) into Eq. (7) and projecting onto
each

~
v& state. The result is a set of CC equations,

E; + (n; n—)co+
1 d l(1+1) 1+—

2~, dR 2mR

—gD„„.(R)F„(R}=D„~(R)FI,(R),

coupled to an initial bound subspace

l;(l;+1)
E nl co+ +—Fq(R )

, dR 2m, R

(13)

=gD„„g,,
where m, is the electron-proton reduced mass and

(9) = 8'q, (R)F,(R), (14)

which, in turn, is coupled to an artificial channel
r

27TCOk
=ie g

' 1/2

R f&[aI, exp( —ik.R)

—akexp(ik R)] U,

D„,=(,n ~(l, m
~
V[1',m'&~n'& . (10)

The form of this matrix is dictated by the coordinate
dependence of V, which is written explicitly as,

1 dE —e, + —W„(R) F, (R)=0 .~, dR
(15)

In the above, E=E;+n;co.
As explained below, the results for the final bound-free

matrix elements are insensitive to the exact form of the
artificial-channel asymptotic energy e, and the artificial-
channel potentials W„(R)and Ws, (R) [29].

Equations (13)—(15) can be written more compactly in
matrix notation as

where e is the electronic charge, U is the cavity volume.
c.k and &ok are, respectively, the polarization vector and
angular frequency of the k mode, and

1E+ I—V(R) F(R)=0,
2m~

(16)

R
U =exp

CX

2

(12)

where the potential matrix is of the form

W„(R)+e' 0 0

models the transverse spatial profile of the laser.
Because the initial state in the photoionization problem

is a bound state and the final state is a continuum state
[see Eq (3)], this type of problem is sometimes called a
"half-collision" problem. The artificial-channel method
[25] allows one to transform any half-collision problem
into an ordinary full-collision ("scattering") problem (in
which both initial and final states are in the continuum).
In this way, it is possible to solve half-collision problems
using the arsenal of numerical methods available for mul-
tichannel scattering. In the present application, the
propagation of the CC equations is done with the Mano-
lopoulos modification [27] of Johnson's log-derivative al-
gorithm [28].

The essence of the ACM is the addition of one
("artificial" ) channel to the set of "physical" channels.
The artificial channel is used to inject particle Aux into
the manifold of bound initial states. The coupling be-
tween the artificial channel and the bound manifold is in-
troduced in a unidirectional way (back transitions are not
allowed) so as to properly maintain the bound-state na-
ture of the initial states. This nonsymmetric coupling
gives rise to a nonunitary S matrix, which was shown [25]
to possess simple poles, lying on the real axis, whose posi-
tions correspond to the exact bound-state energies and
whose residues correspond to the desired bound-free
transition amplitudes.

The equations solved in the ACM for the hydrogenic
ATI problem assume the following form: The F (physi-
cal) manifold

V(R) = 0
Wb, (R )

D(R )+neo D&(R), (17)

0 Vq(R)+n;co

where 8' is a diagonal matrix of photon occupation num-
bers. The matrix of solution is of the form

FQ
a

F(R)= Fp

FQ
b

O' O

FP Fb

FP Fb

(18)

In the above, bold-type symbols represent rectangular
submatrices, italic-type symbols represent column vec-
tors, and t represents a Hermitean adjoint (for real ma-
trices, a matrix transpose). For example, 0, 0, and 0
denote zero rectangular matrix, zero column vector, and
zero row vector, respectively.

The S matrix derived from Eqs. (16) can be obtained
using a variety of multichannel propagation schemes
[28,27]. Of greatest interest to us are the S-matrix ele-
ments linking the artificial channel to the physical space,
which can be written, using standard expressions as

S„,(E)=2m (E,v iD iFI+, '(E) &, (19)

with (E,v
~

being the (incoming} physical solutions. It
can be shown [25,26] that with the special nonsymmetric
form of Eqs. (16) the above matrix elements become

( E,v ~D ~E„&& E„)W~ ~F:+(E}&S,(E)=2mi g
n

(20)
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f„„{E)—:(E,v ~D ~E„)= .Res„
S, ,(E}

2mi
" A„(E) (21)

where

(22)

The quantity A„and the bound-state energies E„are
most conveniently calculated in a separate smaller calcu-
lation in which the whole P manifold is replaced by a
second artificial channel a' whose W, , channel potential
and W, b coupling term (a' is coupled to the bound mani-
fold) are set identical to W„and Wi . The S, , matrix
element resulting from this set of equations, which is
identical in structure to Eq. (16), is of the form

(F, (E)[Wi ~E„)(Et~Wi, ~E +(E))
S, ,(E)=2@i+ E—E

=2mi exp(2il, ) g~ A„(E)~/(E E„). —(23)

Hence,
~
A„(E=E„)

~
are obtained as

I ~„(E„)I
= Res„.S...(E)1

(24)

and E„areobtained as the corresponding pole positions.
These poles can be located very efiiciently [30] using only

where E„and ~E„)are the bound eigenenergies and
eigenstates of noninteracting Hamiltonian [Eq. (5)].

It follows from Eq. (20) that all the S„,matrix ele-
ments have poles at E„—the bound-state energies of the
noninteracting Hamiltonian. The residues of these poles
are directly related to the desired radiative transition am-
plitudes

a few iterations (see Appendix A of Ref. [30]). Typically
[31],an eigenvalue can be located to an accuracy of nine
to ten signi6cant Sgures with four or 6ve evaluations of
S-matrix element. Once A„(E„}and E„areknown, the
desired bound-free matrix elements are computed directly
from Eq. (20). A simple shift of E E—

„

in the definition
of the e, asymptotic energy guarantees that it is enough
to solve Eq. {24) only once, i.e., that the value of A„(E„}
may be used for all energies [25].

An illustration of a typical basis set used in our compu-
tations, together with the hierarchy of interstate cou-
plings, induced by V, is shown in Fig. 1. The illustration
distinguishes between states, drawn with continuous line,
used in the circular polarization calculations, and addi-
tional states, drawn with dotted line, needed for the
linear polarization case. States with higher photon num-
bers than the initial number of photons (n, ) represent the
counter-rotating terms. Their role is very similar to that
of "closed" channels in ordinary nonradiative scattering.

HI. RESULTS AND DISCUSSION

Before presenting the full hydrogenic ATI computa-
tions, we discuss two crucial tests of the methodology.
The first deals with the convergence of the propagation in
the radial distance R and the rate at which we need to
switch oF the laser field in order to attain stable results.
The second is a test of the validity of the dipole approxi-
mation for very long-range interactions, such as those en-
countered in the present problem. These two tests are in-
timately connected, as they both deal with the fact that
although the electron resides in a strong laser field which
may extend over more than 10000 bohrs, the range of
effective interaction of the electron with the Beld is con-
siderably smaller.

PHOTON
NUMBER I l

n=n;-9

n=n, -8

n=n, -7

n=n;-6
l

l n=n, -5
l

n =n, -4
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l

l n=
l

n=n, +1
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/
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' closed channels (A= 532nm)

FIG. 1. Illustration of a typi-
cal basis set used in the CC ex-
pansion for six-photon ioniza-
tion of hydrogen by circularly
polarized light (solid lines) and
linearly polarized hght (solid
and dotted lines). Note that this
basis properly accounts for
counterrotating terms.

Artificial bound
Channel state

0 1 2 3 4 5 6 7 8 9 10

physical space
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TABLE I. Convergence of the computed ionization rates (in
sec ') for the first three ATI peaks as a function of the laser
spot-size parameter a of Eq. (12). The numbers in square brack-
ets denote powers of 10.

30
50
70

100
181
201
301
402
804

2.2[+8]
3.7[+8]
4.2[+8]
4.5[+8]
4.7[+8]
4.8[+8]
4.9[+8]
5.0[+8]
5.0[+8]

9.45[+7]
1.20[+8]
1.35[+8]
1.27[+8]
1.29[+8]
1.30[+8]
1.33[+8]
1.33[+8]
1.33[+8]

2.40[+7]
1.48[+7]
1.33[+7]
1.28[+7]
1.26[+7]
1.26[+7]
1.28[+7]
1.28[+7]
1.28[+7]

The range of the R. propagation is a strong function of
the laser spatial extension and its intensity, since ideally it
must be continued until the laser field is negligible. It
turns out that the S matrix becomes constant at much
smaller distances if a gradual switch-off of the laser field

is introduced. %ithout such switch-ofF', the S matrix is
expected [32] to oscillate with R, roughly as
exp(iso m, R /[4[triE(1+1)]' }).

A study of the efFects of the laser switch-off is given in
Table I. We find that although convergence (with respect
to R and with respect to the number of channels) is
slower with increase in the laser spot size, for a given in-
tensity the ATI rates and angular distribution cease to
change beyond a certain spot-size value. The reason for
this behavior may be gleaned from Fig. 2, where we plot.

1I & 1,0I V!0,0)!n; ) interaction matrix element for
five laser profiles (di6'erent U functions) of the same inten-
sity. %e display the complete interaction matrix element
[derived from Eq. (11)],and its dipolar portion, obtained
by maintaining the first term in the Taylor expansion of
the exp[hik R] factor of Eq. (11).

It is clear from Fig. 2 and especially from Fig. 2(f),
where the potentials for all five laser widths are lumped
together, that given a distance RI, an additional increase
beyond a certain value o. ;„ofthe range of the U function
leaves the interaction matrix element for R &R& un-

Full and dipolar interaction potentials for different laser spot sizes
!
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-\(XX) 6(XX) 1((XX) 1(XXX) 1200() 1400) 16000 180()0

0,5
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0,0

distance R (a.u.)
FIG. 2. Comparison of the full (solid line) and dipolar (dotted line) field-matter interaction potential as a function of 8 for five

difFerent laser spots sizes. Plotted is V(R) = (1,0!(n, —1!V!0,0)!n, ). (f) displays a summary of the full field-matter interaction po-
tentials of Figs. 2(a) —2(e) as a function of the laser spot size.
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changed. For example, for Rf =180a.u. the above holds
true for all a a;„=804a.u. For Rf =760 a.u. the in-
teraction matrix element are the same for a ~ a =3217
a.u. If, in addition, Rf =Rf„„adistance beyond which
the continuum electron is "free," i.e., it does not absorb
or emit photons [33], then it follows from the above that
differences in the laser spatial profile for R &Rf do not
inhuence the final electron distribution.

We can use this argument to estimate Rf„,Since the
ATI spectrum is independent of the laser width for
widths greater than a minimal one, a &a;„,we can use a
series of calculations of decreasing widths to find the
minimal value for which the ATI spectrum is unchanged.
By plotting the interaction matrix elements for this series,
as done in Fig. 2(f) we can estimate R&„,as the R value at
which the minimal-width curve begins to deviate from
the larger-width curves. For example, for A, =532 nm
and I= I X10' W/cm we obtain a~„=200a.u. and
R free

Because we have found the electron to be free at much
smaller distances than the laser spot size, we also have
good reason to believe that the dipole approximation may
be valid for ATI calculation despite the strong interac-
tion and the large distances involved. This has been im-

plicitly assumed in past calculations but never really test-
ed. Our present method enabled us to check this point by
including the full form of the field (which involves there-
fore higher multipolar transitions).

In Table II we compare the ATI rates obtained from
the full potential and the dipole approximation for
A, =265 nm and I=6.4X109 W/cm . We see that the di-
pole approximation yields essentially the same ATI rates
as the full-interaction form [34].

We now turn our attention to the hydrogenic ATI
problem. We first look at the angular distribution of the
ATI electrons for both linear and circular polarization.
In circular polarization, only one angular-momentum
state ("partial wave"), which is equal to its z-axis projec-
tion, may result from an N photon absorption process.
Hence, irrespective of the intensity, the angular distribu-
tion is proportional to

~ FM sr( 8, ) ~

—sin e„where 8, is
the angle between the propagation direction of the light
and the direction of the ejected electron, M=N+M;,
with M; being the z-projection of the initial angular
momentum of the electron. In contrast, in the linear-
polarization case, a nutnber of partial waves, whose
coeScients are intensity dependent, contribute to each
ATI peak. As a result, the angular distribution (which is

Angular distribution ofATI electrons (A= 532nm)
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FKx. 3. The electronic angular distributions of hydrogen initially in the 1s state, ionized by linearly and circularly polarized 532-
nm light, at different kinetic-energy peaks. 8 is the angle between the direction of polarization of the Seld and the ejected electron for
linear polarization and the angle between the propagation direction of the light and the ejected electron for circular polarization. S
denotes the ATI peak, that is, the number of extra photons (over the minimum require for ionization) absorbed in the continuum.
( ———): the circular distribution; ( X X X ): experimental results of Ref. [21]with zero-line subtraction; ( ): perturbative cal-
culatious of Ref. [7]; ( - -- - ): present weak-intensity calculations 1=6.4X 10' W/cm (our weak intensity aud the perturbative cal-
culations are almost indistinguishable from one another); (. ~ ~ ): present high-intensity calculations I=1.6X10' W/cm;
( —.—- —-): for S =3 the curve I=6.4X 10' W/cm is also plotted.
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TABLE II. Comparison of the ionization rates (in sec ') for the 5rst four ATI peaks obtained for
the full-interaction potential, and the dipole approximation for circularly polarized light at X=265 nm
and I=6.4X 10 W/cm . The numbers in square brackets denote powers of 10.

ATI peak

S=3
S=2
S=1
S=O

a =201

3.40[—15]
8.20[—10]
1.31[—4]
7.20[0]

Dipole potential

a = 1608

3.30[—15]
8.13[—10]
1.32[ —4]
7.27[0]

a =5025

3.27[ —15]
8.13[—10]
1.32[ —4]
7.27[0]

3.40[—15]
8.20[ —10]
1.31[—4]
7.17[0]

Full potential

3.30[—15]
8.16[—10]
1.32[ —4]
7.27[0]

A =5025

not converged
not converged
not converged

7.28[0]

now a function of 8I, the angle between the field polariza-
tion direction and that of the ejected electron) does
change with intensity.

In Fig. 3 we display the angular distribution for the
first four linearly polarized ATI peaks (denoted
S=0, 1,2, 3). For comparison, we also include the
circular-polarization angular distribution. Linear-
polarization calculations for both "weak" (I=6.4X10'0
W/cm ) and "strong" illuminations (I= 1.6 X 10'
W/cm ) are presented. These calculations are contrasted
with the perturbation results of Gontier, Rahmin, and
Trahin [7] and with the (background-subtracted) experi-
mental results of Wolff et al. [21].

As shown in Fig. 3, at high intensities our results devi-
ate substantially from the perturbative results, whereas in
the weak-field regime both sets of calculations agree very
well. The failure of perturbation theory is especially no-

ticeable for the highest (S =3) ATI peak. For this peak,
our results, contrary to the perturbative calculations, fit
the (background-subtracted) experimental points quite
well [35].

In Figs. 4 (displaying the S=2 peak) and 5 (displaying
the S =3 peak} we study the dependence of the angular
and partial-wave distributions on intensity. We see that
the angular distributions become more peaked as we raise
the intensity. This is explained by the reduction in the
contribution of the lower partial waves (1=0 and 2 for
S =2, and I = 1 and 3 for S=3 } with intensity. Since the
higher partial waves are cut off from above, at 1)4 (for
S =2) and I & 5 (for S =3) at all intensities, the angular
distribution is dominated more and more by the highest
present (1=4 for S=2 and 1=5 for S=3) partial wave.

The integral cw ionization rates to different final
kinetic-energy states at k=532 nm, are given in Fig. 6
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for both linear and circular polarizations. The linear po-
larization results are contrasted with the short-pulse re-
sults of Schafer and Kulander [19] and with the experi-
mental measurements of Wolff et al. [21]. Clearly, in the
linear-polarization case, there is excellent agreement be-
tween our cw results and the short-pulse results. Ap-
parently, at intensities as high as 10' W/cm the pulsed
ATI ionization rate reaches a steady state early on in the
history of the pulse and the pulsed calculations essentially
yield the steady-state rate. The comparison with the ex-
periment (where a nanosecond pulse laser was used) is
also quite satisfactory, considering the uncertainty in the
experimental intensities.

For circular polarization (at A, =532 nm) there are no
nonperturbative calculations to compare with. Neither
are there any quantitative experimental results for hydro-
gen, as Wolff et al. [21] reported zero signal in this case.
This finding actually correlates well with the computa-
tions shown in Fig. 6, where the circular-polarization
cross sections at four different intensities (I=1.0, 2.0,
4.0, and 6.0X 10' W/cm ) are contrasted with the
linear-polarization ones. Typically, the circular polariza-
tion cross sections are three orders of magnitude weaker
than the linear ones. This explains well why circular-
polarization ATI was much harder to detect.

Figure 6 also displays quantitatively the "peak-
suppression" eFect, which is the tendency of the ATI
electrons to peak at kinetic-energy values well above the
threshold for ionization. We show in Fig. 6, in good
agreement with experiments on other systems [36], that
peak suppression is more pronounced in circularly polar-
ized ATI as compared to ATI with linearly polarized
light. Thus, the suppression of the first peak (S=O) in

the circular-polarization case is already observed at
I=1X10' W/cm, whereas for linear polarization the
same effect is observed only at I= 1.6—2.0 X 10'
W/cm .

The usual explanation given to the peak-suppression
effect [36] asserts that the nearly free electron acquires
from the field an average ponderomotive potential,

2@2
U, =-,'m(r')= '

2m co
(25)

e ~@osin2cot
U);„=

2m co

2@2
0

4m co

where m is the electron's mass, c is the speed of light, and
denotes an average over the square of the electric field.

The ponderomotive potential, which is slowly converted
to kinetic energy as the electron exits the field, is the
minimal kinetic energy at which we can observe the elec-
tron. The larger the ponderomotive potential, the larger
the peak-suppression effect.

Equation (25) is consistent with the results of Fig. 6
only if the ponderomotive potential experienced in the
circular polarization case is substantially larger than that
of a linearly polarized field of the same intensity. A sim-
ple averaging of the field squared, however, fails to yield
this e8'ect. Specifically, in the case of linear polarization
we have that

where 6'0 is the electric-field amplitude. For circular po-
larization we obtain from the field's two out-of-phase
contributions (the x and y components) that

e 2@2U„„=—
j sin cot + sin (cot +n /2 ) [

=-
4m Q) 4m 6.)

We see that the above procedure yields the same average
ponderomotive potential for both types of polarizations,
Note that in Eq. (27) we have accounted for the fact that
the x or y field amplitude of a circularly polarized light is
1/~2 the amplitude of a linearly polarized beam of the
same intensity.

The simple averaging over the field squared fails be-
cause it does not take into account the fact that the pon-
deromotive potential is acquired mainly when the elec-
tron is near the proton and not when it is completely free.
In order to remedy that we must allow both the electron
and the proton to be involved in the process and allow
the proton to recoil in the opposite direction to the
momentum acquired (lost) by the electron upon absorp-
tion (emission) of a photon. We therefore switch to
center-of-mass coordinates and replace i in Eq. (25) by
the e-p relative velocity r', and m by m„the electron-
proton reduced mass. We obtain that

2@2

U, =-,'m, &t", , ) =-
2m, m

where 8„is the projection of the field on the electron-
proton relative direction.

This seemingly small change has far-reaching conse-
quences regarding the electronic kinetic-energy distribu-
tion. What enters Eq. (28) is not just the field, but the
field projected on the instantaneous dipole created by the
electron and the proton. As we show below, the projec-
tion of the field "experienced" by the electron as it is be-
ing ejected is quite di8'erent in the two polarization cases.

A glance at the difFerent angular distributions of the
ejected electron, shown in Figs. 3-5, makes clear why
this is so. As shown in Fig. 3, in the circular case the
electronic angular distribution is peaked perpendicular to
the propagation direction, i.e., the ejected electron moves
always in the plane of the field. This efFect increases as
the electron absorbs more and more photons because the
angular distribution, is proportional to sin t9,
(M=N+M, with N being the number of photons ab-
sorbed), which becomes narrower with increasing N.

In the linear case the electronic angular distribution is
much broader as it is described by a sum of PL(cos8&)
partial waves. In fact, as shown in Figs. 4 and 5, at high
intensities the angular distribution tends to move away
from the 01=0 direction. For those electrons exiting in
directions other than the field direction, the projection of
the field on the instantaneous dipole can be quite small,
and the ponderomotive potential accordingly small.

In order to see this more quantitatively we have corn-
puted the ponderomotive potential in Eq. (28) by calcu-
lating the angular averages of 8, using the actual angular
distributions of Figs. 3—5. We obtain that the value
U =2ne I/m, ceo (=9.719X10 a.u. for fico=2 33 eV.
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TABLE III. Linear x~ and circular x, angular factors of the
ponderomotive potential obtained from the angular distribu-
tions of Fig. 3 for I=6.5X10' W/cm, I=10' W/cm, and
I=1.6X10' W/cm .

for the circular case (U«„=0.933XU =9.10X10
W/cm ). Consequently, as shown in Fig. 6, the first ATI
peak is suppressed in the circular case, whereas no such
effect is seen in the linear case.

Polarization S=0 S=1 S=2 S=3
Circular
Linear I=6.5(10)
Linear I=1.0(13)
Linear I =1.6(13)

0.933
0.547
0.498
0.474

0.941
0.605
0.590
0.572

0.947
0.607
0.596
0.575

0.952
0.657
0.621
0.600

and I=1.0X10' W/cm ) must be corrected by multiply-
ing it with

x, =J cosz8D, (8}sin8d8

for linear polarization, and by

x, =f sin 8D, (8)sin8d8 (30)

E=6fuo E~=1.376—X10 2 a.u. (31)

It follows from Table III that this energy is almost three
times the ponderomotive potential at I=10' W/cm for
linear polarization ( Uh„=0.498 X Uz =4.84X 10 a.u.}
and only 40% higher than the ponderomotive potential

for the circular-polarization case. In the above, D&(,)
is

the normalized angular distribution for the linear (circu-
lar) polarization.

As shown in Table III the ponderomotive potential in
the circular polarization case is substantially higher than
that of the linear polarization case, with the gap widening
as we increase the intensity. In order to illustrate the role
of the ponderomotive potential we compute the energetic
requirements for a six-photon absorption process. An
electron assumed to be initially in the ground state, with
energy Eo (Eo= —

—,
' a.u.), acquires, after absorbing six

photons, the following energy

IV. CONCLUSIONS

We have presented a method based on the ACM for
computing ATI with cw light. The method bypasses the
need to calculate (bound or scattering) wave functions as
it yields directly the relevant bound-free matrix elements.
Moreover, the whole ATI process including the passage
from the bound manifold to the continuum and the sub-
sequent excitation in the continuum, is treated uniformly
by a single set of equations. In this way we can carry out
computations for off-resonant as well as resonantly aided
[37]processes.

We have applied this method to the 3D ATI of hydro-
gen in intense laser fields. We have computed the ioniza-
tion rates, the kinetic-energy distribution, and the angu-
lar distributions of the photoelectrons for different ATI
peaks. We have presented computations for light intensi-
ties varying over four orders of magnitude, for circular,
as well as linear, polarizations. We find the circular-
polarization cross sections to be three orders of magni-
tude weaker than the corresponding linear ones and that
peak suppression is more extensive for circular polariza-
tion. This last effect is explained quantitatively as due to
the difference in the angular distribution of the ejected
electron in these two cases. In so doing we have shown
why the ponderomotive potential is greater for circular
polarization than for linear polarization. We conclude
that the 30 aspects of the process and, explicitly, the
angular-momentum constraints imposed by absorption of
linearly or circularly polarized photons determine to a
large extent the kinetic-energy distribution of the photo-
electrons.
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